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Higher-order topological corner and bond-localized modes in magnonic insulators
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We theoretically investigate a two-dimensional decorated honeycomb lattice framework to realize a second-
order topological magnon insulator (SOTMI) phase featuring distinct corner-localized modes. Our study
emphasizes the pivotal role of spin-magnon mapping in characterizing bosonic topological properties, which
exhibit differences from their fermionic counterparts. We employ a symmetry indicator topological invariant to
identify and characterize this SOTMI phase, particularly for systems respecting time-reversal and C6 rotational
symmetry. Using a spin model defined on a honeycomb lattice geometry, we demonstrate that introducing
“kekulé” type distortions yields a topological phase. In contrast, “antikekulé” distortions result in a nontopologi-
cal magnonic phase. The presence of kekulé distortions manifests in two distinct topologically protected bosonic
corner modes—an intrinsic and a pseudo, based on the specific edge terminations. On the other hand, antikekulé
distortions give rise to Tamm/Shockley type bond-localized boundary modes, which are nontopological and
reliant on particular edge termination. We further investigate the effects of random out-of-plane exchange
anisotropy disorder on the robustness of these bosonic corner modes. The distinction between SOTMIs and
their fermionic counterparts arises due to the system-specific magnonic onsite energies, a crucial feature often
overlooked in prior literature. Our study unveils exciting prospects for engineering higher-order topological
phases in magnon systems and enhances our understanding of their unique behavior within decorated honeycomb
lattices.
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Introduction. Since the discovery of graphene [1,2] and the
advent of topological insulators [3], non-Bravais lattices have
become a central platform for exploring exotic quantum phe-
nomena in contemporary condensed matter physics. On one
front, extensive research has been dedicated to the topological
classification of noninteracting systems, encompassing both
symmorphic [4,5] and nonsymmorphic crystalline structures
[6–8], over the past decade. On the other hand, the focus
has shifted towards extending these concepts into the realm
of correlated electron systems, notably in topological Mott
[9–11] and Kondo insulators [12,13].

Among the various non-Bravais lattices, honeycomb lattice
is one of the simplest examples because of its abundance
in various quantum materials, that accomodates intricate
multiband physics without strong interactions. While it is
renowned for its fermionic Dirac excitations and topological
quasiparticles, recent research has extended its significance
to encompass bosonic systems featuring novel topological
band structures. These advances have spurred the exploration
of diverse bosonic topological materials, spanning photonic
crystals [14,15], plasmonic systems [16,17], arrays of su-
perconducting grains [18], and magnetic structures [19–21],
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etc. and opened up a new and compelling avenue for sci-
entific inquiry. Recently, higher-order topological insulators
(HOTI) have gained significant attention as a novel and
intriguing class of systems—extended for both fermionic
[22–36] and bosonic platform [37–42]. In a d-dimensional
space, an nth-order HOTI is characterized by the presence
of (d − n) dimensional boundary modes. More specifically,
two-dimensional (2D) second-order topological magnon insu-
lators (SOTMI) exhibit a distinct presence of a finite number
of corner modes. Previous theoretical investigations into var-
ious systems ranging from the breathing kagome and square
lattices [43,44] to skyrmion crystals [37], and twisted bilayer
honeycomb networks [45] have demonstrated the existence of
such topologically protected magnonic corner modes. An im-
portant ingredient in most of these previous magnonic works
is the presence of Dzyaloshinskii-Moriya interaction [46].
However, the latter is only present in noncentrosymmetric
systems and is related to the underlying spin-orbit coupling
[47]—which can be substantially small in real materials. Fur-
thermore, specific details of the spin-magnon mapping play
an important role in finite-size bosonic systems, which is typi-
cally absent in the fermionic counterparts. Bosonic excitations
carry a distinct feature—they must be positive definite. This
unique characteristic results in specific onsite terms in the
spin-magnon mapping. To the best of our knowledge, this fact
has not been effectively considered in the previous studies
[20] as far as higher-order topology is concerned.
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FIG. 1. Schematic representation of a 2D honeycomb-lattice
model with a six-site unit cell (depicted by colored hexagons). The
black bonds represent ferromagnetic coupling with strength J0, while
the red bonds indicate coupling with strength J1. The lattice vectors
a1 and a2 are shown, along with the sublattice sites (distinguished by
six different colors) as labeled in the figure.

Due to the reasons outlined above, here, we focus on a
centrosymmetric ferromagnetic (FM) system within a deco-
rated 2D honeycomb lattice configuration, as shown in Fig. 1.
This setup can be envisioned as an extension of the one-
dimensional Su-Schrieffer-Heeger model. Within this context,
two distinct distortion scenarios naturally emerge—one where
the inter-unit cell coupling surpasses the coupling within a
unit cell (J0 < J1), resulting in a kekulé structure; the alternate
scenario entails an antikekulé distortion, arising when the
opposite limit is considered [48]. In our study of the kekulé
structure, we identify two distinct SOTMI phases. The first
is a intrinsic SOTMI phase, which features conventional pro-
tected corner modes. The second is a pseudo-SOTMI phase
that emerges when the system is truncated differently. Sur-
prisingly, we also discover bond-localized magnon modes in
the antikekulé structure. We analyze the effects of disorder to
assess the robustness of these characteristic boundary states.
Our findings indicate that the boundary modes in the kekulé
configuration are resilient, while the bond-localized modes are
not.

Model and method. The system of our interest involves
nearest neighbor Heisenberg spin exchange interactions on
a decorated honeycomb lattice comprising of six sublat-
tices with intracell (intercell) exchange couplings denoted by
J0 (J1) (see Fig. 1). The corresponding Hamiltonian is given
by

H = −
∑

〈i j〉
Ji jSi · S j − β

∑

i

(
Sz

i

)2
, (1)

where, Ji j’s are equal to J0 or J1 depending on the bond
types, and β > 0 signifies the strength of the onsite single-ion
anisotropy. Note that, we account for the onsite anisotropy
term as the Mermin-Wagner theorem prohibits long-range
magnetic ordering in two dimensions. To obtain the magnon
picture in the linear spin-wave regime, we carry out the
spin-magnon mapping by performing Holstein-Primakoff
transformation on the FM ground state, given by

S+
i ≈

√
2Sηiα, S−

i ≈
√

2Sη
†
iα, Sz

i = (S − η
†
iαηiα ). (2)

Here, S±
i = Sx

i ± iSy
i , are the raising and lowering operators,

and η
†
iα creates a magnon excitation at site i. Since we have six

sublattice sites, there are six flavors (α = 1, . . . , 6) of magnon

operators. The corresponding bosonic Hamiltonian reads as
H = H0 + H1, where

H0 = S
∑

〈i j〉
Ji j (η

†
i ηi + η

†
jη j ) + 2βS

∑

i

η
†
i ηi, (3a)

H1 = −S
∑

〈i j〉
Ji j (η

†
i η j + H.c.). (3b)

Here, H0 corresponds to the onsite part, and H1 denotes the
magnon hopping contribution to the total Hamiltonian. The
dependence on the sublattice degrees of freedom is implic-
itly assumed. Furthermore, Ji j > 0 is a necessary constraint
needed to ensure FM order. The first term of the Hamiltonian
in Eq. (3a) indicates bond-dependent onsite energy highlight-
ing an intrinsic property of magnonic Hamiltonians in contrast
to the usual fermionic tight-binding Hamiltonians. The onsite
energy depends on the number of neighboring bonds, and
hence is different for the bulk and the boundary sites. This
plays a crucial role in determining the nature of the boundary
modes for finite systems, as we explain in more detail in the
following text.

Realization of SOTMI phase and its topological character-
ization. Assuming translational invariance, the Hamiltonian
in Eqs. (3a) and (3b) can be written in momentum space as
H = ∑

k ψ
†
kHkψk, where Hk is a 6×6 matrix having ba-

sis ψk = (ηk,1, ηk,2, ηk,3, ηk,4, ηk,5, ηk,6)T (see Ref. [49] for
details). It is easy to check that Hk respects time-reversal
symmetry: H∗

k = H−k, inversion symmetry P = σx ⊗ I3:
P−1HkP = H−k along with a sixfold rotational (C6) symme-
try: U †

C6
HkUC6 = HC6k. Here, UC6 corresponds to the unitary

operator representation for C6 rotation and σx, I3 denote
Pauli matrix and Identity matrix, respectively [49]. Under
these symmetry considerations, we adopt the well-developed
mathematical framework of symmetry indicator topological
invariant [22,24,50,51] to characterize of higher-order topol-
ogy of the magnonic system. Considering the C6 symmetry
we label this invariant as χ (6) (see the details in Ref. [49]).

The magnon band structure is obtained by diagonalizing
Hk. We notice that for J0 �= J1, the bulk spectrum is gapped
at finite energy in the mid-band region (between the third and
the fourth band) [49]. Note that the gap opens at � point in
contrast to the conventional Dirac point for graphene. In this
case, we obtain an analytical expression for the associated
bulk gap as 	 = 2S|J0 − J1|. Consequently, Hk goes through
a gap-closing transition at k = � for J0 = J1 [49], which is
at the middle of the magnon bandwidth. Furthermore, when
J0 > 1.32J1, a secondary trivial bulk gap appears away from
the mid band region both at low energy (between the first and
the second band) and high energy (between the fifth and the
sixth band).

To appropriately distinguish the SOTMI phase from the
trivial gapped phase, we employ the symmetry indicator in-
teger topological invariant χ (6) for proper characterization of
the magnon Bloch bands [50]. Here, χ (6) is constructed by
utilizing the previously mentioned symmetries of Hk as well
as the symmetries of the high-symmetry points in the Brillouin
zone (see Ref. [49] for details). χ (6) �= 0 identifies the SOTMI
phase that ensures the presence of topologically protected
magnon corner modes (MCMs), while the trivial phase is
marked by χ (6) = 0. Our system displays the SOTMI phase
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FIG. 2. Numerical results for a finite-size system are illustrated employing open boundary conditions (OBC). (a) and (b) depict the magnon
eigenvalue spectra as a function of J0/J1 for hexagonal geometries corresponding to the lattice structures depicted in the insets of (c) and (e),
respectively. The dark blue lines in the spectra represent the two energy eigenvalues of Hk at k = �, identifying the magnon bulk gap 	.
(c) and (d) illustrate site-resolved normalized probabilities (|ψi|2) of in-gap states contributing to MCMs for J0 = 0.7, with the respective
lattice geometries shown in the insets. |ψi|2 is averaged over six (two) states contributing to MCMs for hexagonal (rhombus) geometry. (e)
and (f) depict the averaged site-resolved normalized probabilities of in-gap states representing the pseudo corner modes for J0 = 0.7, with
the corresponding lattice geometries displayed in the insets. The finite-size lattice geometries in (c) and (d) consist of 222 sites (37 unit cells)
and 150 sites (25 unit cells), respectively, representing the intrinsic SOTMI phase. The lattice geometries in (e) and (f) consist of 144 sites
(12 outer-edge bonds) and 192 sites (20 outer-edge bonds), respectively, demonstrating the pseudo SOTMI phase. Other model parameters are
chosen as (J1, β, S) = (1, 1

3 , 3
2 ).

hosting topologically protected MCMs in the regime J0 < J1

(kekulé structure) with χ (6) = 2. In addition, we rule out the
signatures of any first-order topological phase by computing
the appropriate topological invariant [22,24,52] (see Ref. [49]
for the details).

Emergence of topologically protected MCMs in finite-size
systems. We capture the topological characteristics of the
SOMTI phase hosting the MCMs by applying open bound-
ary conditions (OBCs) and performing numerical calculations
based on the finite-size 2D lattice geometry. In this context,
two distinct lattice geometries are considered: hexagonal, and
rhombus having six and two corners, respectively (see the
insets in Fig. 2). A few remarks are necessary at this stage. (i)
As a result of bond-dependent onsite energy, the first term in
Eq. (3a) readily generates an onsite energy difference (OED)
between the bulk and the boundary by an amount SJ1, and (ii)
the OED reflects how the edges are terminated in different
geometries. Such a feature is generally absent in a similar
fermionic system.

The energy eigenvalue spectrum as a function of J0/J1

is obtained by diagonalizing the Hamiltonian in Eqs. (3a)
and (3b) with OBC [see Fig. 2(a)]. Note that the spectrum
originates from the finite value because of a finite onsite
anisotropy term with finite β. In the region J0 < J1 (kekulé
structure), there exists identifiable in-gap states demonstrating
topologically protected MCMs, whereas there exists no in-
gap states when J0 > J1 (antikekulé structure). This reflects

consistency with the obtained value of χ (6). Additionally, the
in-gap states are closer to the lower bulk states for J0 	 J1

while they are closer to both the upper and lower bulk states
when J0 � J1. The states immediately below the upper bulk
states [indicated by the arrow in Fig. 2(a)] contribute to
the MCMs. This reflects the consequence of OED and re-
veals a true magnonic signature distinguishing it from the
regular fermionic systems, where one would readily expect
the topologically protected in-gap states to appear precisely
in the middle of the bulk gap. Specifically, we obtain six
(two) states that exhibit MCM signatures while considering
hexagonal (rhombus) lattice geometry. We depict the local-
ized MCMs by the normalized site-resolved probability |ψi|2
of the particular in-gap states in Figs. 2(c) and 2(d), with
respective lattice geometry illustrated in the inset. The other
in-gap states do not contribute to the MCMs and are not
zero-dimensional. A few of them are shown in Ref. [49], and
resembles fractal like structures. However, we skip the dis-
cussion on these states as it is beyond the scope of the present
paper.

Thus far, our finite-size analysis has followed a specific
termination scheme, ensuring that individual unit cells remain
intact (type I), as demonstrated in the insets of Figs. 2(c)
and 2(d). This arrangement leads to what we call the in-
trinsic SOTMI phase, for which the results of our numerical
analysis have been displayed in Figs. 2(a), 2(c) and 2(d). How-
ever, another scenario, type II, naturally emerges when the
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FIG. 3. Site-resolved normalized probability distributions of in-
gap states illustrating Tamm/Shockley type BLMMs for J0 = 2.0,
shown in (a) and (b) for hexagonal and rhombus geometries, respec-
tively. The lattice geometries in (a) and (b) consist of 144 sites (12
outer-edge bonds) and 192 sites (20 outer-edge bonds), respectively.
Other model parameters are chosen as (J1, β, S) = (1, 1

3 , 3
2 ).

sample edges are terminated differently, resulting in incom-
plete unit cells. In this configuration, there are six (two) sites
at the corners with single bonds for the hexagonal (rhom-
bus) geometry, as depicted in the insets of Figs. 2(e) and
2(f). This arrangement gives rise to a pseudo-SOTMI phase,
originating from the in-gap states present in the topological
region (J0 < J1), as indicated by the green arrow in Fig. 2(b).
Analyzing the site-resolved normalized probability of these
states for both geometries, it becomes clear that these states
do not exhibit robust localization exclusively at the corners
[see Figs. 2(e) and 2(f)]. Instead, they display partial local-
ization, with the highest probability contribution occurring
at the sites coupled to the corners. This observation justifies
the term pseudo SOTMI phase. As explained earlier, this
analysis differs significantly from previously reported theo-
retical work on an analogous fermionic system [48]. Further
analyzing the magnon spectrum in the type II scenario and
as a function of J0/J1 in the nontopological regime (J0 > J1)
[see Fig. 2(b)], we note that there also exist in-gap states.
The number of these in-gap states depends on the system
size and geometry, precisely matching the number of bonds
constituting the outer edge of the finite system. They lead
to interesting geometric Tamm/Shockley type bond-localized
magnon modes (BLMMs). These BLMMs can be visualized
through the |ψi|2 of the in-gap states depicted in Figs. 3(a) and
3(b), corresponding to the respective lattice geometry shown
in the inset. However, they lack any topological protection as
χ (6) = 0 in this case.

Note that the apparent asymmetry of the in-gap states in
Figs. 2(a) and 2(b) is a direct consequence of the OED as
mentioned earlier. This is in stark contrast to its fermionic
analogs where typically the in-gap states are positioned
at the middle of bulk gaps for particle-hole symmetric
systems.

Effect of disorder and stability analysis for MCMs. Up to
this point, we discuss both the topological and nontopologi-
cal characteristics of the honeycomb network by considering
clean (disorder-free) limits. However, real materials are prone
to impurities and disorder. Consequently, without aiming for
a specific material realization, we focus on a generic disorder
by considering a random out-of-plane exchange anisotropy.
The Hamiltonian in Eq. (1) is therefore modified as

FIG. 4. Disorder-averaged site-resolved probability distribution
〈|ψi|2〉d of states leading to MCMs is depicted in the intrinsic SOTMI
phase. (a) Depicts case I for ζ = 0.8 and J0 = 0.7, with the inset cor-
responding to ζ = 0.8 and J0 = 0.4. (b) Illustrates case II for ζ = 0.3
and J0 = 0.3, with the inset displaying for ζ = 0.7 and J0 = 0.7. We
choose the other model parameter values as (J1, β, S) = (1, 1

3 , 3
2 ).

H⇒H + Hdis, where

Hdis = −
∑

〈i j〉
Jd

i jS
z
i Sz

j . (4)

Here, Jd
i j is a random coupling parameter uniformly dis-

tributed in the range [−ζ , ζ ] with ζ being the disorder
strength. Ensuring FM order in the presence of disorder read-
ily imposes the following constraint: ζmax = J0(J1) for intra
(inter) cell exchange coupling. Remarkably, the out-of-plane
exchange disorder mentioned in Eq. (4) leads to an effective
bond-dependent on-site disorder for the bosonic case. This
translates into a disordered magnon Hamiltonian where we
substitute Ji j by Ji j + Jd

i j in Eq. (3a).
In the subsequent discussions, we focus primarily on the

intrinsic SOTMI phase by investigating the stability of the
MCMs (magnon corner modes) in the presence of such
a disorder, as mentioned earlier. The qualitative features
of the pseudo SOTMI phase remain identical to the pre-
vious case. We analyze the disorder-averaged site-resolved
probability 〈|ψi|2〉d for specific states while varying the dis-
order strength ζ . We investigate two cases with distinct
characteristics:

Case I. Disorder in the intercell coupling J1. In this
scenario, the system continues to exhibit MCM signatures
for higher values of J0 even for higher disorder strength ζ

[see Fig. 4(a)].
Case II. Disorder in the intracell coupling J0. Here, the

system tends to exhibit outer-edge bond localization when the
disorder is introduced [see Fig. 4(b)].

For both cases, the MCMs are more susceptible to the dis-
order effects for smaller J0 than a larger value with the same
disorder strength. This observation arises from the fact that
the in-gap states, responsible for the emergence of MCMs, at
lower J0 values are closer to the bulk states [see Fig. 2(a)].
Consequently, these MCMs tend to hybridize with the bulk
states even in the presence of relatively mild disorder and is
eventually destroyed. We refer the readers to Ref. [49] for
the discussion of stability analysis of MCMs in the case of
rhombus geometry.

Summary and discussion. To summarize, in this paper, we
introduce a FM honeycomb lattice network that enables the
realization of a higher-order bosonic topological system. Our
findings are particularly relevant to centrosymmetric systems
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and underscore the crucial role of spin-magnon mapping in
generating both an intrinsic and a pseudo SOTMI phase, each
characterized by appropriate topological invariant and unique
boundary modes. In this context, our work stands in stark
contrast to a previous theoretical study [53], which explores a
similar system under noncentrosymmetric conditions. While
intrinsic SOTMI phases have been previously discussed in
magnonic systems (square lattice) in the presence of anti-
skyrmions [37,38], our study exhibiting the emergence of
both intrinsic and pseudo SOTMI phase in a simple magnonic
model system carries significant contribution, to the best of
our knowledge.

Moreover, we have explored the robustness of the bound-
ary modes within the topological phase under the influence of
random disorder. Specifically, we model the disorder arising
from out-of-plane exchange anisotropy and provide qualita-
tive estimates of the topological robustness of MCMs across
varying disorder strengths. It is worth noting that during the
preparation of this manuscript, we became aware of a recent
theoretical work [47], where the authors investigated a differ-

ent disorder realization involving onsite magnetic fields. Our
work complements this research by offering insights into a
more realistic scenario through an exchange anisotropy dis-
order. From a practical point of view, the spatial distribution
of the localized MCMs can possibly be measured by nitrogen-
vacancy center magnetometry [54] or near-field Brillouin light
scattering [55]. Overall, our findings hold promise for advanc-
ing robust future magnonic devices.
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[29] D. Călugăru, V. Juričić, and B. Roy, Higher-order topological
phases: A general principle of construction, Phys. Rev. B 99,
041301(R) (2019).

[30] M. Ezawa, Higher-order topological insulators and semimetals
on the breathing kagome and pyrochlore lattices, Phys. Rev.
Lett. 120, 026801 (2018).

[31] B. Roy, Antiunitary symmetry protected higher-order topologi-
cal phases, Phys. Rev. Res. 1, 032048(R) (2019).

[32] L. Trifunovic and P. W. Brouwer, Higher-order bulk-boundary
correspondence for topological crystalline phases, Phys. Rev. X
9, 011012 (2019).

[33] E. Khalaf, Higher-order topological insulators and supercon-
ductors protected by inversion symmetry, Phys. Rev. B 97,
205136 (2018).

[34] B. Xie, H. X. Wang, X. Zhang, P. Zhan, J. H. Jiang, M. Lu, and
Y. Chen, Higher-order band topology, Nat. Rev. Phys. 3, 520
(2021).

[35] L. Trifunovic and P. W. Brouwer, Higher-order topological band
structures, Phys. Status Solidi B 258, 2000090 (2021).

[36] F. Schindler, Dirac equation perspective on higher-order topo-
logical insulators, J. Appl. Phys. 128, 221102 (2020).

[37] T. Hirosawa, S. A. Díaz, J. Klinovaja, and D. Loss, Magnonic
quadrupole topological insulator in antiskyrmion crystals,
Phys. Rev. Lett. 125, 207204 (2020).

[38] A. Mook, S. A. Díaz, J. Klinovaja, and D. Loss, Chiral
hinge magnons in second-order topological magnon insulators,
Phys. Rev. B 104, 024406 (2021).

[39] Z. Li, Y. Cao, P. Yan, and X. Wang, Higher-order topological
solitonic insulators, npj Comput. Mater. 5, 107 (2019).

[40] Y. You, T. Devakul, F. J. Burnell, and T. Neupert, Higher-order
symmetry-protected topological states for interacting bosons
and fermions, Phys. Rev. B 98, 235102 (2018).

[41] O. Dubinkin and T. L. Hughes, Higher-order bosonic topologi-
cal phases in spin models, Phys. Rev. B 99, 235132 (2019).

[42] J. Bibo, I. Lovas, Y. You, F. Grusdt, and F. Pollmann, Fractional
corner charges in a two-dimensional superlattice bose-hubbard
model, Phys. Rev. B 102, 041126(R) (2020).

[43] A. Sil and A. K. Ghosh, First and second order topological
phases on ferromagnetic breathing kagome lattice, J. Phys.:
Condens. Matter 32, 205601 (2020).

[44] Z.-X. Li, Y. Cao, X. R. Wang, and P. Yan, Second-order topolog-
ical solitonic insulator in a breathing square lattice of magnetic
vortices, Phys. Rev. B 101, 184404 (2020).

[45] C.-B. Hua, F. Xiao, Z.-R. Liu, J.-H. Sun, J.-H. Gao, C.-Z.
Chen, Q. Tong, B. Zhou, and D.-H. Xu, Magnon corner states
in twisted bilayer honeycomb magnets, Phys. Rev. B 107,
L020404 (2023).

[46] I. Dzyaloshinsky, A thermodynamic theory of “weak” ferro-
magnetism of antiferromagnetics, J. Phys. Chem. Solids 4, 241
(1958).

[47] S. Banerjee, U. Kumar, and S.-Z. Lin, Inverse faraday effect in
mott insulators, Phys. Rev. B 105, L180414 (2022).

[48] T. Mizoguchi, H. Araki, and Y. Hatsugai, Higher-order topo-
logical phase in a honeycomb-lattice model with anti-kekulé
distortion, J. Phys. Soc. Jpn. 88, 104703 (2019).

[49] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.109.104417 for the derivation of the
magnon Hamiltonian, discussion on the symmetry indicator,
first-order polarization by Wilson loop technique, disorder ef-
fect in the rhombus geometry, and nature of bulk and other
in-gap states.

[50] W. A. Benalcazar, T. Li, and T. L. Hughes, Quantization of frac-
tional corner charge in Cn-symmetric higher-order topological
crystalline insulators, Phys. Rev. B 99, 245151 (2019).

[51] E. Khalaf, H. C. Po, A. Vishwanath, and H. Watanabe, Sym-
metry indicators and anomalous surface states of topological
crystalline insulators, Phys. Rev. X 8, 031070 (2018).

[52] D. Vanderbilt, Berry Phases in Electronic Structure Theory:
Electric Polarization, Orbital Magnetization and Topologi-
cal Insulators (Cambridge University Press, Cambridge, UK,
2018).

[53] P. A. Pantaleón, R. Carrillo-Bastos, and Y. Xian, Topological
magnon insulator with a kekulé bond modulation, J. Phys.:
Condens. Matter 31, 085802 (2019).

[54] C. M. Purser, V. P. Bhallamudi, F. Guo, M. R. Page, Q. Guo,
G. D. Fuchs, and P. C. Hammel, Spin wave detection by
nitrogen-vacancy centers in diamond as a function of probe–
sample separation, Appl. Phys. Lett. 116, 202401 (2020).

[55] J. Jersch, V. E. Demidov, H. Fuchs, K. Rott, P. Krzysteczko,
J. Münchenberger, G. Reiss, and S. O. Demokritov, Mapping
of localized spin-wave excitations by near-field brillouin light
scattering, Appl. Phys. Lett. 97, 152502 (2010).

104417-6

https://doi.org/10.1103/PhysRevLett.123.186401
https://doi.org/10.1103/PhysRevB.97.205135
https://doi.org/10.1103/PhysRevB.99.041301
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevResearch.1.032048
https://doi.org/10.1103/PhysRevX.9.011012
https://doi.org/10.1103/PhysRevB.97.205136
https://doi.org/10.1038/s42254-021-00323-4
https://doi.org/10.1002/pssb.202000090
https://doi.org/10.1063/5.0035850
https://doi.org/10.1103/PhysRevLett.125.207204
https://doi.org/10.1103/PhysRevB.104.024406
https://doi.org/10.1038/s41524-019-0246-4
https://doi.org/10.1103/PhysRevB.98.235102
https://doi.org/10.1103/PhysRevB.99.235132
https://doi.org/10.1103/PhysRevB.102.041126
https://doi.org/10.1088/1361-648X/ab6f8b
https://doi.org/10.1103/PhysRevB.101.184404
https://doi.org/10.1103/PhysRevB.107.L020404
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1103/PhysRevB.105.L180414
https://doi.org/10.7566/JPSJ.88.104703
http://link.aps.org/supplemental/10.1103/PhysRevB.109.104417
https://doi.org/10.1103/PhysRevB.99.245151
https://doi.org/10.1103/PhysRevX.8.031070
https://doi.org/10.1088/1361-648X/aaf77b
https://doi.org/10.1063/1.5141921
https://doi.org/10.1063/1.3502599

