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Magnetic Bloch oscillations in a non-Hermitian quantum Ising chain
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We investigate the impacts of an imaginary transverse field on the dynamics of magnetic domain walls in a
quantum Ising chain. We show that an imaginary field plays a similar role as a real transverse field in forming a
low-lying Wannier-Stark ladder. However, analytical and numerical calculations of the time evolutions in both
systems show that the corresponding Bloch oscillations exhibit totally different patterns for the same initial
states. These findings reveal the nontrivial effect of non-Hermiticity on quantum spin dynamics.
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I. INTRODUCTION

Bloch oscillation (BO) describes the periodic motion of a
wave packet subjected to an external force in a lattice. This
phenomenon was first noted by Bloch and Zener when they
studied the electrical properties of crystals [1,2]. When an
external electric field is applied to a perfect crystal lattice,
the localized eigenstates with a ladderlike energy spectrum
emerge, known as the Wannier-Stark (WS) ladder [3]. These
states are closely related to the BOs, which can be under-
stood as the periodic motion of a wave packet within the
WS ladder, as an external field causes the wave packet to
transition between different WS states and exhibit oscillatory
behavior in terms of position and velocity. Experimentally,
BOs were observed in a semiconductor superlattice [4], ul-
tracold atoms in the optical lattice [5–8], and many other
systems sequentially [9–13]. It turns out that BO is a univer-
sal wave phenomenon. In the magnetic systems, BOs appear
in the form of the magnetic domain-wall oscillations. As a
nonequilibrium dynamic phenomenon in quantum many-body
systems, magnetic BOs in the quantum spin chains have at-
tracted much attention from researchers [13–21]. Notably,
inelastic neutron-scattering experiments have provided evi-
dence for the existence of magnetic BOs in the magnetically
identical material CoCl22D2O [13].

In recent years, non-Hermitian physics have attracted
much attention from various research areas [22–33], and BOs
have been investigated in a range of non-Hermitian systems,
including photonic lattices with gain or loss [22,34,35], tight-
binding chains with an imaginary gauge field [36–38], and
non-Hermitian frequency lattices induced by complex pho-
tonic gauge fields [26]. Classical systems such as photonics,
mechanics, and electrical circuits can be used to simulate
non-Hermitian wave physics at the single-particle level, while
in the quantum systems non-Hermitian Hamiltonians are
mainly explained as the effective descriptions of open quan-
tum systems [27], and have been experimentally realized
in the systems of superconducting quantum circuits [39,40],
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nitrogen-vacancy centers in diamonds [29,41], and ultracold
atoms [42,43]. Moreover, it was proposed that an imaginary
field in a spin chain can be implemented by a scheme sim-
ilar to heralded entanglement protocols [24]. More recently,
researchers have shown that complex fields in quantum spin
models have unique impacts on the physical properties of the
systems [44–53], for example, by driving a quantum phase
transition and altering the phase diagram of the system. How-
ever, to the best of our knowledge, the BO in a non-Hermitian
quantum spin chain has not yet been explored.

In this paper, we investigate the BOs of magnetic do-
main walls in a non-Hermitian quantum Ising chain. The
model considered is a quantum Ising chain with real lon-
gitudinal and imaginary transverse fields. We show that in
the small-field region, i.e., when the strengths of two fields
are much smaller than the Ising coupling, as well as in the
PT -symmetric parameters region that guarantees a full real
spectrum, the low-energy dynamics of the magnetic domain
walls are captured by a single-particle effective Hamilto-
nian, through which the physical mechanism of magnetic
BOs is revealed. For real and imaginary transverse fields,
the eigenstates of the effective Hamiltonian are both local-
ized states with ladderlike energy spectra, forming the WS
ladders. Analytical analysis and numerical calculation of the
time evolutions show the occurrence of magnetic breathing
and BO modes in the non-Hermitian quantum Ising chain by
appropriately selecting the initial states. It is shown that for
the non-Hermitian quantum Ising chain, the dynamics for the
Kronecker delta initial state is a breathing mode, while the
Gaussian state remains stationary, which is totally different
from the oscillation of the domain wall in a Hermitian quan-
tum Ising chain. Interestingly, for the Bessel initial state, the
BO mode appears, and the amplitude can be modulated by the
strength of the imaginary transverse field and the localization
length of the initial state.

This paper is organized as follows. In Sec. II, we start by
introducing the Hamiltonian of the quantum Ising chain with
an imaginary transverse field, and derive the effective Hamil-
tonian and its solution. In Sec. III, we analyze the dynamics of
BOs for three types of initial states on the basis of the effective
Hamiltonian, while Sec. IV presents the numerical results of
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the dynamics for the quantum spin chain. Finally, we conclude
our findings in Sec. V.

II. MODEL AND EFFECTIVE HAMILTONIAN

The model we consider is a quantum spin chain of length
N with the Hamiltonian

H = H0 + H ′, (1)

where

H0 = −J
N−1∑
j=1

σ z
j σ

z
j+1 − hz

N∑
j=1

σ z
j (2)

represents a spin chain in longitudinal magnetic field −hz, and
with ferromagnetic Ising coupling −J . For simplicity, we set
J = 1 in the following discussion. Here σα

j (α = x, y, z) are
the Pauli operators on site j, while

H ′ = −g
N∑

j=1

σ x
j (3)

is a transverse magnetic field term. In this paper, we consider
both the Hermitian and non-Hermitian systems, when the
transverse fields g are taken as real and imaginary, respec-
tively. We would like to point out that the Hamiltonian H is
different from that of the Yang-Lee Ising spin model, which
exhibits Lee-Yang zeros [54–60]; in this model, the longitudi-
nal field is imaginary, and the transverse field is real instead.
When hz = 0, the Hamiltonian H reduces to the transverse
field Ising chain, which is exactly solvable through the Jordan-
Wigner transformation when the periodic boundary condition
is applied, and serves as a unique paradigm for understanding
the quantum phase transition [61]. A nonzero longitudinal
field term involves nonlocal operators in the fermion repre-
sentation, and thus breaks the solvability of the model.

Imaginary fields in quantum spin systems have been
discussed in many experimental and theoretical works
[24,29,41–43,62–64]. In the framework of open quantum sys-
tem dynamics, the imaginary transverse field g arises in the
no-click limit of the stochastic quantum jump trajectories
when (1 + σ x

j )/2 is measured [62–64], and |g| can be in-
terpreted as either dissipation or measurement rate. In this
case, the resulted non-Hermitian Hamiltonian H respects PT
symmetry, that is, [PT , H] = 0, with P = ∏N

j=1 σ z
j being the

parity operator, and T being the complex conjugation oper-
ator. This guarantees a full real spectrum in a certain region
of system parameters [57,65–67], which is the so-called PT -
symmetric region where the eigenstates remain unchanged
under the action of the PT operator. Beyond this region,
the eigenvalues occur in complex conjugate pairs and the
corresponding eigenstates change under the action of the PT
operator. Due to the lack of solvability in the model, the phase
boundary of these two regions cannot be obtained analytically.
Nevertheless, it is expected that the system possesses a full
real spectrum when |g| is small compared to other system
parameters. In Fig. 1, we presented the numerical result of
the phase diagram of broken and unbroken PT symmetry for
a finite-size system. The PT -symmetric region is determined

FIG. 1. Schematic of PT -symmetric (gray) and PT -broken
(white) regions in the hz-g plane. The result is obtained by numerical
exact diagonalization for a Hamiltonian H with J = 1 and N = 10.

by condition
∑2N

n=1 |Im(εn)|/2N < 0.01, where εn is the en-
ergy level of system H .

In this paper, we are concerned with the dynamics in the
low-energy subspace as well as in the PT -symmetric pa-
rameters region of the model. Thus, we content ourselves
with a perturbation solution through seeking for an effective
Hamiltonian describing the low-energy dynamics. To proceed,
we concentrate on the weak-field situation with hz, |g| � J ,
and treat the transverse field term H ′ as a perturbation in the
following discussion.

We note that all the eigenstates of H0 can be written in
the tensor product form with fixed numbers of spins that are
parallel or antiparallel to the z direction. The ground state
of H0 is |⇑〉 = ∏N

j=1 |↑〉 j with energy EG = −N (J + hz ) + J .
We focus on the low-energy subspace {|φ±

m 〉} that consists of
states having one magnetic domain wall. Here |φ±

m 〉 represent
two types of domain-wall states:

|φ+
m 〉 =

∏
l�m

σ−
l |⇑〉, |φ−

m 〉 =
∏
l>m

σ−
l |⇑〉, (4)

with σ−
j = (σ x

j − iσ y
j )/2 the lowering operator, and m =

1, 2, . . . , N − 1 the spatial position of the domain wall. The
corresponding energy is E±

m = −N (J ± hz ) + 3J ± 2mhz.
The action of H on this basis yields

H |φ±
m 〉 = [−N (J ± hz ) + 3J ± 2mhz]|φ±

m 〉
− g|φ±

m+1〉 − g|φ±
m−1〉 − g(. . .). (5)

Here the ellipsis dots “...” represent the terms containing the
basis states with more than one domain wall, which have at
least 2J energy difference compared to the states in {|φ±

m 〉}.
Thus, we are able to adiabatically eliminate these states and
project the Hamiltonian H into the subspace {|φ±

m 〉}. The ef-
fective Hamiltonian is given by [68]

Heff = PHP − PHQ
1

QHQ
QHP, (6)

where the projectors are defined as P = ∑
m,± |φ±

m 〉〈φ±
m | and

Q = 1 − P. The second term in Eq. (6) that is proportional
to g2 is discarded, considering the solvability of the effective
Hamiltonian, and |g| is a small quantity. Up to first order, the

104312-2



MAGNETIC BLOCH OSCILLATIONS IN A … PHYSICAL REVIEW B 109, 104312 (2024)

effective Hamiltonian has the explicit form

Heff = −g
∑
λ=±

N−2∑
m=1

(∣∣φλ
m

〉〈
φλ

m+1

∣∣ + ∣∣φλ
m+1

〉〈
φλ

m

∣∣)

+
∑
λ=±

N−1∑
m=1

[−N (J + λhz ) + 3J + 2λmhz]
∣∣φλ

m

〉〈
φλ

m

∣∣.
(7)

This indicates that the transverse field −g acts as a hopping
coefficient for the magnetic domain wall, while the strength
of the longitudinal field hz plays the role of a skew potential.
Next, we investigate the dynamics in {|φ+

m 〉} subspace, and
denote |φm〉 = |φ+

m 〉 for simplicity. The analysis is similar
for that of {|φ−

m 〉} subspace. In the absence of the skew po-
tential hz, the k-periodic spectrum is E (k) = −2gcos(k) +
const for the Bloch wave of magnetic excitation |φ(k)〉 =
(2π )−1/2 ∑

m eimk|φm〉. For a real g, the semiclassical picture
of BOs has been well understood [1,2]. However, for an imag-
inary g, the semiclassical picture should be understood in the
framework of a modified equation of motion for expectation
values, and the acceleration theorem holds only on average in
time [37,38].

The eigenstate of the Hamiltonian Heff can be expanded as
|ψn〉 = ∑

m C(n)
m |φm〉, and the stationary Schrödinger equation

Heff |ψn〉 = En|ψn〉 gives the recursive relation for the expan-
sion coefficients:

C(n)
m+1 + C(n)

m−1 = 2αm

z
C(n)

m , (8)

with αm = (3J − NJ − En)/(2hz ) + m − N/2 and z = g/hz .
The boundary condition is C(n)

0 = C(n)
N = 0. We identify that

Eq. (8) is the recursive formula of the Bessel function. Since
the boundary effect is not involved in the dynamics that we
will investigate in the next section, we assume an infinite chain
in the following analytical analysis for convenience. Then the
solution can be written as

C(n)
m = Jm−n(z), (9)

which is the Bessel function of the first kind. Notably, the
argument z is imaginary for a non-Hermitian system. These
eigenstates can be related by the spatial translation opera-
tion, that is, T |ψn〉 = |ψn+1〉 with the translation operator
T defined as T |φm〉 = |φm+1〉. Then the eigenstates for the
Hamiltonian Heff are

|ψn〉 =
∑

m

Jm−n(z)|φm〉, (10)

with energy En = −N (J + hz ) + 3J + 2nhz, which is equally
spaced and independent of g.

Similarly, the eigenstate of the Hamiltonian H†
eff with en-

ergy En is

|ϕn〉 =
∑

m

Jm−n(z∗)|φm〉, (11)

which establishes a biorthonormal basis set satisfying

〈ϕn′ |ψn〉 = δn′,n, (12)
∑

n

|ψn〉〈ϕn| = 1. (13)

FIG. 2. Numerical results of the localization length ξ defined in
Eq. (14) as a function of hz (in units of |g|). The black and red lines
represent the data for the real g and imaginary g, respectively. The
horizontal and vertical axes are both on a logarithmic scale. The other
parameters are set as N = 104, J = 1, and n = N/2.

It is well known that the eigenstates are localized for a
Hermitian WS ladder [69]. Thus, it can be reasonably inferred
that this is also the case for an imaginary g. This can be
confirmed by the localization length for the eigenstate, which
is defined as [19,70]

ξ =
[∑

m |Jm−n(z)|2]2

∑
m |Jm−n(z)|4 . (14)

For an infinite system, ξ is independent of energy. Also, ξ

of the localized state is independent of N when N is large
enough. In Fig. 2, we present the numerical results of the
localization length ξ of the eigenstates for the real and imag-
inary fields g, respectively. We can see that for both cases, a
nonzero longitudinal hz field induces the localization of the
eigenstates, which is more pronounced for an imaginary g.
The localization of eigenstates is crucial for the upcoming
discussion.

III. ANALYSES FOR THE OSCILLATION DYNAMICS

In this section, we investigate the dynamics of magnetic
BOs in a non-Hermitian quantum spin chain through an
analytical analysis of the effective Hamiltonian. The charac-
teristics of eigenstate localization and equal spacing of energy
levels are both crucial for the construction of the initial exci-
tation of the magnetic BOs.

We consider the initial states

|�(0)〉 =
∑

m

fm(0)
∏
l�m

σ−
l |⇑〉 =

∑
m

fm(0)|φm〉 (15)

with three types of distributions representing the domain
wall localized at site m0: (i) the delta function f (1)

m (0) =
δm,m0 ; (ii) the broad Gaussian distribution f (2)

m (0) =
N−1e−α2(m−m0 )2+ik0m where N is a normalization coefficient,
α characterizes the width of the distribution, and k0 is the
wave vector; and (iii) the Bessel distribution f (3)

m (0) =

−1Jm0−m(κ ) with a complex argument κ . According to
the Schrödinger equation, the evolved state can be formally
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written as

|�(t )〉 =
∑

m

fm(t )|φm〉

=
∑
m,m′

Km,m′ (t ) fm′ (0)|φm〉. (16)

From the solution in Eqs. (10)–(13), the propagator
Km,m′ (t ) under the biorthonormal basis can be computed as
follows:

Km,m′ (t ) =
∑

n

e−iEnt 〈m|ψn〉〈ϕn|m′〉

=
∑

n

e−iEnt Jm−n(z)J∗
m′−n(z∗), (17)

and then using Graf’s addition theorem [71,72] for the Bessel
functions in the summation of index n, we arrive at

Km,m′ (t ) = ei(π/2−hzt )(m−m′ )−i2m′hzt Jm−m′

[
2g sin (hzt )

hz

]
. (18)

Here, a m, m′-independent overall phase factor is discarded.
Obviously, the propagator is periodic with a Bloch period
T = π/hz.

A. Kronecker delta initial state

Then, for the initial state f (1)
m (0) = δm,m0 , the evolved state

is simply

f (1)
m (t ) =

∑
m′

Km,m′ (t )δm′,m0

= ei(π/2−hzt )(m−m0 )−i2m0hzt Jm−m0

[
2g sin (hzt )

hz

]
. (19)

According to the properties of Bessel functions, the width of
the domain wall periodically widens and narrows within the
range

|m − m0| �
∣∣∣∣2g sin (hzt )

hz

∣∣∣∣, (20)

for both real and imaginary field g with period T = π/hz,
which is the Bloch breathing mode. The profile of the evolved
state here is independent of the particular value of initial
position m0.

B. Gaussian initial state

The evaluation of the time evolution for the initial state
with Gaussian distribution is not straightforward. Some ap-
proximations are needed. To do this, we first Fourier transform
the time-evolution equation f (2)

m (t ) = ∑
m′ Km,m′ (t ) f (2)

m′ (0)
into k space:

f (2)
k (t ) = N−1

∑
m,m′

e−ikmKm,m′ (t )e−α2(m′−m0 )2+ik0m′

= N−1 exp

[
2gi sin (hzt ) cos(hzt + k)

hz

]

×
∑

m′
e−α2(m′−m0 )2−i(k−k0+2hzt )m′

. (21)

Assume that the spatial localization of the initial distribution
is weak, that is, α � 1, so that the summation of m′ can
be approximately replaced by integration. By doing this, we
achieve

f (2)
k (t ) ≈

√
π

α
N−1 exp

[
2gi sin (hzt ) cos(hzt + k)

hz

]

× e−i(k−k0+2hzt )m0 exp

[
− (k − k0 + 2hzt )2

4α2

]
. (22)

Again, since α � 1 is assumed, the momentum distribution
fk (t ) is sharply localized around k0 − 2hzt . Then, we can
expand the factor cos(hzt + k) in the argument of the expo-
nential around k0 − 2hzt up to the first order, and the evolved
state in real space can be obtained as

f (2)
m (t ) = 1

2π

∫ π

−π

eikm fk (t )dk

≈ N−1 exp{i(k0 − 2hzt )m − i�(t ) − α2[m − M(t )]2},
(23)

where

�(t ) = g

hz
[sin(k0 − 2hzt ) − sin k0], (24)

M(t ) = m0 + g

hz
[cos(k0 − 2hzt ) − cos k0]. (25)

For a real g, the center of the wave packet M(t ) in real space
oscillates in the form of a cosine function with period π/hz

and amplitude g/hz, which is the BO mode. However, for an
imaginary g, the center of the wave packet remains stationary
at the initial position m0 for any initial wave vector k0. Thus,
in the following, we seek for a new initial excitation enabling
magnetic BO to occur in the non-Hermitian quantum Ising
chain.

C. Bessel initial state

Finally, we compute the time evolution for the initial
Bessel distribution f (3)

m (0) = 
−1Jm0−m(κ ) where κ is a
complex number characterizing the width of the initial dis-
tribution. Expanding this initial state with the biorthonormal
basis, the superposition coefficient is

〈ϕn|�(0)〉 = 
−1Jm0−n(κ + g/hz ). (26)

For simplicity, we take κ = x − g/hz with a real x, then the
above coefficient 〈ϕn|�(0)〉 is always real. The time evolution
is computed as

f (3)
m (t ) = 
−1

∑
m′

Km,m′ (t )Jm0−m′ (x − g/hz )

= 
−1e−i2mhzt

(
x − ze−2ihzt

x − ze2ihzt

)(m0−m)/2

× Jm0−m[
√

x2 + z2 − 2xz cos(2hzt )], (27)
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FIG. 3. Numerical results of the center of the wave packet as a
function of time defined in Eq. (29) for different fields: g = 0.1 and
0.1i for the black and red lines, respectively. In addition, the orange
dashed line represents the data obtained from Eq. (28) with a first-
order approximation for the case of g = 0.1i. A comparison with the
red line confirms the validity of the approximation. Other parameters
are taken as κ = 10 − 0.5i, N = 100, m0 = 50, and hz = 0.2.

where z = g/hz. Utilizing the multiplication theorem [71,73]
for the Bessel function, we obtain

f (3)
m (t ) = 
−1

∑
n

1

n!

[
ig sin (2hzt )

hz

]n

Jm0−m+n(x − ge−2ihzt/hz )

≈ 
−1Jm0−m(x − ge−2ihzt/hz )

+
−1 ig sin (2hzt )

hz
Jm0−m+1(x − ge−2ihzt/hz ), (28)

under the condition of |g| < hz.

While the results in Eqs. (27) and (28) indicate that this
is a periodic oscillation with period T = π/hz, the pattern is
not so explicit. Nevertheless, for a finite system size N , we
introduce the center of the wave packet:

M(t ) =
∑

m m
∣∣ f (3)

m (t )
∣∣2

√∑
m

∣∣ f (3)
m (t )

∣∣2
. (29)

The numerical results of M(t ) for different values of g are
presented in Fig. 3. The figure shows that the center of the
wave packet undergoes the BO over time, and the amplitude is
on the order of magnitude |κ| for an imaginary g. However, for
a real g, the center of the wave packet remains near the initial
position m0. This is opposite to that in the previous Gaussian
initial state.

IV. NUMERICAL SIMULATIONS

Thus far, we have analyzed the time evolutions for three
different initial excitations in the framework of the low-energy
effective Hamiltonian in Eq (7). It is worth noting that in the
non-Hermitian system, the magnetic BO is absent for an initial
Gaussian state but emerges for an initial Bessel state, which is
distinct from the Hermitian system. In this section, we present
the numerical simulations of the time evolutions for the three
initial states under the original Hamiltonian in Eq. (1), in order
to verify the previous analyses.

The initial states are taken as

|�(0)〉 =
∑

m

f (n)
m (0)

∏
l�m

σ−
l |⇑〉 (30)

FIG. 4. Numerical simulations of the time evolutions for the three different initial states in the (a1)–(a3) Hermitian spin chain with g = 0.1
and (b1)–(b3) non-Hermitian spin chain with g = 0.1i. In each figure, the expectation values of local spin σ z

j as functions of time are presented.
The initial states in the left, middle, and right panels are taken as the Kronecker delta state, Gaussian state with α = 0.4 and k0 = 0, and Bessel
state with κ = 4 − 0.5i, respectively. Other parameters of the system: N = 16, J = 1, and hz = 0.2.
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FIG. 5. Overlap of perturbative solutions and numerically
evolved states at instant t = 10 for three different initial states con-
sidered in the main text. (a) Overlap for the Hermitian system as a
function of real transverse field g. (b) Overlap for the non-Hermitian
system as a function of imaginary transverse field g. Parameters of
initial states are taken as the same as those in Fig. 4. Other parameters
of the system are set as N = 16, J = 1, and hz = 0.2.

with n = 1, 2, and 3, representing the Kronecker delta state,
Gaussian state, and Bessel state, respectively, which are inves-
tigated in the previous section. The centers of these localized
initial states are all set as m0 = 8, i.e., at the middle of the
chain, to avoid boundary effects. The evolved state |�(t )〉 =
e−iHt |�(0)〉/|e−iHt |�(0)〉| is calculated under the spin Hamil-
tonian in Eq. (1) using the fourth-order Runge-Kutta method
with 5000 time steps of length �t = 0.01, with a total ac-
cumulated error on the order of O(�t4). The evolved state is
normalized after each time step, and the local spin expectation
value 〈σ z

j 〉 = 〈�(t )|σ z
j |�(t )〉 is computed after each 100 time

steps. The results are presented in Fig. 4, and other parameters
of the system and initial states are presented in the caption.

The boundary of 〈σ z
j 〉 = +1 and −1 is the position of

the magnetic domain wall. For the Hermitian spin chain,
Figs. 4(a1)–4(a3) show that the dynamics are magnetic Bloch
breathing, BO and stationary modes for the Kronecker delta,
and Gaussian and Bessel initial states, respectively. With the
same initial states, for the non-Hermitian spin chain, the
results in Figs. 4(b1)–4(b3) indicate that the dynamics are
magnetic Bloch breathing, stationary, and BO modes, respec-
tively. For the latter two initial states, the corresponding BOs
exhibit totally different patterns for the same initial states
in the two different systems. These numerical results are in
accordance with the analyses in the previous section.

In order to further estimate the validity of perturbative
solutions presented in the previous section, we compare the

numerical evolved states with perturbative solutions by the
overlap

O = |〈�num.(t )|�ana.(t )〉| (31)

at instant t , where |�num.(t )〉 and |�ana.(t )〉 denote the nor-
malized numerical and analytical evolved states, respectively.
The perturbative solutions |�ana.(t )〉 for three initial states are
taken as the form of Eq. (16) with fm(t ) being Eqs. (19),
(23), and (27), respectively. In Fig. 5, we presented the nu-
merical results of overlap O at instant t = 10 as a function
of real and imaginary g. It indicates that for both cases, the
perturbative solutions are in good agreement with the exact
numerical results in a small |g|, while for imaginary g the
overlap drops sharply when |g| � hz/2 = 0.1 due to the PT
symmetry breaking of H that is not captured by the effective
Hamiltonian Heff.

V. SUMMARY

In summary, we demonstrate the existence of the magnetic
BOs in a non-Hermitian quantum Ising chain. It is shown
that in the small-field region, the low-energy dynamics of the
magnetic domain walls are captured by a single-particle effec-
tive Hamiltonian, with the transverse field acting as a hopping
coefficient for the magnetic domain wall and the strength of
the longitudinal field playing the role of a skew potential. For
real and imaginary transverse fields, the eigenstates of the
effective Hamiltonian are both localized states with equally
spaced energy levels, forming the WS ladders. Analytical
and numerical calculations of the time evolution for the non-
Hermitian quantum Ising chain show the following.

(i) The dynamics of the Kronecker delta initial state follow
a breathing mode.

(ii) The Gaussian state remains stationary, which is differ-
ent from the oscillation of the domain wall in a Hermitian
quantum Ising chain.

(iii) For the Bessel initial state, the oscillation mode ap-
pears, and the amplitude can be modulated by the strength of
the imaginary transverse field and the localization length of
the initial state.

The validity of perturbative solutions is estimated by com-
paring them with numerical results. Our results reveal the
mechanism of magnetic BOs in the non-Hermitian quantum
spin chain and pave the way for future research on BOs in
other quantum systems.
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