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Dynamical many-body freezing occurs in periodic transverse field-driven integrable quantum spin systems.
Under freezing conditions, quantum dynamics causes practically infinite hysteresis in the drive response,
maintaining its starting value. We find similar resonant freezing in the Lipkin-Meshkov-Glick (LMG) model.
In the LMG, the freezing conditions in the driving field suppresses the heating postulated by the eigenstate
thermalization hypothesis (ETH) by inducing dynamical many-body localization, or DMBL. This is in contrast
to many-body localization (MBL), which requires disorder to suppress ETH. DMBL has been validated by the
inverse participation ratio (IPR) of the quasistationary Floquet modes. Similarly to the TFIM, the LMG exhibits
high-frequency localization only at freezing points. IPR localization in the LMG deteriorates with an inverse
system size law at lower frequencies, which indicates heating to infinite temperature. Furthermore, adiabatically
increasing frequency and amplitude from low values raises the Floquet state IPR in the LMG from nearly zero
to unity, indicating a phase crossover. This occurrence enables a future technique to construct an MBL engine in
clean systems that can be cycled by adjusting drive parameters only.
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I. INTRODUCTION

In the past few years, periodically driven quantum many-
body systems have been of considerable theoretical and
experimental interest [1,2]. Under certain conditions in the
drive parameters, they can experience dynamical many-body
freezing (DMF), which causes the response to freeze com-
pletely to its initial value at all times [3–5]. This arises as a
consequence of additional approximate symmetries that occur
at the freezing points [6]. DMF has been demonstrated via the
rotating wave approximation (RWA) in the driven transverse
field Ising model (TFIM) with nearest-neighbor interactions
[7] and is shown to be protected when translational invariance
is explicitly broken (say, by disorder) [8,9].

The utilization of Floquet theory simplifies the analysis of
time-periodic systems. For closed quantum systems governed
by the time-dependent Schrödinger equation, the Floquet
Hamiltonian allows for a mapping of the time-dependent
dynamics into the dynamics of a time-independent effective
Hamiltonian, provided the system is strobed at integer mul-
tiples of the time period of the drive. The time-independent
eigenstates of the effective Hamiltonian correspond to qua-
sistationary Floquet Modes of the original Hamiltonian. The
temporal progression of the system comes from phase coeffi-
cients that capture the dynamics [10,11].

Any sufficiently complex nonintegrable many-body sys-
tem is expected to thermalize according to the eigenstate
thermalization hypothesis (ETH) despite the fact that closed
quantum dynamics preserves the memory of the initial state
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of the system. This arises due to the properties of the matrix
elements of observables in typical states [12]. The ETH can
be readily adapted to time-periodic systems using Floquet
theory (the Floquet-ETH, or FETH [13–16]). Nonetheless, the
conditions for ETH to hold are not particularly strong, and
the density matrix of the system can fail to approach one
that is described by a thermal expression. Thermal systems
must conduct because they exchange energy and particles
internally during thermalization. Thus, insulating systems can
be naturally athermal; many-body localization (MBL) is a
well-studied case [17]. This phenomenon is stable against
local perturbations, and constitutes an exotic state of matter
with far-reaching implications in theoretical physics, as well
as in practical applications [18].

The addition of disorder has been identified as a crucial
component in the onset of MBL. In that case, thermalization
is prevented by disorder-induced localization. Nonetheless, al-
ternative approaches to MBL in strongly interacting disorder-
free systems [19–21], inhomogeneous systems [22–25], and
by inducing disorder in the emergent physics [26] and by other
effective means [24] (albeit with strong finite-size effects),
have been reported. An alternative approach to realizing MBL
in disorder-free homogeneous many-body systems involve
Floquet engineering, where a time-periodic drive is intro-
duced, and the drive parameters tuned to introduce a clustering
of quasistationary energies in a manner similar to localization
[12].

In this article, we use the fact that emergent approximate
symmetries can be engineered in Floquet systems [6,27] and
apply it to long-range interactions. This results in dynamical
many-body localization (DMBL) at specific values of the drive
parameters, and complete thermal behavior at other values.
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This phenomenon is distinct from DMF in the TFIM, since
clean TFIM systems, being integrable, never thermalize. To
demonstrate the onset of MBL, we investigate the driven
Lipkin-Meshkov-Glick (LMG) model [27–33], a long-range
system that extends the nearest-neighbor interactions in the
TFIM to all-to-all interactions [34–36]. Previous works on
driven LMG models have either focused on the low-frequency
regime where FETH is applicable [37], or the onset of lo-
calization inferred from observable dynamics [27,38,39]. We
have recovered the onset of DMBL in this system by inspect-
ing the values of the high-frequency inverse participation ratio
(IPR) of the Floquet modes themselves, a result that is valid
for infinite times, thus being a better indicator of localization.

In addition, we compare the degree of localization of the
quasistationary Floquet modes in the LMG model with the
TFIM, as well as other short-range models with lower sym-
metry. To do so, we look at the IPR of the Floquet modes in
the representation given by the eigenstates of the symmetry-
breaking field. The IPR, closely related to the concept of
quantum purity, is defined as the formal sum of the square
of the density in some physically meaningful space or rep-
resentation. A high IPR of a stationary state denotes low
participation in most of the representation, and a low IPR
distributes participation uniformly across the representation,
leading to ergodic dynamics [40]. Thus, IPR [41] is a useful
tool for witnessing MBL of a quantum system. For an MBL
system, the IPR is unity, and it scales inversely with the
number of spins when it is thermally distributed [42].

In the first section of this paper, we present all essential
theoretical frameworks. Our results for the LMG model are
presented next in Sec. III. In that section, we have used
the RWA [43], where only the slowest rotating terms in the
Fourier expansion of the Hamiltonian in a frame corotating
with the symmetry breaking drive field are retained. In ad-
dition, we have the obtained numerical simulations of the
Floquet modes and their IPR. They are used to probe the
system dynamics in the high and low-frequency domains at
both limits of β. In Sec. IV we have used phase space plots to
contrast the low and high frequency limits of the LMG model
in the thermodynamic limit by mapping it to an equivalent
classical Hamiltonian system. Finally, in Sec. V, we have
looked at numerical computations of the IPR of the Floquet
modes for different values of the drive parameters, well be-
yond those that allow for the RWA. We achieved a smooth
crossover from a thermal phase to a DMBL phase by increas-
ing the frequency adiabatically while remaining at a freezing
point. However, the DMBL phase is unstable at any finite
driving frequency in the thermodynamic limit. This result is
in contrast to the behavior of short-range models reported in
the literature, in which a nonanalytic transition from a thermal
phase to a strictly local phase takes place at finite driving
parameters [5]. Finally, we conclude with discussions and
outlook.

II. BACKGROUND

The ETH is a series of conjectures that allows for the
thermalization of an isolated quantum many-body system.
The state of the system, |ψ (t )〉, evolves according to the
Schrödinger equation Ĥ |ψ (t )〉 = i ∂

∂t |ψ〉. The Hamiltonian Ĥ

is assumed to be nonintegrable, in that it lacks an extensive
number of conserved quantities that can be written as a sum
of local operators, that is to say, there are no set of observables
Ôs = ∑

i L̂i such that [Ôs, Ĥ ] = 0. Here, the Ôs constitute
an arbitrary CSCO (complete set of commuting observables),
and L̂i are local, each having subextensive support in the
system [44]. In addition, we postulate an “equilibrium” value
Aeq for every observable Â, such that

Aeq(E ) ≡ Tr(Âe−βĤ )

Tr(e−βĤ )
, (1)

where E = 〈ψ (t )|Ĥ |ψ (t )〉 is the conserved energy of the sys-
tem, and β = 1/(kBT ) is the inverse temperature, and kB is the
Boltzmann constant.

To put it simply, ETH proposes that this many-body
Hamiltonian undergoes thermalization as seen in the long-
time averages of observables, with the eigenstates bearing
resemblance to thermal states. The aforementioned hypoth-
esis serves as a valuable instrument for comprehending the
conduct of stimulated quantum systems and their correlation
with thermal equilibrium. This assertion can be justified by
examining the expectation value of an observable Â as it
evolves under the Schrödinger equation. To see this, we first
expand the state of the system |ψ (t )〉 as

|ψ (t )〉 =
∑

m

cm(t ) |m(0)〉 ,

where |m(0)〉 represents the eigenstates of Ĥ (0) with energy
Em. The coefficients cm(t ) describe the time-dependent am-
plitude of the expansion. Plugging these expansions into the
expression for the expectation value, we obtain the long-time
average of the expectation value [45]:

〈Â(t )〉 =
∑
m,k

c∗
m(t )ck (t ) 〈m(0)| Â |k(0)〉 , (2)

where the overline indicates the following operation for any
time-dependent quantity O(t ),

O ≡ lim
t→∞

1

t

∫ t

0
dτ O(τ ). (3)

The matrix elements 〈m(0)| Â |k(0)〉 are said to satisfy the
Srednicki ansatz [46,47]:

〈m(0)| Â |k(0)〉 ≈ Aeq

(
Em + Ek

2

)
δmk

+ e− 1
2 S(

Em+Ek
2 ) f

(
Em + Ek

2
, Em − Ek

)
Rmk .

(4)

Here, S is the thermodynamic entropy and Rmk are elements
of a random matrix with vanishing mean and unit variance.
What this means for the ensuing dynamics is that the sys-
tem explores the accessible Hilbert space uniformly, and the
matrix elements 〈m(0)| Â(t ) |k(0)〉 become indistinguishable
for most pairs of m and k. Applying this ansatz and taking
the thermodynamic limit by ignoring terms O(e−S/2), the
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expression for the expectation value becomes:

〈Â(t )〉 ≈
∑

m

|cm(t )|2 Aeq(Em)

≈ Aeq(E )
∑

m

|cm(t )|2 = Aeq(E ),

where, in the last step, we utilized the fact that Aeq is a
smooth function, and that the states with energies far from
E have |cm(t )|2 ≈ 0. Therefore, in the limit of large systems
the expectation value of an observable Â is approximately
equal to the thermal expectation value Aeq. This is the essence
of the ETH, which suggests that individual eigenstates of a
quantum system can be described by statistical mechanics in
the long-time limit.

We now generalize the ETH to nonintegrable many-body
systems that are closed, but not isolated. In that case, it
is possible to impart a periodic time-dependence on the
Hamiltonian while still ensuring unitary evolution. If the
time period of the drive is T , and the corresponding drive
frequency ω ≡ 2π/T , then the Floquet theorem states that
the solutions to the Schrödinger equation can be written as
|ψ (t )〉 = e−iεt/h̄ |φ(t )〉, where the |φ(t )〉 are T -periodic states
called Floquet Modes, the corresponding ε ∈ R, are called
quasienergies. Quasienergy values are not unique, and can
be made to be bounded within a Floquet Brillouin zone, viz.
a range [−ω/2, ω/2] [48,49]. As a consequence, the unitary
evolution operator can be spit into two parts as follows [50]:

Û (t ) = e−iK̂F (t ) e−iĤF t . (5)

Here, the micromotion operator K̂F (t ) is time-periodic in
T , with K̂F (0) = 0, and the Floquet Hamiltonian ĤF =
eiK̂F (t )[Ĥ (t ) − i∂t ]e−iK̂F (t ). Thus, if the system is strobed at
integer multiples of T only, then the unitary evolution matches
that of a time-independent Hamiltonian ĤF . This can cap-
ture most of the exact dynamics at large frequencies. In
such systems, the Floquet eigenstate thermalization hypoth-
esis (FETH) [13,16] posits that, subject to specific conditions
and in the context of a system of significant size, the Flo-
quet modes themselves exhibit thermal state-like behavior,
i.e., Ĥ ≈ ĤF in Eq. (1). However, in contrast to the isolated
systems, the loss of energy conservation allows for the mixing
of all Floquet modes in the ensuing dynamics, not just those
with quasienergies near E . Were this to actually happen in the
ensuing dynamics, it can be reconciled with ETH by ensuring
that the right-hand side of Eq. (1) is independent of β, i.e.,
an infinite temperature ensemble [51]. In other words, the
nonequilibrium steady state of the system tends to an infinite
temperature, maximum entropy density matrix.

However, drive parameters like amplitude, frequency, and
duty-cycle strongly affect the structure of the Floquet modes
|φ〉. Thus, they can be engineered to prevent the kind of full
mixing that would lead to infinite temperatures, manifesting
suppression of thermalization dynamically. Thus, this type
of Floquet Engineering can produce dynamical many-body
localization (DMBL), where the system fails to reach thermal
equilibrium and remains localized, possibly near its initial
state, even at large times. This paradigm seems similar to
standard many-body localization [52,53], where disorder, lo-
cality, and integrability can cause athermality via breakdown

in the Srednicki ansatz. However, DMBL stems from periodic
driving, and thus can occur regardless of disorder, locality of
observables, or system integrability, all of which have been
studied for MBL onset [52,54,55].

Integrable many-body systems do not exhibit thermal-
ization. When subjected to time-periodic drives, Floquet
engineering allows for the introduction of additional approx-
imate conserved quantities that dynamically suppress the
evolution of certain observables by hysteresis. This type of
freezing of response has been shown in integrable systems [9].
A paradigmatic example is the driven TFIM in one dimension
[56]. The Hamiltonian is given by

Ĥ (t ) = Ĥ0 + hz(t ) Ĥ1, (6)

Ĥ0 = −1

2

N∑
i=1

σ̂ x
i σ̂ x

i+1, (7)

Ĥ1 = −1

2

N∑
i=1

σ̂ z
i . (8)

Here, the undriven Hamiltonian Ĥ0 consists of nearest-
neighbor interactions between N number of spin-1/2 particles
on a one-dimensional spin network. The transverse field is
denoted by Ĥ1, and is being varied by a time-periodic and
harmonic signal hz(t ) = h0 + h cos ωt , yielding a time pe-
riod T = 2π/ω with amplitude h, drive frequency ω, and
d.c. field h0. This Hamiltonian can be readily transformed
into a spinless pseudo-fermionic system via the Jordan-
Wigner transformation [7]. When written in momentum space
spanned by spinors ψk = (c−k, c†

k )T of fermions at momen-
tum k created (annihilated) by operators c†

k (ck), the effective
Hamiltonian

Ĥ (t ) =
∑

(k,−k)−pairs

ψ
†
k [( fk − hz(t ))τz + τx�k]ψk, (9)

where fk = cos k, �k = sin k, τxyz are the three Pauli Matri-
ces, and the sum is over distinct (k,−k) Cooper pairs. We
can transform our system to a frame that rotates with the
time-varying symmetry-breaking field. This is achieved by the
means of the unitary transformation operator [27]

Û (t ) =
∏

k

Ûk (t ),

Ûk (t ) = exp

[
ih

ω
sin ωt

]
τz. (10)

The resulting transformed Hamiltonian Ĥ ′(t ) = Û †(t )
Ĥ (t ) Û (t ) − iÛ †(t ) ∂tÛ (t ) simplifies to

Ĥ ′(t ) =
∑

(k,−k) pairs

ψ
†
k [ τz fk + τx cos (η sin ωt )

+ τy sin (η sin ωt )]ψk, (11)

where we defined η = 2h/ω. Using the Jacobi-Anger
formula [57]

eiη sin ωt =
∞∑

n=−∞
Jn(η) einωt , (12)
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where Jn(η) are Bessel Functions, the transformed Hamilto-
nian simplifies to

Ĥ ′(t ) =
∑

(k,−k)
pairs

ψ
†
k

{
τz fk + 2τx�k

∑
n�0

J2n(η) cos (2nωt )

− 2τ y�k

∑
n�0

J2n+1(η) sin [(2n + 1)ωt]

}
ψk . (13)

In the frequency regime ω � fk , the long-time average

ĤRWA ≡ lim
n→∞

1

nT

∫ nT

0
dt Ĥ ′(t ) can serve as a suitable ap-

proximation for Ĥ ′(t ). This approximation, known as the
rotated wave approximation (RWA), eliminates the oscillating
modes and results in an effective Hamiltonian that is indepen-
dent of time,

ĤRWA =
∑

(k,−k) pairs

ψ
†
k [ fkτz + 2J0(η)�kτx]ψk. (14)

It is evident that by manipulating the drive parameters, specifi-
cally the amplitude denoted by h and the frequency denoted by
ω, in a manner such that η is positioned on a root of J0(η), the
fermion number can be conserved to a significant extent at this
particular point. Consequently, it is feasible to exercise direct
control over ĤRWA, resulting in a comprehensive suppression
of the dynamics of otherwise responsive observables.

However, this phenomenon is not trivial to generalize,
since the addition of integrability-breaking terms, such as
longitudinal fields or additional spin-spin interactions, kills
the suppression of fermion number dynamics. For instance,
if we apply an integrability-breaking longitudinal field Ŝx =
1
2

∑
i σ̂

x
i , then the Hamiltonian becomes

ĤTFIM+Sx
(t ) = 1

2

[
N∑

i=1

σ̂ x
i σ̂ x

i+1 + h cos(ωt )
N∑

i=1

σ̂ z
i +

N∑
i=1

σ̂ x
i

]
.

(15)

Performing the unitary transformation and taking the RWA
yields a new RWA Hamiltonian

ĤRWA
TFIM+Sx

= ĤRWA + 1

2
J0

(
h

ω

) ∑
i

σ̂ x
i . (16)

At the root of J0( 2h
ω

), the longitudinal field survives. However,
note that the Bessel function has asymptotic form J0( 2h

ω
) ∼

( 2h
ω

)−1/2 cos( 2h
ω

− π
4 ), a good approximation for sufficiently

large h/ω. In that limit, if 2h/ω is chosen to lie at a root,
then J0( h

ω
) ∼ h−1/2, which is small for sufficiently large h.

Thus, the contribution of the longitudinal field is substan-
tially reduced if h � ω � 1, J0( 2h

ω
) = 0, partially recovering

dynamical freezing. This analysis can be supported by dy-
namical simulations for small-size systems. We have utilized
QuTiP, the quantum toolbox in Python [58], to numerically
investigate the spin correlations 〈Sz

0Sz
3〉 of a one-dimensional

spin chain comprising N = 8 spins. The results are plotted

FIG. 1. Time-average of spin-correlation 〈Sz
0Sz

3〉 for a driven 1D
spin-1/2 chain with periodic boundary conditions. The chain consists
of N = 8 spins, and was driven harmonically at fixed frequency ω =
90. The system was initially populated in a fully z−polarized spin
state and evolved numerically till time t = 300T , where T = 2π/ω.
The vertical dashed lines represent the roots of the Bessel function J0.
Panel (A) presents results for the driven TFIM + Sx [the Hamiltonian
in Eq. (15)], and panel (B) presents results for the driven XXZ model
(both with and without an Sx field) from the Hamiltonian described
in Eq. (17). For the former, correlations are suppressed at the lower
roots of J0(2h/ω), but approach unity at successively higher roots.
For the latter, the correlations remain constant for all values of h/ω.
However, the introduction of an additional Sx field results in freezing
only at the roots of J0(h/ω).

against 2h/ω for fixed ω in Fig. 1(a). At the lower roots
of J0(2h/ω), the correlations are suppressed. However, they
gradually increase towards unity when the drive parameters
are adjusted to lie at progressively higher roots.

Interestingly, if we apply this approach to investi-
gate the periodically driven XXZ model, then we notice
that the system remains frozen for all drive parameters.
The XXZ Hamiltonian, including a longitudinal field, is
given by

ĤXXZ+Sx
= 1

2

∑
i=1

[
Jσ̂ x

i σ̂ x
i+1 + Jσ̂

y
i σ̂

y
i+1

+ �σ̂ z
i σ̂ z

i+1 + h cos(ωt )σ̂ z
i + σ̂ x

i

]
. (17)

Transforming to the moving frame yields

Ĥmov
XXZ+Sx

= Ĥmov
XXZ

+ 1

2

∑
i

[
σ̂ x

i cos(ζ ) + σ̂
y
i sin(ζ )

]
. (18)

Here, ζ ≡ h
ω

sin(ωt ), and the moving frame XXZ Hamilto-
nian is

Ĥmov
XXZ

=
∑

i

[
J (σ̂+

i σ̂−
i+1 + σ̂−

i σ̂+
i+1) + �

2
σ̂ z

i σ̂ z
i+1

]
, (19)
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where σ̂±
i are spin ladder operators. Note that the moving

frame Hamiltonian has no ζ dependence. If we populate the
system initially in a fully z-polarized state, then Hmov

XXZ
does

not contribute to the dynamics at all. The remaining longi-
tudinal field will simply add single particle dynamics to the
state. If we now apply RWA in Eq. (18) by smoothing out
all harmonic oscillations from the Jacobi-Anger expansion,
we get

ĤRWA
XXZ+Sx

= Ĥmov
XXZ

+ 1

2
J0

(
h

ω

) ∑
i

σ̂ x
i , (20)

Thus, freezing can occur in the XXZ model in the absence
of a longitudinal field regardless of the drive parameters.
However when the Sx field is introduced, freezing can occur
only when the drive parameters are controlled in such man-
ner that (h/ω) lies on any root of the Bessel function. We
have supported this conclusion with QuTiP simulations [58]
similar to those described in the previous paragraph. The re-
sultant spin correlations are plotted against h/ω for fixed ω in
Fig. 1(b).

Now, if the integrability of the TFIM is broken by extend-
ing the range of x-spin interactions beyond nearest-neighbor,
then freezing can still be recovered through the emergence of
additional approximate conserved quantities at the freezing
point (see Ref. [59] for a detailed derivation). The case of
all-to-all interactions is particularly interesting, as complete
freezing can be achieved in that limit, as demonstrated in the
next section. In such cases, freezing has the additional effect
of inducing DMBL, suppressing Floquet-thermalization to
infinite temperatures. Numerical quantification of localization
of a specific (quasi)stationary state in a physically significant
representation can be achieved through the computation of the
IPR. The IPR is generally defined as the formal sum over the
square of the local density in a physically meaningful space
[60–63]. In the single particle case, the IPR, for a state |ψ〉
can be written as

φIPR ≡
∫

dx |〈x|ψ〉|4.

This definition can be applied to obtain the IPR of a state |φ〉
in a representation given by any single particle basis |m〉 as

φIPR ≡
∑

m

|〈m|ψ〉|4. (21)

The smallest value of the IPR corresponds to a fully delo-
calized state, ψ (x) = 1/

√
N for a system of size N [63,64].

Values of the IPR close to unity correspond to localized states
[41]. For a periodically driven system, we look at the IPR of
the quasistationary Floquet modes at t = T , where t = 2π/ω

for drive frequency ω. In the TFIM model, Eq. (14) indicates
that, when J0(η) = 0, the Floquet modes are approximately
given by the fermionic Fock states, which have a trivially unit
IPR in the representation of the eigenmodes of the transverse
field Ĥ1 in Eq. (6). Here, a particular Floquet mode can be
decomposed into a direct product of cooper-pair states as
|φ〉 = ∏

k,−k |φn
k 〉. In the RWA limit and at freezing, |φn

k 〉 has

FIG. 2. Reduced IPR [defined in Eq. (22)] for one of the two
Floquet modes obtained from the exact dynamics of the TFIM for
size N = 100, ω = 90 for the entire Brillouin zone [panel (A), y
coordinate) and a few drive amplitudes (top panel, x coordinate). The
dashed lines [in panel (A)] indicate the roots of J0(η) . The middle
panel (B) shows cross-sections of the reduced IPR in k− space for
four chosen amplitudes. Finally, the bottom panels (C) show semilog
plots of the scaling with N of the full many-body IPR as defined
in Eq. (23), with the left (C) panel for a small ω = 0.4, amplitude
h chosen to lie both in and out of the root of J0(η) as indicated
in the legend, with similar plots on the right (C) panel for a large
ω = 90.

values of |0〉, |k,−k〉 for two values of n = 0, 1 respectively.
We define the reduced IPR of |φn

k 〉 ∀k to be

φ
(n)
IPR(k) = ∣∣〈0∣∣φn

k

〉∣∣4 + ∣∣〈 + k,−k
∣∣φn

k

〉∣∣4
, (22)

where n = 0, 1. The full many-body IPR can be obtained from
the reduced IPR in Eq. (22) by a product over all momenta in
the Brillouin zone, yielding

φIPR =
∏

k

φ
(n)
IPR(k). (23)

In the RWA limit and at freezzing, this quantity is unity,
indicating very low participation and the onset of freezing.
Figure 2 shows results from numerically simulating the TFIM
dynamics. The reduced IPR for a particular Floquet mode
recovered by simulating the exact Schrödinger dynamics over
a single time period of the drive, and plotted as a function
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FIG. 3. Reduced IPR obtained by adiabatically increasing ω (top
panel, x coordinate) for one the floquet mode obtained from Eq. (22)
at the root of J0(η) for N = 500. IPR is ∼0.5 (localized yet not fully
freezing) up to ω ∼ 2, after that, smoothly increased to unity (fully
localized and freezing) at higher ω � 10 (top panel, y coordinate).
At bottom panel cross-sections for four chosen amplitudes at ω = 2
are plotted for a brillouin zone (x coordinate) with corresponding
reduced IPRs (y coordinate).

of momentum k for different η′s. At freezing, when η lies
at the root of the Bessel function J0(η), the Reduced IPR
is nearly unity for all momenta. Consequently, so is φIPR.
Outside the freezing point, the IPR is unity only for some
momenta because the effective Hamiltonian is perfectly di-
agonal at k ∈ {−π, 0, π} as can be seen in the cross-sectional
plots of Fig. 2. As we move away from the freezing point,
the full IPR decreases exponentially in the system size, as
can be seen in the bottom-right panel of Fig. 2. However, as
the TFIM is an integrable spin model, the IPR never drops
to a value that is small enough to indicate thermalization.
This can be seen in the bottom panels of Fig. 3, where the
exponential decay of φIPR(N ) never approaches the thermo-
dynamic scaling law φIPR(N ) ∼ 2−N for either small or large
frequencies. Note that, at low frequencies, complete localiza-
tion fails due to the unavailability of zero off-diagonal terms in
the effective transformed Hamiltonian, as well as the absence
of integrability breaking terms to counteract the off diagonal
terms. Because the TFIM can be mapped to a system of nonin-
teracting particles as shown in Eq. (9), it is not appropriate to
refer to the unit IPR region as “many-body localization.” The
type of Floquet Engineering described above, however, can be
easily applied to a broad class of nonintegrable systems where
FETH is expected to hold in certain regions. Long-range spin
systems, in particular, where the exchange energies between
far-off spins are taken into account in the model Hamiltonian,
are good candidates because they are known to thermalize
when driven with low frequencies [37].

III. LONG-RANGE INTERACTIONS: THE LIPKIN
MESHKOV GLICK MODEL:

The periodically driven LMG model [28,65] for N long-
range spins is described by the Hamiltonian

Ĥ (t ) = Ĥ0 + [h cos (ωt ) + h0] Ĥ1. (24)

Here, the undriven part Ĥ0 and the driven part Ĥ1 are,
respectively,

Ĥ0 = − 2

N − 1

∑
i< j

Ŝz
i Ŝz

j,

Ĥ1 = −2
∑

i

Ŝx
i . (25)

The Kac-norm of 2/(N − 1) arises from the choice to main-
tain the extensivity of the interaction energy. The Hamiltonian
in Eq. (24) commutes with the total angular momentum S2 =
|�S|2, where �Si = 1

2

∑
i �σi. We now choose to populate the sys-

tem in a state with S2 = N
2 ( N

2 + 1). In that case, the dynamics
remains invariant in the N + 1-dimensional space spanned
by the common eigenstates of Pi j ≡ 1

2 (1 + �σi · �σ j ), |S|2 and
Sz; the so-called totally symmetric substace, or TSS [66].
Let the eigenvalues of Sz in the TSS be sn, and the eigen-
vectors be |sn〉. Here, sn = − 1

2 + n
N and the index n = 0(1)N

has N + 1 values. The dynamics is restricted to this invariant
subspace, wherein the matrix elements of the Hamiltonian are
given by

〈si| Ĥ0 |s j〉 = − 2

N − 1
s2

i δi j,

〈si| Ĥ1 |s j〉 = −
[√

N

2

(
N

2
+ 1

)
− Nsi(Nsi+1)δi+1, j

+
√

N

2

(
N

2
+ 1

)
− Nsi(Nsi−1)δi−1, j

]
.

(26)

These allow for a numerical representation of the Hamiltonian
in the TSS.

Next, we transform the Hamiltonian to the rotated frame
given by the operator

Û (t ) = exp

[
i
h

ω
sin(ωt )Ĥ1

]
. (27)

This is analogous to the rotation performed for the TFIM in
Eqs. (10) and (11). Defining τ = h

ω
sin ωt , we use the fact that

Ĥ1 = 2Sx, as well as the following identity obtained by using
the Baker-Campbell-Hausdorff formula,

ei2τ Ŝx
Ŝze−i2τ Ŝx = Ŝz cos (2τ ) + Ŝy sin(2τ ), (28)

to simplify the transformed Hamiltonian H̃ (t ) = Û †(t )
Ĥ (t ) Û (t ) − Û †(t ) ∂tÛ (t ), yielding

H̃ (t ) = − 1

N − 1
[(Ŝz )2(1 + cos 4τ ) + (Ŝy)2(1 − cos 4τ )

+ {Ŝy, Ŝz} sin 4τ ] − 2h0Ŝx. (29)
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Next, we define η ≡ 4h/ω and use the Jacobi-Anger formula in Eq. (12) to expand H̃ (t ). This yields

H̃ (t ) = − Ŝ2

N − 1
+ (Ŝx )2

N − 1
− 2h0Ŝx − J0(η)

N − 1
[(Ŝz )2 − (Ŝy)2] − 2

N − 1
[(Ŝz )2 − (Ŝy)2]

∞∑
k=1

J2k (η) cos (2kωt )

− 2

N − 1
{Ŝy, Ŝz}

∞∑
k=1

J2k−1(η) sin [(2k − 1)ωt]. (30)

If ω is large enough to smooth out the harmonic components,
then we obtain the RWA,

H̃ (t ) ≈ H̃RWA ≡ − Ŝ2

N − 1
+ (Ŝx )2

N − 1
− 2h0Ŝx

− J0(η)

N − 1
[(Ŝz )2 − (Ŝy)2]. (31)

If the drive amplitude h is adjusted such that η lies at a
root of J0(η) (the localization point), the RWA Hamiltonian is
diagonal in the representation of the simultaneous eigenstates
of transverse field Ŝx and S2, yielding an IPR of unity in that
representation, similar to the TFIM in the previous section.
Note however, that if the DC transverse field h0 is set to 0,
then, at the localization point, the RWA Hamiltonian H̃RWA ∼
(Ŝx )

2
in the TSS. The eigenvalues are two-fold degenerate.

This produces infinitely many (Floquet) eigenmodes in the de-
generate subspace whose IPRs may not always be unity in the
Sx representation. The removal of this degeneracy necessitates
the inclusion of the d.c. field h0. However, note that rational
values of h0 may add accidental degeneracies in H̃RWA. To see
this, note that, at a localization point, the eigenvalues of H̃RWA

in the TSS are given by

Eigs[H̃RWA] =
(

N
2 − m

)2

N − 1
− 2h0

(
N

2
− m

)
, (32)

where the half-integer −N/2 � m � N/2 is the eigenvalue
corresponding to a particular eigenstate |m〉 of the symmetry-
breaking field Ŝx. To ensure that no additional degeneracies
occur, we have to set h0 in such a way that no two energies
accidentally coincide. If N � 1 (substantially large), then this
condition can be readily met by assuring that (1 − 2h0)−1 is
never an integer that is divisible by N . To ensure this in our
numerical simulations, we have kept h0 at a small irrational
value. The localization of the Floquet states at freezing is
supported by exact numerical results, as can be seen in the
phase diagram Fig. 4. Here, we have plotted the arithmetic
mean over all Floquet states of the IPR in the TSS for each
point in the h-ω plane for N = 100 spins. The IPR in Sx

representation is

φIPR(n) =
∑

m

|〈m|φn〉|4. (33)

As can be readily seen in the figure, the IPR is essentially
zero when ω � 1. There is considerable structure in the phase
diagram for larger drive frequencies, and along the lines given
by the roots of J0(η), the IPR is essentially unity, in agreement
with Eq. (31).

In Fig. 5, we show plots of the IPR of the Floquet modes
|φn〉 for S2 = (N/2)(N/2 + 1). These plots were obtained

numerically by diagonalizing the propagator U (t ) at t = T ,
where U (t ) is defined in Eq. (5). This propagator was obtained
from simulations of the exact quantum dynamics using QuTiP
[58]. We kept the frequency at a fairly large value ω = 90
where we expect that RWA would be valid, and N = O(102).
The density plot in the upper panel of Fig. 5 depicts the
IPR of the Floquet states; the abscissa (x coordinate) η =
4h/ω and the ordinate is n/(2N + 1), where n � 2N is a non-
negative integer that indexes the Floquet states in increasing
order of m. The dashed vertical lines correspond to the roots
of J0(η). Comparing with the IPR of the TFIM in Fig. 2, we
can see a very similar pattern in the immediate neighborhood
of the roots. Evidently, the IPR approaches a value of one for
sufficiently large values of the roots, strongly suggesting full
DMBL. Deviations occur at the smallest root of J0(η) (around
η = 2.405) due to the contributions from higher order terms
in Eq. (30). Thus, a higher root is favored for DMBL.

The bottom panel of Fig. 5 contains cross-sections of the
full IPR plot for selected values of η as indicated in the legend.
When the drive amplitude h is adjusted such that η is close to
a root of J0(η), the Floquet States are mixed, but not entirely
thermal, since the IPR does not fall to O(N−1), indicating that
localization persists to some extent. However, the further we

FIG. 4. Plot of the numerically averaged IPR [IPR computed
using Eq. (33)] in the TSS plotted in the h-ω plane for N = 100
spins. To display the thermalized region more clearly, ω is plotted
on a logarithmic scale on the x coordinate. Note that, since the
IPR is clearly nonnegative, an average IPR of zero means that all
Floquet states have zero IPR. Furthermore, the boundedness of IPR
in φIPR(n) � 1 ensures that if he average IPR is unity, then all Floquet
states have unit IPR.
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FIG. 5. IPR density plot for all possible Floquet modes (top
panel, y coordinate) for different values of η = 4h/ω (top panel,
x coordinate), deduced from Eq. (33) for exact LMG Hamiltonian
for N = 50. Blue dashed lines are roots of J0(η). At bottom panel
cross-section of IPR (y coordinate)for four different η′s plotted for
all possible floquet modes (bottom panel, x coordinate) at ω = 90.
IPR founds to be ∼ unity for all Floquet modes at roots of J0.

are from the roots, the closer the IPR gets to one predicted by
thermalization.

Figure 6 shows plots of the long-time average (from t =
0–200T ) of the field amplitude 〈Ŝx〉 as a function of η. The
system is started from the fully polarized state sn = N/2 in the
TSS and the dynamics simulated. The average is plotted for
different values of amplitude h, keeping the frequency fixed at
a high value of ω = 90. It is clearly very close to unity at roots
of J0(η) and falls at points away from it, indicating that Sx

is approximately conserved at the localization points. Small
deviations do occur due to the role of higher order terms in
the rotated Hamiltonian in Eq. (29). This can be demonstrated
quantitatively by comparing the IPR obtained from the exact
dynamics simulation with that obtained from the dynamics of
H̃ (t ) in Eq. (29) after truncating the series at orders k � 1.
This comparison can be seen in Fig. 7. The IPR plots from
the exact dynamics indicate that the first localization point,
represented by the lowest root of J0(η), does not show com-
plete DMBL. However, DMBL is particularly conspicuous at
large roots. The IPRs of the Floquet states obtained from the
RWA dynamics exhibit large deviations from unity when away
from the localization point as evidenced by the green and

FIG. 6. Temporal average of 〈Ŝx〉 (y coordinate) for different η′s
(x coordinate) is plotted for ∼200T at higher ω for different N = 10,
20, 50. 〈Sx〉 is found to be unity at roots of J0(η). At points away
from these points, 〈Ŝx〉 falls below unity. The corresponding standard
deviation 〈Ŝx〉std supports the variation of 〈Sx〉 (inset figure). 〈Ŝx〉std

is ∼0 describing a full freezing of the system at roots of J0(η) (red
vertical solid lines).

red curves in the middle panel of Fig. 7. However, complete
localization is seen in the RWA dynamics at any localization
point, in contrast to the exact case in the top panel. Thus,
it is necessary to incorporate higher-order corrections into
the RWA at lower localization points. The application of the
first-order correction to RWA in the lower panel of Fig. 7
results in a curve structure that is closer to that from the exact
dynamics.

IV. PERSISTENCE OF DMBL IN THE CONTINUUM LIMIT

In the continuum limit, where N → ∞, the disparity be-
tween neighboring values of si in Eq. (26) can be disregarded,
and si can be mapped to a continuum q ∈ [−1/2, 1/2] [66].
We define the Hamiltonian per particle h(t ) ≡ H (t )

N , and a
canonically conjugate coordinate N p ≡ 〈−i ∂

∂q 〉. Then, in this
limit, the dynamics can be approximated by that of a classical
Hamiltonian [67]

h(t ) = −2q2 − [h cos ωt + h0]
√

1 − 4q2 cos p, (34)

which yields the dynamical system

dq

dt
= ∂h

∂ p
= h(t )

√
1 − 4q2 sin p,

d p

dt
= −∂h

∂q
= 4q

[
1 − h(t ) cos p√

1 − 4q2

]
, (35)

where h(t ) = [h cos ωt + h0]. We have profiled simulations of
the ensuing dynamics with the Poincaré surface of section
(PSOS) of the full dynamics. Here, the (q, p) phase space is
strobed at t = nT , and plotted for many initial conditions. The
results are shown in the upper panels of Fig. 8 for a small
value of ω = 2.0 (left panel) and a large value ω = 90 (right
panel). In both cases, the value of h is chosen such that η

lies on the first root of J0(η). The onset of chaos for small
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FIG. 7. The comparison between IPR for exact dynamics and
RWA with corresponding correction orders. IPR is calculated for four
different η′s and corresponding J0(η) values for color—blue: η =
2.40, J0(η) = 0.0; dashed orange: η = 80.9, J0(η) = 0.0; green:
η = 7.0, J0(η) = 0.3; red: η = 13, J0(η) = 0.2. At low root of
J0(η) IPR is not unity (Blue curve) where at higher root (orange
dashed) it is unity while at points away from roots IPR are less than
unity in the exact (top panel) plot. RWA does not match with the
exact plot. At all roots of J0(η) IPR is unity (middle panel). RWA
with additional higher order terms exhibit similar system pattern
(bottom panel) with exact dynamics.

drive frequency indicates thermal behavior for typical initial
conditions, with small islands of regularity for others. This is
consistent with similar results for small frequencies reported
in Refs. [37,68]. However, at high frequency, the regular
islands distinctly dominate over the chaos. The trajectories
indicate that the conservation of 〈Sx〉 ≈

√
1 − 4q2 cos p [66]

at high ω persists in the thermodynamic limit. That this is a
signature of the underlying quantum dynamics can be readily
seen in the quantum phase space representation of the Floquet
eigenstates for a large but finite N . These are shown in the
corresponding lower panels of Fig. 8. Here, we have plotted
the spectral average of the Husimi Q functions of the acquired
Floquet States in the TSS. Specifically, for a coherent state

FIG. 8. Phase-space distributions at ω = 1.0 (panels Xa,b), ω =
2.5 (panels Ya,b) and ω = 90.0 (panels Za,b) for 100 initial conditions.
The drive amplitude h is always adjusted such that η = 4h/ω lies on
the smallest root of J0(η), i.e., η = 2.4048 . . . . At small ω = 1.0, the
classical PSOS, obtained from simulating the dynamics in Eq. (35)
(panel Xa), shows chaotic behavior, and at panel Ya where ω = 2.5,
regular regions start to appear. At higher ω = 90.0, the dominance
of regular dynamics can be readily seen (panel Za). The bottom
panels plot the corresponding spectral-averaged Husimi Q function,
obtained from the Floquet modes |φn〉 using Eq. (36), and setting
N = 100. The ω = 1.0 case (panel Xb) has a dispersed distribution
in color. This is consistent with the chaotic behavior seen in the
continuum limit. At ω = 2.5 (panel Yb), there is a partial regular
pattern observed together with a dispersed pattern. In the ω = 90
case (panel Zb), the distribution has distinct color contrasts, which is
consistent with the regular dynamics pattern seen in the continuum
limit.

|q, p〉, the corresponding spectral-averaged Husimi distribu-
tion [69] is obtained by

H (q, p) ≡ 1

(2N + 1)π

∑
n

〈q, p|φn〉〈φn|q, p〉. (36)

The quantum phase space retains signatures of the classical
phase space dynamics when N = 100, indicating the onset of
the persistence of Sx conservation that arises from the freezing
condition at high frequencies.

V. PHASE CROSSOVER FROM THERMAL TO DMBL

The analysis of the periodically driven LMG model reveals
two distinct scenarios at low and high external drive frequen-
cies. In the former case, thermalization in accordance with
FETH is seen, whereas in the latter case, DMBL is induced.
As a result, we hypothesize that a macroscopic change in
phase occurs due to the influence of frequency.

To demonstrate this, we investigate the IPR of the Floquet
mode with smallest quasienergy for numerous frequencies
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FIG. 9. In the top panel, the IPR of the Floquet state with the
lowest quasienergy is plotted as a function of ω for different Ns, with
amplitude h adjusted to ensure that J0(η) = 0 always. The data points
are shown, together with sigmoid curves φIPR = [1 + e−α(ω−ωc )]−1

that were fitted to each dataset. The smooth rise in IPR defines
a phase crossover (top panel) between a fully thermal phase to a
fully localized phase. In the inset, the crossover frequency ωc is
plotted against N , and is found to rise sharply with N . The bottom
panel plots the IPR versus N for small ωs, also with h adjusted.
The curves asymptotically approach the dependency φIPR ∼ 1/N ,
indicating thermalization at low-ω.

and system sizes, along with the associated drive amplitude
h keeping the system at a localization point. The results are
shown in Fig. 9. In the low-frequency range ω ∈ [1.0, 9.0], the
IPR exhibits values well below unity. Moreover, as can be seen
in the bottom panel of the same figure, when the dynamics
is simulated for smaller ωs, the fall of φIPR(N ) asymptoti-
cally approaches one that characterizes a fully thermal state,
where φIPR(N ) ∼ 1/N in the TSS. In the limit N → ∞, the
IPR tends towards zero, indicating a fully delocalized state.
Contrast this with the IPR plots shown in the bottom left panel
of Fig. 3 for the integrable TFIM. The top panel of Fig. 9
also reveals a gradual increase in the unity towards unity of
IPR over a certain frequency range, specifically at ω ≈ 5. In
addition, the rise does not cross with those for different values
of N , suggesting the onset of a phase crossover [53,70]. As
the size of the system increases, the crossover region becomes
smoother, rather than sharper. The crossover frequency ωc

have been estimated from the IPR data and plotted for dif-
ferent system sizes N in the inset of Fig. 9. It is observed that
ωc rises sharply as N increases past 40. This indicates that ωc

blows up in the thermodynamic limit, where N → ∞.
We can also look at this crossover more clearly in the

plots of the heating rate of the system, defined simply by the
expectation value of the Hamiltonian, 〈Ĥ (t )〉. We have carried

FIG. 10. The temporal standard deviation of the heating rate,
denoted by 〈H〉std, calculated over a span of t = 500T for two system
sizes. Here, h is varied to keep η = 4h/ω at the first root of J0(η).
In the inset, 〈H〉std is plotted against system size at low-frequency
(ω = 0.7).

out the numerical evaluation from the simulated dynamics
over t = 500 T . When the system is adequately described by
FETH, the temporal fluctuations in the Hamiltonian, defined

by 〈H〉2
std ≡ 〈Ĥ〉2 − 〈Ĥ〉2

[see Eq. (3)], approach 1/8 in the
thermodynamic limit [71]. Conversely, the onset of athermal-
ity is indicated by nonzero fluctuations in time. If we set the
initial state to the fully polarized state in the TSS (given by
|sN 〉), then the onset of freezing, together with DMBL, will
result in nearly infinite hysteresis in the ensuing dynamics,
causing |ψ〉 (t ) ≈ |sN 〉 ∀t . From Eq. (24), we can clearly see
that this will lead to a linearly rising dependence on ω in
〈H〉std as long as we stick to a localization point given by a
fixed 4h/ω [72]. All these observations are corroborated by
the plots in Fig. 10, where we have displayed the temporal
standard deviation of the heating rate for increasing ω, while
engineering h such that the system is always at a localization
point. A nonsingular rise has been identified at ω ≈ 4.0. The
heating rate exhibits diminutive fluctuations below that value
of ω, consistent with thermalization, while a linear rise is
observed at higher frequencies, consistent with actual local-
ization. When ω � 4.0, the diminutive standard deviation
asymptotically approaches the theoretical value of 0.125 in
the thermodynamic limit, as can be seen in the inset of Fig. 10.
The small peaks observed at ω ∈ [2, 4) are finite-size effects
that disappear in the thermodynamic limit. In the inset, 〈H〉std

is plotted against system size at low frequency (ω = 0.7) and
h is engineered to lie at a localization point.

VI. CONCLUSION AND OUTLOOK

We have delved into the onset of freezing and phase cross-
over in 1D spin systems driven by a time periodic transverse
field, contrasting the responses in the TFIM with that of the
long-range LMG model. The parametrization of DMBL is
based on the IPR of the Floquet eigenstates. Our investigations
compared the IPRs from both models numerically, and found
the emergence of thermal behavior at low frequencies and
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freezing at high frequencies for the LMG model, the latter
being a direct consequence of the appearance of additional
approximately conserved quantities.

Long-range spins exhibit strong localization in spin-
coordinate space for the LMG model when the drive
frequency is ω � J , where J represents the spin exchange
energy. The localization of the LMG model occurs at spe-
cific freezing points in the space of the drive frequency ω

and amplitude h, at J0(4h/ω) = 0, ω � J . This is apparently
similar to the phenomenon of DMF in the TFIM, as well
as DMBL in nonintegrable short-range models. Plots of the
IPR for a range of frequencies along the freezing manifold
exhibits a smooth increase in IPR yielding a quantum phase-
crossover from a thermal phase governed by the FETH to a
DMBL phase. However, in sharp contrast to the phase tran-
sitions seen in short-range models, the crossover frequency
ωc diverges with the system size, indicating that DMBL is
unstable in the thermodynamic limit for finite drive frequen-
cies. Nonetheless, the suppression of thermalization through
dynamical many-body localization in finite-sized long-range
systems can be controlled via Floquet engineering, even in
clean systems without any disorder. Thus, periodically driven
long-range spin systems are an excellent tool for investigating

disorder-free many-body localization, as can be readily seen
via the IPR of its Floquet modes.

There are several unexplored indicators of DMBL, such
as entanglement entropy and level statistics [17], which we
defer to future studies. In addition, Halpern in 2019 proposed
a quantum engine based on MBL [18] which works between
strong localized and thermal phases of the system. In our
proposed LMG model, tuning the system parameters by bring-
ing them to the freezing points, then adiabatically cycling
the frequency from the thermal region to the DMBL region,
can achieve a similar engine without going through a phase
transition.
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