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Dynamics of the antiferromagnetic spin ice phase in pyrochlore spinels
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Motivated by the classical spin-nematic state observed in the breathing pyrochlore spinel LiGa0.95In0.05Cr4O8,
we theoretically discuss spin dynamics in models of spin-lattice coupling in these materials. Semiclassical
dynamical simulations successfully recover the key features of inelastic neutron-scattering experiments on
LiGa0.95In0.05Cr4O8: a broad finite-energy peak alongside a continuum of scattering near the (200) wave vector
that extends from the elastic line to high energies. To interpret this result, we generalize linear-spin-wave
theory for conventionally ordered magnets to the disordered spin-ice-like ground states expected for moderate
spin-lattice coupling, which reproduces the numerical simulation results quantitatively. In particular, we find
that the inelastic peak is well explained by collective modes confined to ferromagnetic loops of the underlying
nematic order. In addition, we find a sharp, linearly dispersing mode in the dynamic structure factor, which
originates in long-wavelength fluctuations of the nematic director. We believe identifying this mode will be an
interesting target for future experiments on these materials. We also outline potential future applications of our
methods to both pyrochlore spinels and other spin-nematic systems.
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I. INTRODUCTION

Frustrated magnets are characterized by competing mag-
netic interactions that cannot be satisfied by any single
classical ground state. Theoretical models of such systems
exhibit a variety of exotic phases, including spin liquids
characterized by extensive ground-state degeneracy, fractional
excitations, and topological order [1–3]. In real magnetic
materials, however, such spin-liquid behavior is usually sup-
pressed by additional (e.g., further-neighbor or spin-lattice)
interactions and disorder, yielding conventional order or a spin
glass [4].

Spinel pyrochlores of formula AB2O4, where the magnetic
B ions form a lattice of corner-sharing tetrahedra, exhibit
a variety of such mechanisms. For example, the magneto-
structural order of ZnCr2O4 at low temperature involves
both a lowering of symmetry from cubic to tetragonal and
a doubling of the unit cell, as well as a noncollinear spin
arrangement [5]. This complexity arises from the interplay
between further-neighbor interactions and spin-lattice cou-
pling [6–8]. In the Zn2−xCdxCr2O4 solid solution, on the
other hand, the introduction of bond disorder by chemical
substitution produces an apparent spin glass ground state for
even small values of x [9].
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Perhaps the most intriguing mechanism for relieving frus-
tration in spinels is the spin–lattice coupling due to the rich
phase diagrams and novel states it generates [5–7,10–14]. The
simplest approach to model this interaction is to consider a
bond-length-dependent Heisenberg model coupled to phonons
that modulate the bond lengths independently. Integrating out
the phonons then results in the bilinear-biquadratic (BLBQ)
effective Hamiltonian [6,10,15]

H =
∑
〈i j〉

[J�si · �s j − Q(�si · �s j )
2]. (1)

In the large-S limit (a justified approximation for the S =
3/2 Cr3+ ions), the pure Heisenberg model Q = 0 is a clas-
sical spin liquid [16]. Spin–lattice coupling introduces a finite
Q > 0, which causes the model to develop collinear nematic
order at T � Q [11]. This order, however, retains residual
frustration. Once all spins align along a nematic director to
optimize the Q term, the J term becomes equivalent to nearest-
neighbor spin ice, which is optimized by exponentially many
two-up-two-down states [17]. While the BLBQ model has
been very successful in describing the magnetization plateaux
of several pyrochlore spinels [10,12,18–20], longer-range in-
teractions not captured by (1) cause most of them to exhibit
full magnetic ordering rather than the predicted nematic spin-
ice state. In particular, the BLBQ model decouples the length
modulation of different bonds around the same site: in the
more realistic site-phonon model [13,21], phonons mediate
further-neighbor multi-spin couplings that explain such orders
as the plateau phases of CdCr2O4 and HgCr2O4 [20].
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FIG. 1. Powder-averaged inelastic-neutron-scattering intensity
of LiGa0.95In0.05Cr4O8 measured at T = 5.2 K using 16 meV
incident neutron energy [25]. The neutron-scattering pattern is dom-
inated by a peak at finite energy transfer near the (200) reciprocal
lattice vector (the cubic lattice constant of LiGa0.95In0.05Cr4O8 is
a0 = 8.253 Å [26]).

In the past decade, much of the attention on py-
rochlore spinels has shifted to the breathing pyrochlores
AA′Cr4O8, where the ordering of the A and A′ cations cause
translation-inequivalent (up- and down-pointing) tetrahedra
in the pyrochlore lattice to have different sizes and hence
exchange couplings. High-temperature susceptibility mea-
surements on the two best-known materials in the family,
LiGaCr4O8 and LiInCr4O8, indicate a ratio of Heisenberg
couplings J ′/J of around 0.6 and 0.1 between the inequivalent
tetrahedra, respectively [22]. At low temperatures, both mate-
rials show magneto-structural ordering driven by spin–lattice
coupling [21,23,24], alongside phase separation due to site
disorder.

Mixing Ga and In on the A′ site, however, quickly sup-
presses this ordering, with a possible gapped spin liquid on
the In-rich side of the phase diagram, and a spin glass on the
Ga-rich side [26]. For LiGa0.95In0.05Cr4O8 (with J ′/J close
to that of LiGaCr4O8), neutron-diffraction and specific-heat
measurements indicate that the nematic state predicted by
the BLBQ model (1) is stabilized [14]. This implies that the
bond disorder introduced by the Ga–In mixing is weaker than
the leading biquadratic interaction generated by spin–lattice
coupling, allowing nematic ordering, but it is strong enough
to disrupt full ordering, stabilising instead a glassy spin-ice
state [11], similar to dipolar spin ice [27]. Inelastic-neutron-
scattering experiments on LiGa0.95In0.05Cr4O8 [25] (Fig. 1)
found a broad peak in the dynamical structure factor S (q, ω)
at h̄ω ≈ 5.5 meV and wave vector q ≈ 1.6 Å−1 (correspond-
ing approximately to the (200) reciprocal lattice vector for
the cubic lattice constant a0 = 8.253 Å [26]), tentatively as-
cribed to excitations localized on antiferromagnetic hexagon
loops.

In this paper, we explore the dynamics of
LiGa0.95In0.05Cr4O8 and the nematic state of breathing
pyrochlores in general. Our main focus will be the classical

BLBQ model, generalized to the breathing lattice:

H =
∑

〈i j〉∈↑
[J�si · �s j − Q(�si · �s j )

2]

+
∑

〈i j〉∈↓
[J ′�si · �s j − Q′(�si · �s j )

2], (2)

where ↑ and ↓ stand for the translation-inequivalent up-
and down-pointing tetrahedra of the pyrochlore lattice, re-
spectively. For brevity, we will use units in which the spin
magnitude |�si| is 1 [28] and introduce J = (J + J ′)/2, Q =
(Q + Q′)/2.

In Sec. II, we discuss simulations of the semiclassical
Landau–Lifshitz dynamics under (2); this semiclassical ap-
proximation is justified in the |Q| � |J| limit, where the
dominant Heisenberg coupling stabilizes a ground state with
dipole, rather than quadrupole, moments [29–32]. The numer-
ically obtained dynamical structure factor is dominated by a
broad peak at h̄ω = 16Q, a sharp linearly dispersing mode
at small q, ω, and a weak continuum extending up to about
4J . We discuss the fate of these features in the presence of
Landau-Lifshitz damping and structural disorder; in Sec. III,
we explain them in terms of linear “spin-wave” theory around
the disordered spin-ice ground states of (2). We find that
the 16Q peak is caused by out-of-phase precession around
ferromagnetic loops of spins, while the linearly dispersing
feature originates in long-wave fluctuations of the nematic
director. We perform the same analysis for the more complex
site-phonon model as well: we find that all qualitative features
of the BLBQ dynamics survive; the additional interactions,
however, induce strong effective disorder and renormalize the
spin-lattice coupling parameter Q by a factor of two. We
discuss our findings in the context of experimental results in
Sec. IV.

II. DYNAMICAL SIMULATIONS

We drew initial configurations from the thermal ensemble
e−βH using single-spin-flip Metropolis Monte Carlo on 16 ×
16 × 16 pyrochlore cubic unit cells (65 536 spins). Similar
to Ising spin ice [27], we expect Monte Carlo dynamics to
slow down substantially in the nematic phase. Therefore, to
avoid getting stuck in local minima that do not satisfy the ice
rules, we used simulated annealing from a temperature well
above the nematic transition [at least 2 max(Q, Q′)] down to
T = 0.01J , well below the transition in every case, where we
performed all dynamical simulations.

We then computed the time evolution of the initial spin
configurations under the stochastic Landau–Lifshitz dynam-
ical equation

h̄
d�si

dt
= �si × ( �Bi + �bi ) − α�si × �si × ( �Bi + �bi ), (3)

where �Bi = −∂H/∂�si is the effective field acting on spin
�si and �bi is a stochastic field satisfying the fluctuation–
dissipation relation [33]〈

bα
i (t )

〉 = 0;〈
bα

i (t )bβ
j (t ′)

〉 = 2Dδi jδ
αβδ(t − t ′),

D = α

1 + α2
kBT h̄. (4)
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FIG. 2. Simulated powder-averaged dynamic structure factor for
J = J ′, Q = Q′ = 0.1J, and α = 0.01, using a cluster of 163 cubic
unit cells. The pattern is dominated by a sharp maximum at h̄ω ≈
1.6J and a linearly dispersing mode that connects this maximum to
the origin. It also contains a broad continuum extending from the
elastic line up to ∼4J .

We note that the sign of the precession term in (3) is flipped
compared to its usual presentation [34], as we take the neg-
ative gyromagnetic ratio of the electron into account through
the definition of �Bi. Details of the numerical method are de-
scribed in Appendix A; we benchmarked the simulations by
ensuring that thermodynamic properties, such as the average
energy, match the Monte Carlo results within statistical error.

We first focused on the case J = J ′, Q = Q′ =
0.1J, and α = 0.01. The powder-averaged dynamical corre-
lation function S(q, ω) is plotted in Fig. 2. Similar to the
experimental powder neutron-scattering pattern of Ref. [25],
we see a prominent scattering maximum at energy transfer
h̄ω ≈ 1.6J , with the highest intensity at q ≈ 4π/a0, where
a0 is the lattice parameter. In addition, we observe a linearly
dispersing branch, extending from the origin to about the
frequency of the intensity maximum.

We also plotted the static structure factor S(q), as well as
S(q, ω) integrated over two frequency windows, in Fig. 3. The

static structure factor shows sharp pinch points in the pattern
seen in Ref. [35] for spin ice; this is expected as the effective
Ising spins in the nematic order obey the same ice rules. The
same pinch points, albeit much broadened, are seen at finite
ω as well. Below the intensity maximum at 1.6J , we also
see sharp circular features, which correspond to the linearly
dispersing mode in Fig. 2.

As shown in Fig. 4, these features of the scattering pattern
are quite robust in parameter space. While the model with
J ′ = Q′ = 0 is qualitatively different from the symmetric case
(it is made up of disconnected tetrahedra), most features of
the latter are already recovered for J/J ′ = 0.2 and the pow-
der patterns at J ′/J � 0.4 only differ in quantitative details.
Likewise, the scattering pattern of the pure Heisenberg model
Q = Q′ = 0 is qualitatively different due to the lack of ne-
matic ordering, but any finite Q is enough to bring about both
the linearly dispersing mode and a broad scattering maximum
at 16Q.

The intensity maximum at 16Q in our simulations is much
sharper than the analogous experimental feature [25]. This
may either be because interactions with other dynamical de-
grees of freedom (e.g., magnon-magnon interactions) induce
stronger damping than the Landau–Lifshitz damping term
α = 0.01 used above, or because the exchange couplings J, Q
are disordered due to structural disorder or magnetoelastic
distortions [11]. To distinguish these possibilities, we per-
formed dynamical simulations at J = J ′, Q = Q′ = 0.1J for
two additional values of α = 0.1 and 0.001, as well as the
disordered model

H =
∑
〈i j〉

[Ji j�si · �s j − Qi j (�si · �s j )
2], (5)

where Ji j (Qi j) are drawn independently from a Gaussian
distribution with mean J (Q) and standard deviation 0.1J
(0.1Q). The results are summarized in Fig. 5. The 16Q feature
is broadened by a similar amount both for α = 0.1 [Fig. 5(a)]
and on introducing disorder [Fig. 5(b)]. The line shapes of the
q-integrated structure factor [Fig. 5(c)] appear Lorentzian and
Gaussian, respectively, although they are difficult to distin-
guish due to the background intensity. The linearly dispersing
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FIG. 3. Static and frequency-window-integrated dynamic structure factors in the (hh�) plane for the same parameters as in Fig. 2. All three
panels show pinch points, consistent with the spin-ice-like nematic ground state; in addition, the linearly dispersing mode seen in Fig. 2 appears
as sharp circular features in (b). The frequency windows used in (b) and (c) are highlighted with lighter background in Fig. 2. The “arbitrary
units” are consistent across the three plots: the static structure factor, dominated by the ω = 0 component, is much larger than dynamical
correlations, consistent with (nematic) ordering.
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FIG. 4. Simulated powder-averaged dynamic structure factor for several J ′/J at Q/J = Q′/J ′ = 0.1 (top two rows) and for several Q/J at
J = J ′ and Q = Q′ (bottom row). Except for J ′ � J and Q = 0, where the nematic ordering breaks down, the pattern is dominated by a broad
feature at 16Q and a linearly dispersing mode stretching from the origin to this feature. The colors indicate the same range of intensities in all
panels except the last four; these are scaled as Imax ∝ 1/Q to keep the total intensity of the 16Q feature visually constant. All simulations use
a cluster of 163 cubic unit cells.

mode, however, behaves qualitatively differently: it does not
blur noticeably on introducing disorder but becomes broad
and faint beyond the point of clear detection on increasing
α [see also Fig. 5(d)]. Lowering α causes the low-frequency
structure factor to decompose into discrete normal modes of
the finite simulation box, resulting in an array of sharp peaks
in Fig. 5(c).

Finally, we considered dynamics under the site-phonon
Hamiltonian

Hsp =
∑

〈i j〉∈↑
J�si · �s j +

∑
〈i j〉∈↓

J ′�si · �s j

− 1

2

∑
i

∑
j,k∼i

√
Qi jQik (êi j · êik )(�si · �s j )(�si · �sk ), (6)

where the inner sum runs over all pairs j, k of nearest neigh-
bors of site i ( j, k and k, j are both counted), Qi j = Q (Q′) if
the bond i j is part of an up (down) tetrahedron, and êi j is the
unit vector pointing from site i to j. Since this Hamiltonian
has a fully ordered ground state [13,21], we emulated the
glassy nematic order of LiGa0.95In0.05Cr4O8 by first prepar-
ing low-temperature states of the BLBQ Hamiltonian and
annealing them under (6) before measuring dynamical cor-
relation functions. At J = J ′, Q = Q′ = 0.1J , we obtained
the powder-averaged structure factors shown in Fig. 6; see

Appendix A 4 for a wider range of parameters. The general
structure of the powder pattern remains unchanged and, in
particular, the nematic state appears to be metastable even
without quenched disorder. However, the finite-frequency
peak becomes much broader, and the peak frequency is re-
duced substantially, from 16Q to about 7Q. The linearly
dispersing mode remains sharp, but its velocity is reduced,
too.

Remarkably, we see a strong modulation of the intensity
with frequency that appears to split the peak into a number of
fringes. Similar, albeit weaker, fringes have already appeared
in the BLBQ model [cf. Fig. 5(b)]: these are a finite-size effect
caused by the gap between the discrete normal modes that
make up the linearly dispersing branch in a finite simulation
box. To rule out this origin for the modulation seen in the
site-phonon model, we performed dynamical simulations on
clusters of L3 cubic unit cells for every 12 � L � 17. After
averaging the powder pattern for the different clusters, sev-
eral fringes at low frequencies (where finite-size effects are
the most pronounced) indeed disappear; however, the finite-
frequency peak remains split into three (around 0.45J, 0.6J,

and 1.1J in Fig. 6). Nevertheless, we expect that these fringes
would be washed out by either stronger damping or quenched
disorder, which is expected to cause similar peak broadening
to that seen for the BLBQ model in Fig. 5.
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FIG. 5. [(a) and (b)] Simulated powder-averaged dynamic struc-
ture factor for the same parameters as Fig. 2 but with α = 0.1 (a) or
10% Gaussian disorder in J and Q [Eq. (5), (b)]. (c) q-integrated
structure factors for the disordered model and three values of α.
(d) Cuts of the powder pattern for the disordered model and two
values of α at q = π/(2a0) [dashed green lines in (a) and (b)]. The
“arbitrary units” are not consistent between panels (c, d).

III. LINEAR SPIN-WAVE THEORY (LSWT)

To explain the salient features of the numerically ob-
tained dynamical structure factor, we now construct a
small-fluctuation theory, similar to linear spin-wave theory
for ordered magnets, for the spin-ice-like nematic ground
state. Namely, we observe that the low-temperature dynamics
consists primarily of small transverse fluctuations around the
equilibrium state, a spin-ice configuration with an arbitrary
Ising axis (the nematic director). Without loss of generality,

FIG. 6. Simulated powder-averaged (left) and q-integrated
(right) dynamic structure factor for the same parameters as Fig. 2
in the site-phonon model (6). The powder pattern is averaged from
simulations of clusters with L3 (L = 12, . . . , 17) cubic unit cells; the
integrated structure factor is shown for each cluster as well as the
average.
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FIG. 7. q-integrated structure factor obtained from dynamical
simulations (red) and linear spin-wave theory (blue) for J = J ′, Q =
Q′ = 0.1J, α = 0.01.

we choose this axis to be ±sz, so we can write

�si �
(

Re s+
i , Im s+

i , Zi

√
1 − s+

i s−
i

)
, (7)

where the Ising variables Zi = ±1 satisfy the ice rules, and
s+

i ∼
√

T/J � 1. Substituting this into (2) and expanding to
quadratic order in s± gives

H = const. + 1

2

∑
i j

s−
i Hi js

+
j , (8)

where the nonzero matrix elements Hi j are

Hi j =

⎧⎪⎨
⎪⎩

J + J ′ + 6(Q + Q′) i = j

J − 2QZiZ j 〈i j〉 ∈↑
J ′ − 2Q′ZiZ j 〈i j〉 ∈↓

(9)

in an ice-like arrangement of Zi. Likewise, substituting (7) into
the dynamical equation (3) (without the stochastic fields �bi)
and expanding to linear order gives (see Appendix B)

h̄
ds+

i

dt
= −(iZi + α)

∑
j

Hi js
+
j . (10)

The dynamical modes of (10) and their frequencies are given
by the eigenvalue equation

(Z − iα)H |ra〉 = h̄ωa|ra〉, (11)

where we introduce bra-ket notation for the vectors comprised
of all s+

i and define for convenience the diagonal matrix Z
with the Ising configuration Zi along the diagonal. For α =
0, all eigenfrequencies of (11) are real (see Appendix C), as
expected for energy-conserving dynamics near a ground state.
Likewise, for α > 0, all modes decay exponentially.

We diagonalized (11) for a cluster of 12 × 12 × 12 cubic
unit cells (27 648 spins), for both α = 0 and 0.01. As ex-
plained in Appendix D, these eigenvalues and eigenvectors
can be used to compute the dynamical structure factor S(q, ω)
within the linear-spin-wave approximation. We find excel-
lent quantitative agreement in the q-integrated structure factor
(Fig. 7) as well as the powder pattern (not shown). The two
curves in Fig. 7 differ in two ways. First, the low-frequency
oscillations show a different pattern due to the different sys-
tem sizes (and thus different low-frequency modes). Second,
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higher-frequency features of the LSWT spectrum are consis-
tently shifted to slightly higher frequencies. This is due to
spin-wave interactions, most of which can be accounted for
in a simple mean-field picture: As the length |�si| of spins is
fixed to 1, transverse fluctuations cause 〈|sz

i |〉 =: s0 to shorten,
which renormalizes the coefficients of (10) as J �→ Js0, Q �→
Qs3

0 [25,28]. From (D6), we estimate s0 =
√

1 − 〈s+
i s−

i 〉 ≈
0.9916; scaling LSWT frequencies by a factor of s3

0 indeed
causes the 16Q peaks of the two curves to overlap perfectly.

In summary, spin waves give a full, quantitative account
of the inelastic spin dynamics, and nonlinear effects affect
the spin-wave spectrum only weakly at low temperatures. In
the following sections therefore, we will explain the salient
features of the dynamical structure factor in terms of particular
eigenmodes of the dynamical equation (10).

A. Exact eigenmodes at 16Q

In the spectrum of ZH , we see an accumulation of eigen-
values near 16Q. More interestingly, a number (140 for the
pattern of Zi we used) of eigenfrequencies are equal to ±16Q
within numerical accuracy for α = 0. We also observe that
these exact eigenmodes live exclusively on up spins (for ω >

0) or down spins (for ω < 0).
Since the (real-space) LSWT matrix H only has on-site and

nearest-neighbor matrix elements, we can decompose it into
terms acting on a single tetrahedron only. These terms have
the form

H↑ =

⎛
⎜⎜⎜⎜⎝

J + 6Q J − 2Q J + 2Q J + 2Q

J − 2Q J + 6Q J + 2Q J + 2Q

J + 2Q J + 2Q J + 6Q J − 2Q

J + 2Q J + 2Q J − 2Q J + 6Q

⎞
⎟⎟⎟⎟⎠, (12)

on each up tetrahedron; for down tetrahedra, J → J ′, Q →
Q′. The first two and last two rows and columns of the
matrix correspond to the two up (Z = +1) and two down
(Z = −1) spins, respectively. H↑ has two eigenvectors with
eigenvalue 8Q: they are orthogonal to both (1,1,1,1) (i.e., they
respect the ice rules) and the vector of Ising spin compo-
nents (Z1, Z2, Z3, Z4) on the tetrahedron. By enforcing these
constraints on every tetrahedron, we can construct a num-
ber of eigenmodes of H ; the corresponding eigenvalue is
8(Q + Q′) = 16Q as every spin belongs to one up and one
down tetrahedron.

To obtain an eigenvector of the dynamical matrix ZH from
this construction, we need them to be eigenvectors of Z as
well, so they must be constrained to up (Z = +1) or down
(Z = −1) spins in the nematic Ising configuration. On each
tetrahedron, there are two configurations that obey all of these
requirements: out-of-phase fluctuations of either the two up
or the two down spins. We can build joint eigenstates of H
and Z from these by following closed loops of up or down
spins and giving nearest neighbors out-of-phase fluctuations.
In periodic boundary conditions, the loops always close and
are of even length, so the resulting fluctuation vectors are
exact eigenvectors of both H and the dynamical matrix ZH .
Therefore, they are also eigenmodes of the damped dynamics
(11) with complex frequency h̄ω = 16(±1 − iα)Q, as we also
found in exact diagonalization.

FIG. 8. An eigenvector |r〉 of the α = 0 dynamical matrix with
frequency h̄ω/J = −1.6 + 3.01 × 10−8 (the closest to ±16Q that is
not equal to it), restricted onto the longest closed loop of down spins,
where 93% of its statistical weight falls. (Inset) Illustration of the ex-
act 16Q eigenmode on the shortest possible ferromagnetic loop (blue
atoms). Magnetic moments around the loop (blue arrows) precess
around their equilibrium Ising direction (cones); the fluctuations of
nearest neighbors are out of phase.

These ferromagnetic loops are uniquely defined, since each
spin has two neighbors with the same value of Z (one on each
tetrahedron it belongs to). By constructing them on simulated
ice configurations, we found that their lengths have a very
broad distribution: a few loops cover almost all spins, while
the remaining spins form very small loops, often as small as
a single hexagon. The exact eigenmodes on the latter resem-
ble the “weathervane modes” proposed in Ref. [25] (inset of
Fig. 8).

The exact eigenmodes described above, however, do not
account for the full intensity of the 16Q peak in the dynamical
structure factor, or the high density of LSWT eigenmodes
near this frequency. On a long loop, however, we can con-
sider “excited loop states,” in which the exact eigenmode
with alternating phases is modulated with a standing wave
along the loop. Locally, this pattern is very similar to the
exact eigenmode, and we therefore expect such states to be
eigenmodes to a good approximation, with frequencies very
close to ±16Q. A few numerically obtained eigenmodes of
ZH follow this pattern closely (Fig. 8) and most of those near
ω = ±16Q show similar features, albeit obscured somewhat
by local interference between different loops. Furthermore,
the fact that these modes live on loops explains the singular
cusp, characteristic of one-dimensional van Hove singulari-
ties, in the structure factor.

B. Low-frequency dispersive modes

For α = 0, we found that the lowest-magnitude eigen-
values of both H and the dynamical matrix ZH organize
themselves in approximate multiplets (Fig. 9). Their mul-
tiplicities match those of the reciprocal lattice vectors
{100}, {110}, {111}, {200}, . . . of the cubic simulation box,
while the eigenvalues of ZH and H scale with the same wave
vectors as ω ∝ ±|k|, ε ∝ k2, respectively. This indicates a
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FIG. 9. Lowest-magnitude eigenvalues of H (blue) and ZH
(red). The spectrum forms approximate multiplets of multiplicity
6, 12, 8, 6, . . . (one sequence each for ±ω). The eigenvalues in the
nth multiplet scale as ω ∝ ±√

n and ε ∝ n (indicated by the horizon-
tal lines) to a good approximation.

linearly dispersing dynamical mode, consistent with the dy-
namical simulations. The corresponding eigenvectors do not
show a particularly high overlap with the plane waves |k〉, but
rather with the vectors

Z|k〉 =
∑

i

Zie
i�k·�ri |site i〉. (13)

At k = 0, this mode corresponds to rotating the Ising axis of
the nematic order; for small k, it captures long-wavelength
fluctuations of the director, which we anticipate to cost little
energy.

To explain these findings, we first note that both |k〉 and
Z|k〉 are approximate eigenmodes of H for small k. The
first closely resembles the all-in-all-out configuration (1,1,1,1)
on each tetrahedron, which is an eigenvector of the single-
tetrahedron Hamiltonian (12) with eigenvalue 4J + 8Q. Since
each spin belongs to one up and one down tetrahedron, these
contributions add up to give

H |k〉 = [4(J + J ′) + 8(Q + Q′)]︸ ︷︷ ︸
E

|k〉 + O(k2). (14)

In the limit J → 0, Z|k〉 is an exact eigenvector of H with
eigenvalue ε(k) = Qk2/4 + O(k4), since the matrix ZHZ is
translation invariant in this limit [36]. A finite J adds disor-
dered terms to ZHZ that penalize fluctuations proportional to
the Ising configuration Zi on each tetrahedron. However, the
weight of such fluctuations is only O(k2) as the plane wave
|k〉 is proportional to (1, 1, 1, 1) + O(k) on each tetrahedron.
That is, even if J � Q causes these fluctuations to be com-
pletely projected out, the resulting eigenmode of ZHZ is still
|k〉 up to O(k2) corrections. That is,

ZHZ|k〉 = ε(k)[|k〉 + O(k2)],

H (Z|k〉) = ε(k)[Z|k〉 + O(k2)], (15)

where ε(k) ∝ k2.
Now, up to O(k2) corrections, the dynamical equation (11)

can be written for a mode |r〉 = aZ|k〉 + b|k〉 as

h̄ω

(
a

b

)
=
(−iαε(k) E

ε(k) −iαE

)(
a

b

)
. (16)

For α = 0, we obtain the eigenmodes

h̄ω = ±
√

ε(k)E , (17a)

|r〉 = Z|k〉 ±
√

ε(k)/E |k〉. (17b)

The numerically obtained ε and ω plotted in Fig. 9 match
(17a) closely. Since ε(k) � E , the modes (17b) are dominated
by Z|k〉, but the small admixture of |k〉 is enough to yield a
visible dispersing mode, as it is not diffuse in k space.

For α �= 0, the complex eigenfrequencies of (16) are

h̄ω = −iα
ε(k) + E

2
±
√

ε(k)E − α2

(
ε(k) − E

2

)2

. (18)

Even for small α, the decay rate Im ω is independent of
k, thus coherent oscillations at the longest wavelengths are
always disrupted (the square root in (18) becomes imaginary,
indicating purely decaying modes). For α = 0.1, this becomes
the case for most values of k, that is, the linearly dispersing
modes blur completely, as seen in the dynamical simulations.
By contrast, we expect that they remain robust against disor-
der: since they are dominated by long-wave modulations of
the nematic director, they are only sensitive to coarse-grained
averages of the exchange couplings J, Q, which are affected
far less by disorder.

C. Site-phonon model

Finally, we consider the site-phonon Hamiltonian (6). Ex-
panding the Hamiltonian to quadratic order is somewhat more
complicated than in the BLBQ case and is described in de-
tail in Appendix E. We find that, despite the further-range
quartic terms in (6), the matrix H in (8) only contains nearest-
neighbor terms. In a spin-ice configuration, the coefficient of
s−

i s+
j becomes

Hi j = J + Q −
√

QQ′ − QZiZ j +
√

QQ′ ZiZ j′ + ZjZi′

2
(19)

if the bond i j is on an up tetrahedron, where j′, i, j, and i′ are
consecutive sites along a 〈110〉 chain (cf. Fig. 12); for a down
tetrahedron, J → J ′, Q ↔ Q′; the diagonal terms Hii are de-
termined by the constraint H |Z〉 = 0 imposed by spin-rotation
symmetry. The first three terms of (19) only renormalize
J, J ′: unless J ′ � J or Q is large compared to J , this does
not affect the stability of the dynamics. The fourth term in
analogous to the Q term of (9), but is halved in magnitude:
this accounts for most of the reduction in the inelastic-peak
frequency.

The last term depends on spins outside of the bond, so it
acts as disorder on top of this renormalized BLBQ quadratic
Hamiltonian. For Q ≈ Q′, its magnitude is comparable to the
renormalized Q term, so it is expected to strongly broaden the
finite-frequency peak, as indeed seen in Fig. 6. To account for
the remaining discrepancy in the peak frequency, we consider
a simple mean-field picture, where we replace the last two
terms with

−ZiZ j

(
Q −

√
QQ′ 〈ZiZi′ 〉 + 〈ZjZ j′ 〉

2

)
.

In nearest-neighbor spin ice at zero temperature, the correlator
of two spins in this position is 〈ZiZi′ 〉 = 〈ZjZ j′ 〉 ≈ 0.0883
[37]; at Q = Q′, this predicts a further renormalization of
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Q that brings the peak down from 8Q to ≈7.3Q, in good
quantitative agreement with Fig. 6.

A detailed account of the splitting of the renormalized 16Q
peak is beyond the scope of this work. However, we speculate
that due to the strong but discrete [the last term of (19) can
only be ±√

QQ′ or 0] disorder, the eigenmodes living on
long ferromagnetic chains discussed in Sec. III A break up
into short segments with equal disorder terms, leading to three
peaks.

IV. DISCUSSION

To summarize, dynamical simulations of the bilinear-
biquadratic Hamiltonian (2) on the breathing pyrochlore
lattice with J ′/J � 0.3 show a dynamical structure factor
made up of three components: (i) a broad inelastic peak at
16Q, (ii) a sharp linearly dispersing mode, and (iii) a broad,
weakly dispersing continuum extending to about 4J . We ac-
counted for this spectrum quantitatively in terms of small
fluctuations around the spin-ice-like ground states of the ne-
matically ordered model, similar to linear spin-wave theory
for conventionally ordered magnets. In particular, feature (i)
is due to collective spin precession around long ferromag-
netic loops, while feature (ii) originates in long-wavelength
fluctuations of the nematic director. We developed a similar
small-fluctuation theory for the more accurate site-phonon
model [13,21], which shows the same qualitative features,
albeit with a renormalized dispersion relation: in particular,
the position of the finite-frequency peak is renormalized down
to about 7Q.

It is important to point out that our semiclassical ap-
proximation relies on the assumption that the low-energy
sector of the interacting spin-3/2 problem are dominated by
on-site dipole, rather than quadrupole or higher, moments.
This is a justified assumption for spinel pyrochlores, where
measurements of the exchange couplings agree on |Q| � |J|
[22,38,39]: in this limit, prior studies have found dipolar,
rather than quadrupolar, low-temperature phases on a range
of lattices [29–32]. An interesting but challenging direction
for future work would be exploring the phase diagram and
dynamics of the BLBQ model throughout the (J, Q) phase
diagram.

As shown in Fig. 10, the theoretically predicted spec-
trum matches inelastic-neutron-scattering experiments on the
nematically ordered spinel LiGa0.95In0.05Cr4O8[25]. Compar-
ing the positions of the inelastic peaks, we estimate Q ≈
0.35 meV assuming the BLBQ model and Q ≈ 0.75 meV as-
suming the site-phonon model. Taking the length of the S =
3/2 Cr3+ moments into account [28], the latter corresponds to
Jb ≈ 0.22 meV. Estimates of J and b for LiGa0.95In0.05Cr4O8
in the literature vary widely between J ≈ 40 K [22] to J ≈
80 K [38,39]. For the former, our estimate yields b ≈ 0.07,
comparable to typical figures in the literature. On the other
hand, the parameters proposed in Ref. [38] yield Jb ≈
1.0 meV, almost an order of magnitude higher than our es-
timate; furthermore, their estimate of J ′/J ≈ 0.04 leads to
low-temperature dynamics desribed by isolated tetrahedra,
qualitatively different to the experimentally observed dynam-
ics [25]. Earlier estimates of J ′/J ≈ 0.6 [22,39] appear more
consistent with the neutron-scattering results.

The idealized BLBQ spectrum shown in, e.g., Fig. 2 dif-
fers from the experimental results in two key ways: (i) the

FIG. 10. (a) Simulated inelastic neutron-scattering pattern for
10% Gaussian disorder in J and Q in the BLBQ model [same pa-
rameters as Fig. 5(b)]. (b) Inelastic neutron-scattering intensity of
LiGa0.95In0.05Cr4O8 at T = 5.2 K, measured with 16 meV incident
neutron energy [25]. (c) Simulated inelastic neutron-scattering pat-
tern for the site-phonon model (same parameters as Fig. 6). The
data in (a) and (c) are multiplied with the Cr3+ magnetic form
factor, and the wave vector scaled by 2π/a0 (with lattice parameter
a0 = 8.253 Å [26]), to aid comparison. Frequency ranges are chosen
to approximately match the peak positions.

experimental inelastic peak is far broader than the simulated
16Q peak; (ii) the linearly dispersing mode is absent in the
experiments. We found that the former can be explained either
by finite excitation lifetime due to dynamical processes (mod-
elled using strong Landau–Lifshitz damping α) or by static
disorder in the Hamiltonian, cf. Figs. 5 and 10. The experi-
mentally observed Gaussian shape of the peak [25], however,
agrees better with the latter scenario. The additional couplings
of the site-phonon model can also be regarded as strong dis-
order on top of the BLBQ dynamics, which indeed broaden
the peak to a similar extent as seen in the experiment [cf.
Figs. 10(b) and 10(c)]. We believe that the additional structure
of this peak would also be washed out by either static disorder
or dynamical damping. In future work, it will be interesting to
extend inelastic neutron-scattering measurements to smaller
values of (q, ω), where the fate of the linearly dispersing mode
could be studied directly.
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Our findings are also potentially relevant to spinel ma-
terials beyond LiGa0.95In0.05Cr4O8. For example, the solid
solution Zn2−xCdxCr2O4 with x = 0.05 shows a similar
phenomenology to LiGa0.95In0.05Cr4O8 in both magnetic sus-
ceptibility and inelastic neutron scattering [9], raising the
possibility that the nematic state is generic to chromium
spinels with light disorder. The inelastic excitation energy
4 meV measured for this system [9] implies QBLBQ ≈
0.25 meV and Qsp ≈ 0.55 meV in the BLBQ and site-phonon
models, respectively. Given the value of J = 3.5 meV for
the end-member ZnCr2O4 [40], the latter implies b ≈ 0.04,
consistent with the value b ≈ 0.02 suggested by high-field
magnetization measurements on ZnCr2O4 [18].

We finally note that the order-by-disorder-induced nematic
phase of the classical kagome Heisenberg model [41] also
exhibits sharp linearly dispersing dynamical modes on top of
a partially ordered nematic background. The similarity of the
ice-like ground states, as well as the dynamics, of these two
systems raises the tantalising possibility of a deeper analogy
between them. In future work, therefore, it will be interesting
to study the long-time relaxation dynamics of the nematic
order in our models. In the kagome case, this dynamics is
governed by qualitatively different processes [41] from the
LSWT-like precession dynamics studied in this work. The
relaxation dynamics may also be affected in exotic ways by
kinematic constraints, possibly analogous to the fractal dy-
namics recently uncovered in pyrochlore spin ice [42].
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APPENDIX A: DETAILS OF THE DYNAMICAL
SIMULATIONS

1. Monte Carlo sampling

We used Metropolis Monte Carlo with single-spin updates
to draw spin configurations from the thermal ensemble of the
Hamiltonian (2). In each step, the proposed spin update was
constructed as

�s′
i = �si + �ri

|�si + �ri| , (A1)

where each component of �ri is drawn independently from
a Gaussian distribution of variance σ 2 = T/(J + 6Q), cho-
sen to match thermal fluctuations under the on-site part of
the LSWT Hamiltonian (9). We note that, since there are
no interactions between spins on the same sublattice, the
proposal–acceptance cycle can be performed in parallel for
all spins of the same sublattice, allowing for efficient vector-
ization.

This protocol results in a temperature-independent accep-
tance rate at low temperatures, indicating that the thermal

fluctuations around the ordered state are captured well.
However, the nematically ordered moments become frozen
sufficiently below the ordering temperature, resulting in rather
noisy static structure factors from a single run. Therefore,
to obtain the static structure factor shown in Fig. 3(a),
we initialized the Monte Carlo with 256 independent spin-
ice configurations obtained from a variant of the codes in
Refs. [45,46].

2. Stochastic dynamics

To solve the Landau–Lifshitz dynamical equation (3),
we implemented the semi-implicit integrator SIB proposed
in Ref. [33]. This algorithm achieves comparable accuracy
to fully symplectic solvers (such as the implicit midpoint
method) at a fraction of the computational cost by exploit-
ing the sparseness of the dynamical equation. We performed
65 536 time steps of size �t = h̄/(16J ) for a total simula-
tion time T = 4096h̄/J , resulting in a frequency resolution
�ω = 2π/T ≈ 1.53 × 10−3J/h̄. We only saved the spin con-
figuration after every fourth step, as this still allowed us to
resolve the full dynamical spectrum.

In stochastic differential equation solvers, the noise term
�bi of (3) is implemented using a noise vector �ξi, whose com-
ponents should be unit Gaussian random numbers. Due to the
implicitness of the solver, however, using unbounded �ξi can
lead to instabilities. Reference [33] proposes to simply apply a
cutoff to Gaussian �ξi components: we found that this results in
strong numerical damping and equilibrium energies well be-
low that obtained for the same temperature from Monte Carlo
at any temperature, time step size, or value of α. By contrast,
drawing �ξi uniformly from the surface of a sphere of radius√

3 (such that the standard deviation of each component is 1)
resulted in energies that match the Monte Carlo results within
statistical error. We believe that matching the (co)variances of
the ideal Gaussian noise in any projection (not only along the
Cartesian axes) is crucial for this.

For most parameter values, we ran a single dynamical
simulation, as the dynamical fluctuations appear to remain
self-averaging even in a frozen spin-ice background. For
the parameters J = J ′, Q = Q′ = 0.1J, and α = 0.01 used
in Figs. 2, 3, and 7, we averaged four independent runs to
improve statistics.

3. Powder averaging

To compute powder averages of q-dependent quantities, we
broadened every k-point obtained from FFT with a Gaussian
of standard deviation σq = √

2π/La0, where L is the number
of cubic unit cells along each Cartesian direction (La0 is the
linear size of the simulation box) and integrated the result over
bins of width �q:

Spowder (q) = 1

4πq2�q

∫ q+�q/2

q−�q/2
dq′ ∑

k

S(�k)
e−(k−q′ )2/2σ 2

q

√
2πσq

= 1

4πq2�q

∑
k

S(�k)

2

[
erf

(
q′ − k√

2σq

)]q′=q+�q/2

q−�q/2

.

(A2)
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FIG. 11. Simulated powder-averaged dynamic structure factor of the site-phonon model (6) for the same parameters as used in Fig. 4 and
using a cluster of 163 cubic unit cells.

We can think of this as spreading out the discrete k-points into
three-dimensional Gaussians in reciprocal space and averag-
ing the result over spherical shells; the denominator 4πq2�q
is the volume of such a shell. The width σq of the Gaussian
was chosen such that the effective volume (

√
2πσq)3 taken up

by them in reciprocal space match the volume around each
allowed k point, (2π/La0)3. Both this choice and integrating
over bins of q reduce spurious fluctuations due to the discrete
k points available in the finite-size system, allowing us to use
the relatively narrow bin width �q = π/La0.

4. Dynamical structure factor of the site-phonon model

We performed dynamical simulations of the site-phonon
model (6) for all the parameter sets used in Fig. 4. The result-
ing dynamical structure factors are shown in Fig. 11. Similar
to the BLBQ model, we find that the finite-frequency peak and
the linearly dispersing mode form clearly for all J ′/J � 0.3,
and all quantitative features are essentially the same for all
J ′ � 0.5. The position of the main inelastic peak also appears
to remain proportional to Q.

APPENDIX B: DERIVATION OF THE LSWT
DYNAMICAL EQUATION

Equation (10) can be obtained by straightforwardly ex-
panding (3) to first order in s±. Here, we present an alternative
derivation that makes explicit use of the quadratic Hamilto-

nian (8) and thus explains the presence of the matrix H in
(10).

The energy-conserving dynamical term �si × �Bi can be ob-
tained by applying Ehrenfest’s theorem to (2) and replacing
every spin operator with its expectation value [47]. Likewise,
the semiclassical dynamical equation for s+

i is

ds+
i

dt
= d〈ŝ+

i 〉
dt

= − i

h̄
〈[ŝ+

i ,H]〉 ≈ − i

h̄

〈[
ŝ+

i ,
1

2
ŝ+

j Hjk ŝ−
k

]〉

= −i
〈
ŝ+

j Hjiŝ
z
i

〉 ≈ − i

h̄
ZiHi js

+
j , (B1)

where we also used that 〈ŝz
i 〉 = Zi to leading order.

There is no equally straightforward derivation of the dis-
sipative term from first principles. However, the z component
of �si × �Bi comes from the transverse components of �si, �Bi, so
it is of second order. Therefore, the only first-order terms in
�si × �si × �Bi are due to the z component of �si and the transverse
components of �si × �Bi:

(�si × �si × �Bi )
+ = sz

i [−(�si × �Bi )
y + i(�si × �Bi )

x]

= iZi(�si × �Bi )
+ = 1

h̄ Z2
i Hi js

+
j , (B2)

where we substitute (B1) for (�si × �Bi )+. Substituting (B1)
and (B2) into (3) and using that Z2

i = 1 yields (10).
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APPENDIX C: MATHEMATICAL PROPERTIES OF THE
LSWT EQUATIONS

We expect that H be a positive (semi)definite matrix when
performing the expansion (8) near an Ising configuration
that obeys the ice rules, as these minimize the Hamiltonian
(2). We can show this mathematically by rewriting H as a
sum of terms of the form (12) acting on individual tetra-
hedra. The eigenvalues of these terms are 0 (for the mode
locally proportional to Zi), 4J + 8Q [for the ice-rule-violating
mode (1,1,1,1)], and 8Q (for the two modes orthogonal to
both of these). That is, each term is positive semidefinite,
so 〈v|H |v〉 � 0 for all |v〉 as well, and zero modes must be
zero modes of every term. For Q > 0 therefore, the only zero
mode of H is that proportional to Zi, i.e., rigid rotations of the
spin-ice configuration. For Q = 0, every mode that respects
the ice rule has zero energy, which explains the breakdown of
the linear-spin-wave picture for the pure Heisenberg model.

For α = 0, the Landau–Lifshitz dynamics (3) conserves
energy. Near an energy minimum, this prevents the linear
spin-wave dynamics from having any exponentially decaying
or exploding modes, thus all eigenvalues of the dynamical
matrix ZH must be real. To prove that this is the case, we
multiply (11) with H from the left:

HZH |ra〉 = h̄ωaH |ra〉. (C1)

Now, both HZH and H are Hermitian matrices, and H is
positive definite [48]: this implies that the eigenvalues ωa are
all real [49]. As both matrices are also real, the eigenvectors
are real, too.

We can extend these arguments to show that the eigenfre-
quencies of the α > 0 dynamics have Im ω � 0, that is, they
all decay. We multiply (11) from the left by H1/2 to get

H1/2(Z − iα)H1/2|r̃a〉 = h̄ωa|r̃a〉. (|r̃a〉 ≡ H1/2|ra〉) (C2)

Multiplying on the left by 〈r̃a|, we find that the eigenfrequency
is given by the Rayleigh quotient

h̄ω = 〈r̃a|H1/2(Z − iα)H1/2|r̃a〉
〈r̃a|r̃a〉

= 〈ra|HZH |ra〉
〈ra|H |ra〉 − iα

〈ra|H2|ra〉
〈ra|H |ra〉 . (C3)

Every matrix in the second form of (C3) is Hermitian, so Im ω

is entirely due to the second term. Furthermore, both H and
H2 are positive definite [48], so 〈ra|H2|ra〉/〈ra|H |ra〉 > 0 for
any |ra〉, thus Im ωa < 0 for all but the zero mode.

The matrix H1/2(Z − iα)H1/2 in (C2) is symmetric. Com-
plex symmetric matrices are generally not normal, so their
left and right eigenvectors are different. However, taking the
transpose (not conjugate transpose) of (C2) gives

〈r̃∗
a |H1/2(Z − iα)H1/2 = 〈r̃∗

a |h̄ω, (C4)

that is, 〈r̃∗
a | is a left eigenvector corresponding to the same

eigenvalue as |r̃a〉. The resolvent of H1/2(Z − iα)H1/2 can
therefore be written as

[h̄ω − H1/2(Z − iα)H1/2]−1 =
∑

a

|r̃a〉〈r̃∗
a |

h̄(ω − ωa)
, (C5)

assuming the usual orthonormalization for left and right
eigenvectors,

〈r̃∗
a |r̃b〉 = 〈r∗

a |H |rb〉 = δab. (C6)

Finally, multiplying (C5) on both sides by H−1/2 gives

[h̄ωH − H (Z − iα)H]−1 =
∑

a

|ra〉〈r∗
a |

h̄(ω − ωa)
. (C7)

APPENDIX D: DYNAMICAL STRUCTURE FACTOR
FROM LSWT

To incorporate the stochastic fluctuation terms of (3) into
linear spin-wave theory, we note that the leading-order com-
ponents of �si × �bi and �si × �si × �bi are those involving the z
component of �si. Therefore

h̄
d|s+〉

dt
= −(iZ + α)H |s+〉 + (iZ + α)|b+〉

−ih̄ω|s+(ω)〉 = −(iZ + α)H |s+(ω)〉 + (iZ + α)|b+(ω)〉,
|s+(ω)〉 = [−ih̄ω + (iZ + α)H]−1(iZ + α)|b+(ω)〉

= −[h̄ω − (Z − iα)H]−1(Z − iα)|b+(ω)〉,
(D1)

where |b+〉 is the vector of bx
i + iby

i .

The dynamical structure factor in real space is given by the thermal average of |s+(ω)〉〈s+(ω)|. To perform the average, we
note that 〈

b+
i (t )b−

j (t ′)
〉 = 4Dδi jδ(t − t ′) ⇒ 〈

b+
i (ω)b−

j (−ω)
〉 = 4Dδi j, (D2)

whence

S (ω) = 〈|s+(ω)〉〈s+(ω)|〉 = [h̄ω − (Z − iα)H]−1(Z − iα)4D(Z + iα)[h̄ω − H (Z + iα)]−1

= 4D(1 + α2)[h̄ω − (Z − iα)H]−1[h̄ω − H (Z + iα)]−1

= 4D(1 + α2)[h̄ω − (Z − iα)H]−1H[h̄ω − (Z + iα)H]−1H−1

= 2iD(1 + α2)

α
{[h̄ω − (Z − iα)H]−1 − [h̄ω − (Z + iα)H]−1}H−1

= 2ikBT h̄{[h̄ωH − H (Z − iα)H]−1 − [h̄ωH − H (Z + iα)H]−1}

= 2ikBT
∑

a

(
1

ω − ωa

∣∣ra
〉〈

r∗
a

∣∣〈
r∗

a

∣∣H ∣∣ra
〉 − 1

ω − ω∗
a

∣∣r∗
a

〉〈ra|
〈ra|H

∣∣r∗
a

〉
)

. (D3)
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In the second line, we use that Z is a diagonal matrix with
±1 as entries. The fourth line uses the identity (A + B)−1 −
(A − B)−1 = −2(A + B)−1B(A − B)−1. In the last two lines,
we substitute the fluctuation–dissipation relation (4) and the
spectral decomposition (C7), making the normalization (C6)
explicit. The two terms in the last two lines are manifestly
complex conjugate symmetric matrices, so S (ω) is real and
symmetric, as expected from its definition.

Equation (D3) assumes that the eigenvectors |ra〉 satisfy
the orthogonality condition (C6). For degenerate modes (such
as the exact 16Q modes), the eigenvectors returned by nonher-
mitian eigensolvers do not satisfy any such relation, so blindly
applying (D3) leads to incorrect results. For the results shown
in Fig. 7, we added very weak (�J/J = 10−6) bond disorder
to lift all degeneracies without perceptibly changing S (ω).

The q-integrated and q-resolved dynamical structure fac-
tors can be expressed from (D3) as

1

N
tr S (ω) = −4kBT

N

∑
a

Im

(
1

ω − ωa

〈r∗
a |ra〉

〈r∗
a |H |ra〉

)
; (D4)

〈q|S (ω)|q〉 = −4kBT
∑

a

Im

(
1

ω − ωa

〈q|ra〉〈r∗
a |q〉

〈r∗
a |H |ra〉

)

= −4kBT
∑

a

Im

(
1

ω − ωa

ra(q)ra(−q)

〈r∗
a |H |ra〉

)
,

(D5)

where ra(q) are the Fourier components of the eigenvector.
Static structure factors can be obtained from these by inte-
grating over ω and noting that

P
∫ ∞

−∞

dω

2π

1

ω − ωa
= i

2
sgn(Im ωa) = −i/2

for every ωa in the lower half plane. In particular, the mean
square transverse fluctuation of each spin is given by

〈s+
i s−

i 〉 = 1

N

∫ ∞

−∞

dω

2π
tr S (ω) = 2kBT

N

∑
a �=0

Re
〈r∗

a |ra〉
〈r∗

a |H |ra〉 ;

(D6)

the zero mode must be excluded as it does not correspond to
transverse fluctuations around a nematic state but rotating its
director.

We finally note that in the limit α → 0+, 1/(ω − ωa) →
P1/(ω − ω0a) − iπδ(ω − ω0a), so (D3) becomes

S (ω) = 2kBT
∑

a

|ra〉〈ra|
〈ra|H |ra〉2πδ(ω − ω0a). (D7)

That is, each eigenmode of ZH gives rise to a sharp peak
in the structure factor, with a spatial structure matching the
eigenvector |r〉 and intensity normalized by the energy cost
〈r|H |r〉 of exciting the mode.

APPENDIX E: QUADRATIC EXPANSION OF THE
SITE-PHONON HAMILTONIAN

Substituting (7) into �si · �s j and expanding to second order
in s± yields

�si · �s j � ZiZ j + 1
2 [s+

i s−
j + s+

j s−
i − ZiZ j (s

+
i s−

i + s+
j s−

j )]︸ ︷︷ ︸
bi j

.

(E1)
Since this has no linear term in s±, all quadratic terms in the
expansion of any (�si · �s j )(�sk · �sl ) contain the zeroth-order term
of one �s · �s and the quadratic term of the other. In particular,
the quartic term of the site-phonon Hamiltonian (6) becomes

HQ
sp � −1

2

∑
i

∑
j,k∼i

√
Qi jQik (êi j · êik )

ZiZ jbik + ZiZkbi j

2

= −1

2

∑
i

∑
j,k∼i

√
Qi jQik (êi j · êik )ZiZkbi j (E2)

up to an overall constant. Since the only quadratic terms
come from expanding nearest-neighbor �si · �s j , Eq. (E2) is still
nearest-neighbor. The expanded BLBQ Hamiltonian (9) can
be recovered from (E2) by keeping the j = k terms only.

Let us now consider the bi j terms in (E2) where i appears
in the outer sum. For convenience, we assume that the bond
i j is on an up tetrahedron; for a down tetrahedron, Q ↔ Q′.
Writing out the sum over k explicitly, we get

bi j

2

[
−Q

(
ZiZ j + 1

2
ZiZk + 1

2
ZiZl

)

+
√

QQ′
(

ZiZ j′ + 1

2
ZiZk′ + 1

2
ZiZl ′

)]
(E3)

= bi j

2

[
−Q

2
ZiZ j + Q

2
+

√
QQ′

2
ZiZ j′ −

√
QQ′

2

]
, (E4)

where the site labels are as shown in Fig. 12. In (E4), we also
assume that the Zi form a spin-ice configuration such that Zj +
Zk + Zl = Zj′ + Zk′ + Zl ′ = −Zi. After including the terms
where j appears in the outer sum, we get the complete bi j

term:

bi j

2

[
(Q −

√
QQ′) − QZiZ j +

√
QQ′ ZiZ j′ + ZjZi′

2

]
. (E5)

FIG. 12. Layout of site labels used in (E3).
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