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A spin-1/2 chain system coupled to the elastic subsystem of the crystal is considered. Due to that coupling,
the intersite spin nematic ordering in the spin subsystem takes place. The phase transition to the ordered phase is
studied using the exact quantum-mechanical approach. It is shown how the nonzero temperature and the external
magnetic field affect the transition to the intersite spin nematic phase and the phase itself.
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I. INTRODUCTION

Unconventional ordering and phases in correlated electron
systems are attractive issues for researchers. They appear
due to strong electron-electron coupling interactions, which
often act together with weaker interactions or fluctuations.
The important feature of some such systems is the possibility
of violation of the rotation symmetry of the Hamiltonian. It
leads to a fundamental change of properties of equilibrium
states and dynamic processes, see, e.g., [1–4]. In particular,
the nematic state in correlated electron systems is one of the
most spectacular examples of such a new ordering. It is similar
to the ordered phases of molecules in liquid crystals [5]. In
a nematic ordered state the distinct orientation develops. The
nematic order is very different from the conventional magnetic
order, where the vector order parameter violates the time-
reversal symmetry. It is instead similar to the ordered phases
of molecules in liquid crystals [5]. The order parameter for the
nematic state is not a vector but rather a director [6]. In the ne-
matic phase the rotation of O(3) symmetry is broken. Among
the examples of nematicity in correlated electron systems
one can mention, e.g., heavy-fermion systems [7], rare-earth
insulators [8], or iron-based superconductors [9–13]. It turns
out that the spin nematic order parameter is not coupled to the
external field directly. This is why, despite numerous efforts
(see, e.g., Refs. [14,15]), the experimental proof of the spin
nematic ordering in magnets is often under debate.

Spin nematicity in correlated electron systems is con-
nected with spin multipoles [16–18]. The quadrupole order
parameters in spin S systems is connected with the nonzero
components of the expectation values of the second-rank spin
traceless quadrupolar tensor Qαβ

i = Sα
i Sβ

i + Sβ
i Sα

i − [S(S +
1)/3]δαβ , where Sα

i (α = x, y, z) is the operator of the
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projection of the spin S in site i [19]. On the other hand,
for spin-1/2 systems such components are zero. However,
obviously, quantum effects are mostly pronounced for spin-
1/2 systems. This is why it is necessary to introduce the
intersite quadrupole order parameters as the expectation val-
ues of the operators Qαβ

i j = (1/2)[Sα
i Sβ

j ± Sβ
i Sα

j ] − (1/3)SiS j ,
which can be nonzero for systems with spins 1/2 [20–22]. The
observables of those operators are the intersite spin nematic
order parameters.

Spin chain materials are systems in which spin-spin
couplings along one space direction are stronger than in-
terspin interactions in other directions. Such systems are
interesting for researchers because of several reasons. First,
many spin-chain materials have been manufactured in re-
cent decades. Second, such systems often manifest special
properties compared to other spin systems. In particular,
quantum phase transitions [23] are characteristic for these
materials, a consequence of the enhancement of fluctua-
tions due to enhanced one-dimensional density of states [24].
And, maybe most importantly, one-dimensional quantum sys-
tems are distinguished from others because of known exact
quantum-mechanical solutions for them [25]. Exact solu-
tions permit one to obtain theoretically exact characteristics
of many-body quantum systems. Among many known spin
systems, the spin-1/2 chain materials are, perhaps, most
attractive for researchers, because they reveal the largest
quantum effects and they can be used in a large variety of
applications, from the modern spintronics to quantum infor-
mation and computing. This is why it is important to get
information about the possibility and details of spin nematic
ordering there.

The present work is devoted to the study of a one-
dimensional quantum spin-1/2 system coupled to the elastic
subsystem of the spin-chain material. The integrability of the
spin subsystem permits us to obtain characteristics of the
many-body quantum spin subsystem exactly. We show that
there can exist Jahn-Teller-like phase transitions to the inter-
site spin nematic ordered phases. In those phases the intersite
quadrupole spin ordering of various types can take place. The
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influence of the external magnetic field and nonzero tempera-
ture on the spin nematic ordering is studied.

II. EXACT QUANTUM SOLUTION FOR
THE SPIN SUBSYSTEM

The Hamiltonian of the considered spin-chain subsystem is

H0 =
∑

n

[
J
(
Sx

nSx
n+1 + Sy

nSy
n+1 + �Sz

nSz
n+1

) − HSz
n

]
, (1)

where Sx,y,z
n are the operators of the x, y, z components of

spins 1/2 situated at site n of the chain, J is the exchange
integral, the parameter � determines the spin anisotropy of
the exchange, and H is the external magnetic field (we use
units in which gμB = 1, where g is the effective g factor and
μB is the Bohr magneton). In what follows we can use the
exchange parameter J = 1, since static characteristics of the
system with the Hamiltonian H0 do not depend on the sign
of J [26]. We can also introduce the normalized value of
the magnetic field h = H/J . Notice that eigenvalues of the
Hamiltonian (1) are odd functions of H and thus of h. Thus,
the Hamiltonian (1) can be written as

H0 =
∑

n

[
Sx

nSx
n+1 + Sy

nSy
n+1 + �Sz

nSz
n+1 − hSz

n

]
. (2)

It is known [27] that the system described by the Hamilto-
nian (1) is integrable, i.e., all eigenvalues and eigenfunctions
can be obtained solving the Bethe ansatz equations for the
quantum numbers, see, e.g., [25]. For the periodic boundary
condition for the general case of any M, the Bethe ansatz
equations can be written as

eik j L = (−1)M−1e
−i

∑M
l=1,
l �= j

θ (k j ,kl )
, j = 1, . . . , M, (3)

where k j is the quasimomentum of the eigenstate,

θ (k j, kl ) = tan−1

(
� sin[(k j − kl )/2]

cos[(k j + kl )/2] − � cos[k j − kl )/2]

)
,

(4)

L is the number of sites in the chain, and M is the number
of spins down. The general form of the eigenfunction in the
co-ordinate representation as the superposition of the plane
waves is

�(x1, . . . , xM ) =
∑

P

AP exp

⎛
⎝i

M∑
j=1

kPj x j

⎞
⎠, (5)

where x1, . . . , xM are the co-ordinates of down spins, and P
denotes a permutation of M indices 1, 2, . . . , M. Amplitudes
AP are related to A1,2,...,M (which is determined from the
normalization condition) as

AP = ±A1,2,...,M exp
[
i
∑

θ (k j, kl )
]
. (6)

Here the summation is performed over all pairs of indices
j, l obtained from the initial arrangement of them for AP,
which is necessary to interchange in order to get A1,2,...,M .
The sign is determined by the parity of those permutations.
The eigenvalue of the Hamiltonian (1), which corresponds to

the eigenfunction Eq. (5), is

E = −h(L − 2M )

2
+ L�

4
−

M∑
j=1

(� − cos k j ). (7)

Let us start with the ground-state properties. The ground
state of the considered spin subsystem corresponds to the total
filling of eigenstates with negative energies. The ground state
depends on the values of � and h.

It is easy to show that the free energy of the system is
F (�, T ) for � > 0 (i.e., for the antiferromagnetic interac-
tions) and −F (|�|,−T ) for � < 0 (i.e., for the ferromagnetic
interactions).

The ground-state energy of the system in the thermody-
namic limit (L → ∞, M → ∞ with M/L fixed) is obtained
from the solution of the following set of integral equa-
tions. Let us consider the antiferromagnetic region � > 0
and parametrize � = cosh(�) (i.e., we have the “easy-axis”
magnetic anisotropy |�| � 1; for the “easy-plane” anisotropy
one has � = iθ with 0 � Re	 � π ,

ε(x) + 1

2π

∫ A

−A
dy

ε(y) sinh(2�)

cosh(2�) − cos(x − y)

= h − sinh2(�)

cosh(�) − cos(x)
, (8)

where the “dressed” energy of the spinon ε(x) < 0 in the
region (−A, A). Hence ±A plays the role of the Fermi points,
and the ground-state energy per site is

e0 = �

4
+ 1

2π

∫ A

−A
dxε(x)

sinh(�)

cosh(�) − cos(x)
. (9)

It is possible to introduce the density function ρ(x) via the
relation

ρ(x) = 1

2π sinh(�)

(
h
∂ε

∂h
− ε

)
. (10)

The density function satisfies the following integral equation:

ρ(x) + 1

2π

∫ A

−A
dy

ρ(y) sinh(2�)

cosh(2�) − cos(x − y)

= sinh(�)

2π [cosh(�) − cos(x)]
, (11)

and the ground-state energy per site is

e0 = �

4
+ sinh2(�)

∫ A

−A
dx

ρ(x)

cosh(�) − cos(x)
− mh. (12)

The magnetic moment per site is

m = L − 2M

2L
= 1

2
−

∫ A

−A
dxρ(x)

= 1

2
− 1

2π

∫ A

−A
dx

sinh(�)

cosh(�) − cos(x)

∂ε

∂h
. (13)

For h > � + 1 we get A = 0, and m = 1/2. For h �
sinh(�)

∑∞
k=−∞ eiπk/ cosh(k�) the magnetic moment is zero.
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For −1 < � < 1 we can introduce the parametrization
� = cos(θ ). Then the integral equation for the density, the
ground-state energy, and the magnetic moment (per site) are

ρ(x) + 1

2π

∫ A

−A
dy

ρ(y) sin(2θ )

cosh(x − y) − cos(2θ )

= sin(θ )

2π [cosh(x) − cos(θ )]
, (14)

e0 = �

4
+ sin2(θ )

∫ A

−A
dx

ρ(x)

cosh(x) − cos(θ )
− mh, (15)

and

m = 1

2
−

∫ A

−A
dxρ(x). (16)

In the terms of the “dressed energy” of a spinon we have

ε(x) + 1

2π

∫ A

−A
dy

ε(y) sin(2θ )

cosh(x − y) − cos(2θ )

= h − sin2(θ )

cos(x) − cos(θ )
, (17)

where the “dressed” energy of the spinon ε(x) < 0 in the
region (−A, A). Hence ±A plays the role of the Fermi points.
and the ground-state energy per site is

e0 = �

4
+ 1

2π

∫ A

−A
dxε(x)

sin(θ )

cosh(x) − cos(θ )
. (18)

For example, the ground-state energy at h = 0 per site e0

for −1 < � < 1 is equal to

e0 = �

4
− sin(θ )

∫ ∞

0
dx

(
1 − tanh(θx)

tanh(πx)

)
, (19)

where � = cos(θ ). For � > 1 we can write

e0 = −�

4
− sinh(�)

∞∑
n=0

e−2n� tanh(n�), (20)

where � = cosh(�). Finally, for � < −1 the ground-state
energy per site is e0 = �/4.

In Fig. 1 the exact result for the ground-state energy of
the spin-1/2 chain at h = 0 is presented. For the description
of the properties of the spin subsystem at nonzero temper-
atures within the Bethe ansatz scheme one can use several
methods. For our purpose the most convenient one is the
so-called quantum transfer matrix approach [28]; see also,
e.g., [25,29–35]. For the considered spin subsystem at fi-
nite temperatures we use a suitable lattice representation by
a mapping which preserves the integrability. Let Rmimi+1

aibi
(u)

be the standard R matrix of the spin-1/2 antiferromagnetic
chain with the uniaxial magnetic anisotropy (let us consider
the easy-plane magnetic anisotropy, 1 � � � 1, for concrete-
ness). The nonzero matrix elements of that R matrix are R21

12 =
R12

21 = 1, R11
11 = R22

22 = sin[(θ (u + 2)/2]/ sin(θ ), and R12
12 =

R21
21 = sin[(θu)/2]/ sin(θ ), where the index 1 is related to the

state with spin-up, and the index 2 is related to the state with
spin-down. Here u is the spectral parameter, the indices ai and
bi denote states in the Hilbert space of the spin at site i, and
m denotes states in the auxiliary Hilbert space. The standard

FIG. 1. The ground-state and free energy of the spin-1/2 chain
as a function of the parameter �. Red lines–the “easy-axis” magnetic
anisotropy; black line–the “easy-plane” magnetic anisotropy.

(row-to-row) transfer matrices τ b
a (u) have the form of a trace

over the auxiliary space of the product of R matrices,

τ b
a (u) =

∑
{mi}

L∏
i=1

Rmimi+1

aibi
(u). (21)

The R matrices satisfy the Yang-Baxter equations, and thus the
transfer matrices with different spectral parameters commute
[25]. Then we introduce R matrices of different types, re-
lated to the initial one by the anticlockwise rotation R̄mn

ab (u) =
Rab

nm(u) and by the clockwise rotation R̃mn
ab (u) = Rba

mn(u). The
transfer matrix τ̄ (u) can be constructed in a way similar to the
case of τ (u). It is straightforward to show that the partition
function Z of the considered quantum one-dimensional sys-
tem is identical to the partition function of the inhomogeneous
classical vertex model with alternating rows on the square
lattice of size L × N (N is the Trotter number):

Z = lim
N→∞

Tr
N/2∏
i=1

τ (ui )τ̄ (0), (22)

with suitable spectral parameters ui (of order of N−1). The
interactions on the two-dimensional lattice are four-spin inter-
actions with the coupling parameters depending on (N/β )−1.
(Here β−1 is the inverse temperature; in what follows we use
the units in which the Boltzmann constant is unity kB = 1.
Also, notice that the temperature T is measured in units
of J.) The system is studied in the thermodynamic limit
N, L → ∞ using the approach based on a transfer matrix de-
scribing transfer in a horizontal direction. The corresponding
column-to-column transfer matrices are referred to as quan-
tum transfer matrices. The magnetic field h is included via
twisted boundary conditions:

τQTM(u) =
∑
{mi}

em1h/T
N/2∏
i=1

Rm2i−1m2i

a2i−1b2i−1
(u − ui )R̃

m2im2i+1

a2ib2i
. (23)

The quantum transfer matrix posses a gap between the largest
eigenvalue and the next-largest ones. Thus the free energy
of the spin subsystem per site f can be calculated from the
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largest eigenvalue of the quantum transfer matrix �0(u) as
f = −T limN→∞ ln[�0(u = 0)].

Let us use the notations φ+(x) = ∏N/2
l=1 sinh[θ (x + ixl )/2],

φ1(x) = sinhN/2[θx/2], and Q(x) = ∏M∗
j=1 sinh[θ (x − x j )/2].

The rapidities x j (related to the quasimomenta k j =
i ln(sinh[θ (x j − i/2)]/ sinh[θ (x j + i/2)]) can be obtained
from the solution of the Bethe ansatz equations written in the
form

φ−(x j )φ+(x j + 2i)

φ+(x j )φ−(x j − 2i)
= e2h/T Q(x j + 2i)

Q(x j − 2i)
, j = 1, . . . M∗.

(24)

From the algebraic Bethe ansatz (or the quantum in-
verse scattering method) we can write [34,35] �QTM(ix) =
�(x)/ sinhN (iθ ), where �(x) = λ1(x) + λ2(x), and

λ1(x) = φ+(x)φ−(x − 2i)eh/T Q(x + 2i)

Q(x)
,

λ2(x) = φ−(x)φ+(x + 2i)e−h/T Q(x − 2i)

Q(x)
. (25)

The largest eigenvalue of the quantum transfer matrix
(QTM) �0 is related to M∗ = L/2. Let us introduce the auxil-
iary functions b(x) = λ1(x + i)/λ2(x + i), and b̄(x) = λ2(x −
i)/λ1(x − i). It is easy to see that

�(x + i) = [1 + b(x)]λ2(x + i), �(x − i)

= [1 + b̄(x)]λ1(x − i). (26)

Then we can write

b(x) = e2h/T
∏
±

φ±(x ± i)

φ±(x + 2i ± i)

Q(x + 3i)

Q(x − i)
,

b̄(x) = e−2h/T
∏
±

φ±(x ± i)

φ±(x − 2i ± i)

Q(x − 3i)

Q(x + i)
. (27)

One can see that these auxiliary functions are analytic,
and nonzero, and the functions b(x) and 1 + b(x) have con-
stant asymptotic behavior for the strip −1 < Imx � 0. The
functions b̄(x) and 1 + b̄(x) have constant asymptotic be-
havior for the strip 0 � Imx < 1. Then we can introduce
functions a(x) = b[(2/π )(x + iε)] and ā(x) = b̄[(2/π )(x −
iε)] with an infinitesimal ε > 0. By taking the logarithmic
derivative of these functions, Fourier transforming the equa-
tions, eliminating the functions Q(x), and then inverse-Fourier
transforming, we obtain the final set of two nonlinear integral
equations [28,29,32–35]. Then we take the limit N → ∞.
Proceeding this way, we find for our system the following
set of nonlinear integral equations, see below. For f (x) =
−T limN→∞ ln �(x) we can write

f (ix) = e0(x) − T

2π

∫
dy

ln([1 + a(y)][1 + ā(y)])

cosh(x − y)
. (28)

Taking the limit x = 0, we get the free energy per site f (0),
with e0(0) being the ground-state energy per site. In the case
|�| > 1, it is possible to perform a similar procedure.

The nonzero temperature thermodynamics for � > 1 is
determined by the solution of the following set of nonlinear

integral equations with respect to the functions a(x) and ā(x):

ln a = −2π sinh(�)c(x)

T
+ h

T

+
∫ π

−π

dyg(x − y) ln(1 + a)

−
∫ π

−π

dyg(x − y − i[2� − ε]) ln(1 + ā),

ln ā = −2π sinh(�)c(x)

T
− h

T

+
∫ π

−π

dyg(x − y) ln(1 + ā)

−
∫ π

−π

dyg(x − y + i[2� − ε]) ln(1 + a), (29)

where ε is an infinitesimally small number,

c(x) = 1

2π

[
1

2
+

∞∑
n=1

cosh(inx)

cosh(n�)

]
, (30)

and

g(x) = 1

2π

[
1

2
+

∞∑
n=1

e−n� cosh(inx)

cosh(n�)

]
, (31)

with cosh(�) = �. The free energy per site is

f = e0 − T
∫ π

−π

dxc(x) ln[(1 + a)(1 + ā)]. (32)

For −1 < � < 1 we have the same set of integral equa-
tions for a and ā with the replacements sinh(�) → sin(θ ),
h → πh/(π − θ ), with � → θ in the shift of the kernel, and
the replacement in the limits of integration π → ∞, with

c(x) = 1

2θ cosh(πx/θ )
, (33)

and

g(x) = 1

4π

∫ ∞

−∞
dy

sinh[(π − 2θ )y/2] cos(xy)

cosh(θy/2) sinh[(π − θ )y/2]
, (34)

where cos(θ ) = �. The free energy per site is again described
by Eq. (32) but with different values of a, ā, and e0, deter-
mined for −1 < � < 1.

Let us consider the deviation of the spin-chain system
from the SU(2) symmetric case [the Heisenberg situation,
in which H0 = ∑

n(Sn · Sn+1), see (2)] with the addition
d

∑
n Sz

nSz
n+1. The parameter d is related to � by the relation

� = sign(�) + d .
It is convenient to distinguish four possibilities. For the fer-

romagnetic (FM) situation (for the isotropic exchange one has
� = −1) the system with the parameter d < 0 describes the
ferromagnetic spin chain with the “easy-axis” (EA) magnetic
anisotropy. On the other hand, the case with d > 0 describes
the ferromagnetic spin chain with the “easy-plane” (EP) mag-
netic anisotropy. For the antiferromagnetic (AFM) situation
(for the isotropic exchange one has � = 1), the case d > 0
describes the easy-axis spin-chain antiferromagnet, while the
case with d < 0 is related to the antiferromagnetic spin chain
with the easy-plane magnetic anisotropy.
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III. INTERACTION WITH THE ELASTIC SUBSYSTEM

Now let us show how the intersite spin nematic ordering
(related to the one distinguished axis) can appear in spin-
1/2 chain materials. It is known that the interion magnetic
anisotropy is caused due to two factors. First, the crystalline
electric field of nonmagnetic ions (ligands) surrounding the
magnetic ion affects the orbital moment of the latter. Then, the
spin-orbit interaction taken in the lowest approximation yields
the anisotropy of the exchange interaction [36], see also [25].

On the other hand, the change of the co-ordinates of
magnetic ions can renormalize the value of the exchange
interaction. In the main linear approximation a strain εzz

renormalizes the exchange parameter Jz of a spin system
as Jz → Jz(1 − aεzz ), where a = (∂Jz/∂Rz ) is the component
of the tensor of the magnetoelastic interaction and R is the
co-ordinate of the magnetic ion. Suppose initially the spin
chain had the isotropic exchange interaction, and the strain
εzz introduces the renormalization of the exchange constant
for the z − z spin-spin coupling in the chain, as described
above. It is clear that in our notations the parameter d is
caused by the related strain εzz of the elastic subsystem of
the spin-chain crystal with the initially isotropic exchange,
d = aεzz, where a is the spin-elastic coupling parameter. The
strain reduces the symmetry of the crystal surrounding of
magnetic ions, e.g., from the cubic to the tetragonal one. Such
a strain enlarges the energy of the system as Cε2

zz/2, where C
is related elastic modulus [37] (notice that we measure C in
units of the exchange interaction for J = 1). We consider the
elastic subsystem classically and in the ground state, because
the characteristic elastic energy, the Debye temperature, is
much stronger than characteristic exchange coupling in spin-
chain materials. Then the total Hamiltonian can be written
as H0 + Nd2α/2, where α = C/a2. Small values of α cor-
respond to the strong coupling between the spin and elastic
subsystems, while large α values describe the weak coupling.
For some values of the parameter d the energy of the spin
subsystem becomes smaller than the one at d = 0, i.e., in the
isotropic SU(2) symmetric situation. This is why the nonzero
strain εzz produces the energy loss of the elastic subsystem
and, at the same time, the energy gain in the spin subsystem
of the crystal. The situation is similar to the Jahn-Teller effect
(however, for the spin subsystem): The strain of the elastic
subsystem, by reducing the symmetry, lifts the degeneracy of
the spin subsystem. The degeneracy of the latter is caused
by the fact that for d = 0 the direction of the spin nematic
order parameter is arbitrary. Unlike Ref. [38], in which we
considered the spin-1 chain material with antiferromagnetic
interactions with respect to the single-ion spin nematic order-
ing, here we study the spin-1/2 subsystem for both ferro- and
antiferromagnetic interactions and the onset of the interion
spin nematic ordering.

Taking into account that 〈Sz
jS

z
j+1〉 = ∂ f /∂d (and similar

definition for the ground state), we calculate the value of
〈Sz

jS
z
j+1〉, using the exact Bethe ansatz solution, as a function

of d at several values of the external magnetic field and
temperature together with the lines −αd (the derivative of
the elastic contribution to the energy with respect to d) for
the SU(2) symmetric case. The points of crossing the lines
correspond to the phase transitions to the state with nonzero d .

These states are the intersite spin nematic states, because the
intersite spin nematic order parameters 〈Sz

jS
z
j+1〉 are nonzero.

It is important to point out that the effect similar to that of
the strain of ligands in spin-chain crystals can be also realized
for organic spin-chain materials. Our theory can be applied
for that situation too: In our notations ε plays the role of
vibrations of organic molecules. The spin nematic ordering
can take place due to the coupling between the spin and the
vibronic subsystems of the organic spin-chain materials.

A. Spin nematicity of the antiferromagnetic spin-1/2 chain
with the easy-axis anisotropy

In this case the exact solution shows that the addition
to the ground-state energy and the free energy of the spin
subsystem is negative for d �= 0. We plot in Fig. 2 the re-
sults of calculations for the spin-1/2 chain material with
the antiferromagnetic coupling between spins for positive d .
We see that depending on the parameter α (which measures
the effective strength of the coupling between the elastic and
the spin subsystems of the material), temperature and the
external field several situations can be realized.

In zero external magnetic field (see Fig. 2), the crossings
at d �= 0 exist for low temperatures. With the growth of the
temperature the value of the magnetic anisotropy caused by
the distortion is decreased. Then for high enough temperatures
(stronger than the spin-spin interactions) the crossing exists at
zero value of d only, because the intersite spin-spin coupling
is much smaller than the temperature. Large values of the
parameter α (large slopes of the line −αd) correspond to
smaller values of d in the spin nematic ordered phase and
hence to smaller magnetic anisotropy.

For small values of the external magnetic field the situation
is similar to the case h = 0, see Fig. 2. The external magnetic
field causes the decrease of the anisotropy parameter in the
spin nematic ordered phase and the decrease of the tempera-
ture, at which the spin nematicity becomes zero.

On the other hand, for larger values of the external mag-
netic field (see Fig. 2), the crossings (at d �= 0) exist only
in the ground state or at low temperatures. Notice that the
crossing (and hence the phase transition to the spin nematic
ordered phase) exists only for small enough values of the
parameter α, i.e., for strong spin-lattice couplings. The be-
havior is clear, because at such values of the magnetic field
the nonzero d produces positive addition to the energy of the
spin subsystem, see Fig. 2, and there is no energy gain for the
coupled spin-lattice system due to the strain.

B. Spin nematicity of the antiferromagnetic spin-1/2 chain
with the easy-plane anisotropy

In this case the signs of the additions to the ground-state
energy and the free energy of the system depend on the value
of the applied magnetic field. For h = 0 those additions are
positive, and there is no gain in the energy of the spin subsys-
tem due to nonzero d . However, for large enough values of h,
the addition to ground-state energy and the free energy caused
by d �= 0 becomes negative, which implies the possibility of a
phase transition to the spin nematic phase.
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FIG. 2. Derivatives of the spin and elastic contributions to the
ground-state energy and free energy of the coupled spin-elastic sub-
systems for the antiferromagnetic coupling as a function of d . Upper
panel corresponds to h = 0 and α = 0.9, middle panel–to h = 1 and
α = 0.9, and lower panel–to h = 1.7 and α = 0.085.

Figure 3 manifests the results of calculations for the
spin-1/2 chain material with the antiferromagnetic coupling
between spins for negative d . In zero and in the weak enough
magnetic field there are no crossings. This means that the
spin-1/2 with the antiferromagnetic Heisenberg interactions
between neighboring spins coupled to the lattice is stable with
respect to the transition to the spin nematic phase. On the other
hand, for larger values of the magnetic field crossings appear.
Again, the phase transition to the spin nematic ordered state

FIG. 3. The derivatives of the spin and the elastic contributions
to the ground-state energy and the free energy of the coupled spin-
elastic subsystems for the antiferromagnetic coupling as a function of
d . Upper panel corresponds to h = 0, and α = 0.4, middle panel–to
h = 1, and α = 0.4, and lower panel–to h = 1.3, and α = 0.08.

takes place for large values of the coupling between the spin
and lattice subsystems. The values of the easy-plane magnetic
anisotropy are larger for larger values of the external magnetic
field and decrease with the growth of temperature.

C. Spin nematicity of the ferromagnetic spin-1/2 chain
with the easy-axis anisotropy

The exact solution evidences that for the spin chain with
the ferromagnetic coupling between spins, the addition to

104409-6



INTERSITE SPIN NEMATIC ORDERING IN THE SPIN- 1
2 … PHYSICAL REVIEW B 109, 104409 (2024)

FIG. 4. The derivatives of the spin and the elastic contributions
to the ground-state energy and the free energy of the coupled spin-
elastic subsystems for the ferromagnetic coupling as a function of d .
Upper panel corresponds to h = 0, and α = 1, lower panel–to h = 1,
and α = 1.

the ground-state energy and the free energy is negative for
nonzero d < 0 (i.e., for the easy-axis magnetic anisotropy).

In Fig. 4 the results for the spin-1/2 chain material with
the ferromagnetic coupling between spins for negative values
of d are presented. Hence, for the case of the ferromagnetic
spin-spin interactions and negative values of d (the easy-axis
magnetic anisotropy), the coupling between the spin and the
elastic subsystem of the material yields the intersite spin ne-
matic ordering for any values of the applied magnetic field.
One can see that again, the larger (absolute) values of the
parameter of the anisotropy (and hence the spin nematic or-
der parameter) correspond to smaller values of the effective
coupling between the spin and the elastic subsystems α and
smaller values of temperature (at high enough temperatures
the crossing exists at d = 0). For nonzero temperatures the
external magnetic field in general reduces the (absolute) value
of the magnetic anisotropy; however, in general the magnetic
field dependence of the induced d is nonmonotonic.

D. Spin nematicity of the ferromagnetic spin-1/2 chain
with the easy-plane anisotropy

The exact solution manifests that for the ferromagnetic
interaction between spins the addition to the ground-state

FIG. 5. The derivation from the isotropic case (i.e., d = 0) of the
ground state and free energy � f = f (T, h, d ) − f (T, h, d = 0) at
T = 0, 0.1, 0.5, 1 for the ferromagnetic spin-1/2 chain with easy-
plane magnetic anisotropy. The boxes correspond to quantum Monte
Carlo simulations. Upper panel corresponds to h = 0, lower panel–to
h = 0.1.

energy caused by nonzero d is negative for any value of the
magnetic field. However, for nonzero temperatures the addi-
tion to the free energy can be positive or negative, depending
on the values of the temperature and the applied magnetic
field.

Figure 5 illustrates how the temperature and the exter-
nal magnetic field act. At h = 0, see Fig. 5, the addition to
the free energy � f = f (T, h, d ) − f (T, h, d = 0) of the spin
subsystem at low temperature can become positive; however,
with the growth of T the addition to the free energy becomes
negative. An already weak external magnetic field yields the
negative sign to the addition to the free energy caused by
d �= 0, and further growth of h does not change the situation.

To check our calculations we performed additional quan-
tum Monte Carlo (QMC) simulations [39,40]. The equa-
tions obtained in the framework of the Bethe ansatz approach
are exact, but these are nonlinear integral equations, and
hence they can be solved, generally, numerically only. The
numerical solution of such equations has its own limi-
tation (the stability boundary, etc.). The quantum Monte
Carlo method, in turn, is the approximate method with its
own limitation—depending on the realization, it can have

104409-7



A. A. ZVYAGIN AND V. V. SLAVIN PHYSICAL REVIEW B 109, 104409 (2024)

temperature limitations, anisotropy limitations, etc. That is
why we used both methods to improve the reliability of the
obtained results. As far as the direct measurements of free
energy are impossible in this QMC method, we calculated
free-energy derivation as � f (d ) = ∫ d

0 c(x)dx, where the cor-
relator c = 〈Sz

jS
z
j+1〉 was measured in QMC calculations as

c = 1

L − 1

〈
L−1∑
j=1

Sz
jS

z
j+1

〉
QMC

. (35)

Here 〈. . .〉QMC means averaging over the QMC sampling.
Figure 6 presents the results for the spin-1/2 chain material

with the ferromagnetic coupling between spins for positive
values of d . Note that for convenience we plot αd in these
figures. Hence, for the case of the ferromagnetic spin-spin
interactions and positive values of d (the easy-plane type of
the magnetic anisotropy), the interaction between the spin
and the elastic subsystem of the material produces the in-
tersite spin nematic ordering for any values of the applied
magnetic field and temperature. One can see that, again, the
larger (absolute) values of the parameter of the anisotropy
(and hence the spin nematic order parameter) correspond to
smaller values of the effective coupling between the spin and
the elastic subsystems α and smaller values of temperature (at
high enough temperatures the crossing exists at d = 0). For
nonzero temperatures the external magnetic field in general
reduces the (absolute) value of the magnetic anisotropy; how-
ever, in general the magnetic field dependence of the induced
d is nonmonotonic, in particular at low temperatures and small
values of the external magnetic field.

In summary, for the ferromagnetic spin-1/2 chain material
the spin nematic ordering exists for any value of the coupling
α between the spin and the elastic subsystems, the temper-
ature, and the magnetic field. It is different from the spin-1
chain material [38], where critical values of α exist. The same
is true for the antiferromagnetic spin-1/2 chain material with
the easy-axis magnetic anisotropy, for any values of α, T ,
and h. The situation is different for the antiferromagnetic
spin chain with the easy-plane anisotropy. In the absence of
the magnetic field there is no spin nematic ordering for any
values of α and T . If the magnetic field is nonzero, there
are two possibilities. First, if the field is large enough, for
any coupling parameter α there exists a temperature range
where the spin nematic order exists. This situation is described
in Fig. 7, where the h-T phase diagram is presented. The
physical meaning of the line in Fig. 7 is clear: Without the
magnetic field and for small enough values of h, the spin-spin
correlation function 〈Sx

nSz
n+1〉 is negative, and for larger values

of h it becomes positive. There is also another solution for
d �= 0 of the self-consistency equation, but it corresponds
to very large values of the magnetic field and very strong
coupling between the spin and elastic subsystems.

Unfortunately, it is impossible to measure the value of
α in experiments. However, α is related to the constant of
the magnetoelastic coupling. The latter can be determined in
magnetoacoustic experiments that study the magnetic field de-
pendence of relative changes of the sound velocity. Using the
data of magnetoacoustic experiments with known spin-chain
materials, see, e.g., [15,41,42], we can estimate the values

FIG. 6. The derivatives of the spin and the elastic contributions
to the ground-state energy and the free energy of the coupled spin-
elastic subsystems for the ferromagnetic coupling as a function of d .
The boxes correspond to quantum Monte Carlo simulations. Upper
panel corresponds to h = 0, and α = 0.25, middle panel–to h = 0.1,
and α = 0.6, and lower panel–to h = 1, and α = 0.85.

of α (we restore the value of the exchange coupling J in
those estimations). The estimations imply α ∼ 102−103 for
systems with antiferromagnetic interactions along chains, i.e.,
the couplings between the spin and elastic degrees of freedom
were small. Notice that in Refs. [15,41,42], antiferromag-
netic spin-1/2 chain materials with the easy-plane magnetic
anisotropy were studied. For large α (small spin-elastic cou-
plings) the value of the spin nematic order parameter and
the magnetic anisotropy d is small, Jd ∼ 0.01J . For such a
situation, the spin nematic ordering must exist for large values
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FIG. 7. h-T phase diagram for the antiferromagnetic spin-1/2
chain material with the easy-plane magnetic anisotropy. The line
describes the exact results, the boxes show the results of the QMC
simulations.

of the magnetic field and low temperatures. It looks like such
a situation was observed in Ref. [15], where the spin nematic
ordered phase existed in the strong magnetic field close to the
transition to the spin-polarized phase. However, for spin-chain
systems with stronger interactions between spin and lattice
degrees of freedom the effect must be larger.

IV. SUMMARY

In summary, we have studied the onset of the intersite
spin nematic ordering in the spin-1/2 chain material. The
integrability of the spin subsystem of the coupled spin-lattice
systems of those materials permits us to show that these
materials can be unstable with respect to the spin nematic
ordering. Using the exact solution, we have analyzed how
the coupling between the spin and the elastic subsystems,
temperature, and the external magnetic field can affect the
intersite spin nematic ordering. Namely, we have shown that
for the ferromagnetic interactions between spins, the system is
unstable with respect to the appearance of the spin nematicity,
related to the magnetic anisotropy of the easy-axis and the
easy-plane type. The nonzero external magnetic field does
not change the situation qualitatively. We have also shown
that for the antiferromagnetic spin-spin coupling the system
is unstable with respect to the onset of the spin nematic or-
dering related to the easy-axis magnetic anisotropy. On the
other hand, the spin nematic ordering related to the easy-plane
magnetic anisotropy is absent for h = 0 and can appear only
for high enough values of the magnetic field.
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