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We propose two strategies to construct a family of nonintegrable spin chains with exactly solvable sub-
spaces based on the idea of quasiparticle excitations from the matrix product vacuum state [Haegeman et al.,
Phys. Rev. B 88, 075133 (2013)]. The first one allows the boundary generalization, while the second one makes
it possible to construct the solvable subspace with interacting quasiparticles. Each generalization is realized by
removing the assumption made in the conventional method [Moudgalya et al., Phys. Rev. B 102, 085120 (2020)],
which is the frustration-free condition or the local orthogonality, respectively. We found that the structure of the
embedded equally spaced energy spectrum is not violated by the diagonal boundaries, as long as quasiparticles
are identical and noninteracting in the invariant subspace. On the other hand, we show that there exists a
one-parameter family of nonintegrable Hamiltonians, which shows the perfectly embedded energy spectrum
of the integrable spin chain. Surprisingly, the embedded energy spectrum does not change by varying the free
parameter of the Hamiltonian. The constructed models weakly break ergodicity, in which strong ETH is expected
to be violated.

DOI: 10.1103/PhysRevB.109.104307

I. INTRODUCTION

Understanding the thermalization mechanism of isolated
quantum systems is one of the most well-developed studies in
recent statistical mechanics. After the eigenstate thermaliza-
tion hypothesis (ETH) has been recasted as the most powerful
candidate to explain thermalization phenomena, plenty of re-
lated works have been achieved including the ones, which test
validity or violation of the ETH. Although generic isolated
quantum systems are believed to obey the strong ETH [1–3],
which requires that all the energy eigenstates are macroscop-
ically indistinguishable from the thermal states, it has been
found that some energy eigenstates are different from the
thermal states by violating the statement of strong ETH. These
nonthermal states often show up in the systems, which do not
thermalize, including the systems with integrability [4,5] or
many-body localization [5–10], while it has been found that
such nonthermal states also show up in the systems, which
do thermalize [11–15]. These nonthermal energy eigenstates
are called the quantum many-body scars, named after the
single-body quantum scar state [16], especially when they
show long-lived oscillations for certain initial states [17,18].

The first example of quantum many-body scars has been
found experimentally for the Rydberg-atom quantum simula-
tor [19], which shows the embedded equally spaced energy
spectrum. The system shows strong revivals and very slow
thermalization when the initial state has non-negligible over-
lap with the eigenstates of the equally spaced energies. This
unforeseen behavior was expected to be caused by violation of
ETH due to the nonthermal property of the energy eigenstates
associated with the equally spaced energies in the prepared
initial state. Later, emergence of such nonthermal energy
eigenstates has theoretically been explained by employing

the PXP model [20], the effective model of the Rydberg
atom chain, which admits exactly solvable energy eigenstates
with equally spaced energies [17,18]. Surprisingly, the known
quantum many-body scars are often exactly solvable states of
nonintegrable systems. Besides the PXP model, there exist a
variety of models, including the AKLT model [11,12,21] and
the Hubbard-type models [22,23], which are nonintegrable but
have exactly solvable energy eigenstates. All those exactly
solvable energy eigenstates are macroscopically distinguished
from the thermal states. Therefore, we expect that exactly
solvable states of nonintegrable models are the candidates of
nonthermal states in thermalizing systems.

It is believed that the thermalizing systems, which admit
emergence of nonthermal states have the almost block-
diagonal Hamiltonians [24,25]

H � W ⊕ Hthermal (1)

consisting of the large thermal subspace Hthermal and the rel-
atively small subspace W , which becomes negligible in the
thermodynamic limit. Existence of the small invariant sub-
space W weakly breaks the quantum version of ergodicity, as
the states in this subspace cannot move out from W during
time evolution. Thus, the block diagonal Hamiltonian pre-
vents full thermalization by keeping each energy eigenvector
staying in each diagonal block. Recently, various methods to
construct the Hamiltonian with the small invariant subspace
have been proposed. The methods are mainly classified into
three types, each of which is called the projector embedding
[26–28], the spectrum generating algebra [12,29–38], or the
Krylov restricted thermalization [39]. These are not always
independent methods, but sometimes grasp different aspects
of the same mathematical structure behind the Hamiltonians.
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TABLE I. Classification of partially solvable models with exact quasiparticle excitation states. The abbreviation SGA stands for the
spectrum generating algebra. The models presented in this paper are highlighted by bold fonts. More detailed classification of the partially
solvable models with noninteracting quasiparticles can be found in [36].

Partial solvability Quasiparticle Matrix-product-based
Model mechanism interaction Spectrum expression

AKLT-type [43] SGA No equally spaced Yes
PXP model [36–38] generalized SGA No equally-spaced Yes
extensively many species [41] fully antisymmetrized bases Yes embedded s = 1/2 Heisenberg No
s = 1 nearest neighbor Bethe ansatz Yes embedded s = 1/2 Heisenberg Yes

Indeed, it can happen that a certain model is constructed
by one method, and later, the same model is constructed by
another method again. For instance, emergence of quantum
many-body scars in the PXP and AKLT model was first ex-
plained by the spectrum generating algebra [11], and then, the
projector embedding type construction has been proposed for
each model recently in [38,40].

In this paper, we propose a method to construct the
Hamiltonian with the small invariant subspace based on the
Bethe-ansatz method. The method is similar to the spectrum
generating algebra,

([H, Q] − EQ)|W = 0, (2)

in the sense that both methods provide the Hamiltonian and
energy eigenstates in the subspace W at the same time, al-
though partial solvability of our method does not come from
the spectrum generating algebra (2). The spectrum generating
algebra also tells that the Hamiltonian has the equally spaced
energy spectrum in the solvable subspace W , which perfectly
explains the strong revival obtained in the Rydberg atom ex-
periment. The equally spaced energy spectrum indicates that
the quasiparticles living in the subspace W are identical parti-
cles, while our method based on the Bethe ansatz provides the
model with the solvable subspace in which the equally spaced
structure of the energy spectrum is broken, instead by show-
ing the same energy spectrum as the spin-1/2 XXX model.
This implies that no revival phenomena will be obtained in
the Bethe ansatz solvable subspace spanned by nonidentical
quasiparticle excitation states.

It should also be noted that most of the examples of ex-
actly solvable states for nonintegrable systems are written in
the languages of noninteracting quasiparticles, while solvable
states constructed in this paper are expressed in terms of
interacting quasiparticles. Only a few examples are known as
exactly solvable states consisting of interacting quasiparticles.
One example is obtained in the deformation of the integrable
Hamiltonian [41], in which the exactly solvable energy eigen-
states are constructed via the fully antisymmetrized bases.
Partial solvability of our model is completely independent
from this example since its solvability comes from conven-
tional integrability but its mathematical structure is highly
nontrivial as we impose the integrability conditions on the
pseudo basis constituted by the matrix-valued vectors. How-
ever, we would say that our model has advantage for practical
uses, since the Hamiltonian simply consists of spin-1 nearest-
neighbor interactions. Besides, the method for constructing
the partially solvable Hamiltonian presented in this paper can
be applied to the other models associated with any integrable

models. Differences among the partially models with solvable
quasiparticle excitation states are summarized in Table I.

This paper is organized as follows. In the next section, we
define the model to be studied in this paper. We focus on
the spin-1 chain, which often shows up in the discussion of
quantum many-body scars. The example includes the AKLT
model. We also provide the basic notion of the matrix prod-
uct state and quasiparticle excitation states, which are first
introduced in the discussion of the generalized tangent space
of the (nonlinear) manifold formed by the matrix product
tensors [42,43]. Many of nonthermal states in thermalizing
systems were found to be written in the matrix-product based
expressions with fixed bond dimensions [25,36,43], which
have relatively small entanglement entropies [25,44–47] com-
pared to those for the thermal states exhibiting the volume
law behavior. This fact strongly motivates us to look for the
solvable states of nonintegrable systems in the matrix product
forms, as the candidates of nonthermal states in thermaliz-
ing systems. In Sec. III, we provide the Hamiltonian and its
invariant subspace spanned by noninteracting quasiparticle
excitation states. The first half of the section is devoted to the
review of the known results for the periodic boundary models,
whose partial solvability comes from the hidden spectrum
generating algebra. In the last half, we discuss generalization
to the nontrivial boundary cases. We show that the structure of
the spectrum generating algebra is not violated by the diagonal
boundary deformation. In Sec. IV, we discuss the construction
of the Hamiltonian with the Bethe ansatz solvable subspace.
We show that the energy spectrum in the Bethe ansatz solvable
subspace coincides with the energy spectrum of the integrable
system, without exhibiting the equally spaced structure any
more. The model, which admits the Bethe ansatz solvable
subspace possesses a free parameter, which does not show
up in the energy spectrum of the solvable subspace. This
implies that emergence of solvable subspace is robust against
a certain kind of perturbations. We also remark that the energy
spectrum in the Bethe ansatz solvable subspace becomes con-
tinuous ranging to infinity in the thermodynamic limit, which
is never obtained for the solvable subspace resulting from the
spectrum generating algebra. The last section is devoted to the
concluding remarks and future works.

II. THE MODEL

Let us consider the spin-1 chain with translationally in-
variant nearest-neighbor bulk interactions. By writing the
elementary matrix whose (t, s) element is 1 and the others are
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0 by Et,s, the local bulk Hamiltonian is written as

h =
2∑

s,s′,t,t ′=0

hs,s′
t,t ′ Et,s ⊗ Et ′,s′

. (3)

The whole Hamiltonian consists of the summation of the local
Hamiltonian over all the sites. In this paper, we consider the
periodic boundary

H =
N∑

j=1

h j, j+1 (4)

and the open boundaries

HB =
N−1∑
j=1

h j, j+1 + h1 + hN , (5)

where h j, j+1 is nontrivially acts on the j and ( j + 1)th sites

h j, j+1 = 1 ⊗ · · · ⊗ h
j, j+1

⊗ · · · ⊗ 1, (6)

while h1 and hN act on the first and N th sites, respectively,

h1 = hL ⊗ 1 ⊗ · · · ⊗ 1,

hN = 1 ⊗ · · · ⊗ 1 ⊗ hR. (7)

Besides the locality and translation invariance, we assume the
spin-flip invariance

hs,s′
t,t ′ = h2−s,2−s′

2−t,2−t ′ (8)

and conserved magnetization

hs,s′
t,t ′ = hs,s′

t,t ′ δs+s′,t+t ′ , (9)

besides Hermiteness

hs,s′
t,t ′ = (

ht,t ′
s,s′

)∗
(10)

for the local bulk Hamiltonian. These are natural assumptions
realized by many models.

Some of spin-1 chains equipped with the above prop-
erties are known to be integrable, including the Fateev-
Zamolodchikov spin chain,

h j, j+1 = �S j · �S j+1 − (�S j · �S j+1)2, (11)

while some other spin-1 chains are known to have exactly
solvable energy eigenstates, although they are nonintegrable.
One of the most famous examples of the latter case is the
AKLT model

h j, j+1 = �S j · �S j+1 + 1
3 (�S j · �S j+1)2, (12)

which admits not only the exactly solvable ground state but
also the exactly solvable excitation states associated with
equally spaced eigenenergies [11,12,25,30,43].

Most of the known solvable energy eigenstates of noninte-
grable models are written in the homogeneous matrix product
forms or quasiparticle excitations from the matrix product
states [42,43]. The homogeneous matrix state is written in the

following form:

|ψA〉 = tra(Ka �A ⊗p · · · ⊗p �A)

=
∑

(m1,...,mN )∈{0,...,d−1}N

tra
(
KaAm1 Am2 · · · AmN

)

× |m1, m2, . . . , mN 〉, (13)

where the χ -by-χ matrices Amn ∈ End(Cχ ) (n = 1, . . . , N)
act in the auxiliary space. Another index d denotes the di-
mension of the local physical space. For the spin-1 chain, the
local physical space must be three dimensional, i.e., d = 3.
Note that the trace tra is taken over the auxiliary space and the
tensor product ⊗p must be operated on the physical spaces.
The boundary matrix Ka, which acts in the auxiliary space
Cχ , is determined by the boundary conditions. For instance,
Ka is the identity matrix for the periodic boundary, while
Ka is a certain matrix with rank Ka = 1 for open boundaries.
Throughout this paper, we focus on the matrix product states
given by

�A =
⎛
⎝a0σ

+
a1σ

z

a2σ
−

⎞
⎠, a0, a1, a2 ∈ C, (14)

which has the smallest nontrivial bond dimension χ = 2. This
class of the matrix product states includes the exactly solvable
ground state of the AKLT model [21].

On the other hand, we consider the one-quasiparticle exci-
tation state expressed by

|ψA,B(k)〉 =
N∑

x=1

eikx tra(Ka �A ⊗p · · · ⊗p �B
x

⊗p · · · ⊗p �A),

(15)

where �B is again the matrix-valued vector whose elements
act in the auxiliary space Cχ , and locates at the position x
of the quasiparticle. In the above expression, no quasiparticle
creation or annihilation is assumed, which is true for the
periodic or diagonal boundaries. Indeed, the magnetization
conservation property of the model, which we imposed in (9),
guarantees that the number of quasiparticles does not change
in the bulk. The quasiparticle excitation state of the form (15)
have been first proposed in the discussion of the generalized
tangent space of the manifold formed by the matrix product
tensors {Am1 , . . . , AmN } [42].

The nature of quasiparticles depends on the choice of the
local quasiparticle creation operator O ∈ End(C3) defined
through the relation

�B = O �A. (16)

For instance, quasiparticles show the noninteracting property
under the nearest-neighbor Hamiltonian (3) if the quasipar-
ticle is chosen as the spin-2 magnon created by O = (S+)2

[43]. The spin-2 magnon excitation states are known to form
the solvable invariant subspace of the models belonging to
the AKLT type [43]. Under the other choices of the creation
operator, quasiparticles may interact with one another. The
interacting quasiparticles are obtained in the Bethe ansatz
solvable subspace, as we will show in Sec. IV.
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III. EXACTLY SOLVABLE SUBSPACE WITHOUT
QUASIPARTICLE INTERACTION

In this section, we construct the solvable subspace W
spanned by noninteracting quasiparticle excitation states. The
noninteracting property of quasiparticles is realized, for in-
stance, by choosing the local quasiparticle operator O as the
spin-2 magnon creation operator,

O = (S+)2. (17)

The other examples, which produce noninteracting quasipar-
ticles can be found in [43]. The local spin-2 magnon creation
operator satisfies the repulsive relations [43],

O2 �A = O �B = 0, (18)

�B ⊗p �B = 0, (19)

which forbid quasiparticles to occupy the same site or adjacent
sites. Thus, the spin-2 magnons do not interact each other
since the Hamiltonian consists only of the nearest-neighbor
interactions (3).

Throughout this section, we impose the local orthogonal-
ity,

(t �A∗ ⊗p
t �A∗) · ( �B ⊗p �A + eik �A ⊗p �B) = 0, (20)

which is the sufficient condition for the quasiparticle excita-
tion states (15) with the different number of quasiparticles to
be orthogonal since every inner product between the states
with the different number of quasiparticles can be decom-
posed into the product of the local inner products including
the left hand side of (20) {see also Eq. (38) and Appendix C
of [43]}. Here the transpose in (20) acts only in the auxil-
iary space. In the recent study of constructing a family of
Hamiltonians with exactly solvable subspace [43], the local
orthogonality is always imposed. The local orthogonality al-
lows only identical quasiparticles with momentum k = π to
exist {see Eq. (52) of [43]}. This also means that there is a
hidden spectrum generating algebra for this model.

With these properties, the multiple spin-2 magnon excita-
tion states are represented as

|ψA,Bn〉 = Qn|ψA〉, (21)

in which the index n represents the number of quasiparticles
running over n = 1, . . . , 
N/2�, due to the repulsive prop-
erties of quasiparticles (18) and (19). Q is the quasiparticle
creation operator given by the summation of the local creation
operator O at each site,

Q =
N∑

x=1

(−1)xOx, Ox = 1 ⊗ · · · ⊗ O
x

⊗ · · · ⊗ 1, (22)

which is interpreted as the creation operator of the spin-2
magnon carrying the momentum k = π .

A. Periodic boundary case

In this subsection, we discuss the periodic boundary case.
The first part of this section is devoted to the review of the
known models, which are the frustration-free models [43]. In
the latter part of this section, we give the generalization of
the known results by removing the frustration-free condition,

which turns to be important for the boundary generalization,
as we will see in the next subsection.

In [43], it has been found that the sufficient conditions for
the subspace

WSGA = span{|ψA〉, Q|ψA〉, . . . , Q
N/2�|ψA〉} (23)

to be the solvable subspace of the Hamiltonian are given by
the frustration-free condition

h �A ⊗p �A = 0 (24)

and the eigenvalue condition

h( �B ⊗p �A + eik �A ⊗p �B) = E ( �B ⊗p �A + eik �A ⊗p �B). (25)

The first condition makes the vacuum state (13) be the zero-
energy eigenstate, although it is not necessarily the ground
state. The conditions (24) and (25) are equivalent to the spec-
trum generating algebra in the subspace WSGA (23),

([H, Q] − 2EQ)|ψA,Bn〉 = 0, n = 0, 1, . . . ,

⌊
N

2

⌋
. (26)

Therefore, the energy spectrum of the Hamiltonian in WSGA

shows the equally spaced structure,

H |ψA,Bn〉 = 2nE |ψA,Bn〉, n = 0, . . . ,

⌊
N

2

⌋
, (27)

which is understood also as the consequence of identical parti-
cle nature of spin-2 magnons. One thing, which was missed to
be noted in [43] is that the quasiparticle excitation states (15)
under the periodic boundary provides the energy eigenstate
for the Hamiltonian only when the system consists of an even
number N of sites.

The frustration-free condition and the eigenvalue condition
are simultaneously solved by the local Hamiltonian

h = 1

2
h00

00(Sx ⊗ Sx + Sy ⊗ Sy + Sz ⊗ Sz )

−
(

1

2
h00

00 + a2
1

a0a2
h11

11

)
(Sx ⊗ Sx + Sy ⊗ Sy + Sz ⊗ Sz )2

−
(

1

2
h00

00 − a2
1

a0a2

( a2
1

a0a2
− 1

)
h11

11

)
(Sx ⊗ Sx + Sy ⊗ Sy)2

−
(

h00
00 +

( a2
1

a0a2
− 1

)
h11

11

)
(Sz ⊗ Sz )2

+
(

1

2
h00

00 +
( a4

1

a2
0a2

2

− 1
)

h11
11

)
((Sz )2 ⊗ 1 + 1 ⊗ (Sz )2)

+
(

1 − 2
a4

1

a2
0a2

2

)
h11

11 1 ⊗ 1, (28)

where Sx, Sy, and Sz are the spin-1 operators associated with
su(2), while 1 represents the identity operator acting on a
single physical space C3. The obtained local Hamiltonian (28)
contains essentially three free parameters, up to the overall
factor, if one normalizes the quasiparticle excitation states
(15). This class of models includes the AKLT model, real-
ized by choosing h11

11/h00
00 = 2/3 and a0 = −√

2a1 = −a2 =√
2/3, which perfectly explains the emergence of embedded
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equally spaced energy spectrum obtained by the numerical
test [11].

Now the question is how much we can generalize a model
in such a way that does not destroy the block diagonal struc-
ture (1), i.e., that keeps WSGA as its invariant subspace. One
possibility is to generalize the sufficient conditions (24) and
(25) for WSGA to be the invariant subspace of the Hamiltonian.
First, we replace the frustration-free condition with the gener-
alized frustration-free condition

h �A ⊗p �A = �A ⊗p �A′ − �A′ ⊗p �A. (29)

Here �A′ is another matrix-valued vector whose elements are
two-by-two matrices. This generalization (29) reminds us the
idea of constructing the steady states of the classical solvable
stochastic processes such as the asymmetric simple exclusion
process [48–51]. Accordingly, modification of the eigenvalue
condition (25) as

h( �B ⊗p �A + eik �A ⊗p �B) = �B ⊗p �Z + eik �X ⊗p �B (30)

guarantees that the quasiparticle excitation states (21) to be
the eigenstates of the Hamiltonian H , if the operator-valued
vectors �X and �Z satisfy

�Z − �A′ = E ′(k) �A, (31)

�X + �A′ = E (k) �A. (32)

Besides these relations, we keep the local orthogonality (20),
which allows only k = π quasiparticles to exist. For this rea-
son, we hereafter do not explicitly denote the dependence on
k.

The first condition (29) again makes the vacuum state (13)
be the zero-energy (but not necessarily the lowest energy)
eigenstate under the periodic boundary condition. It also re-
quires that the newly introduced matrix-valued vector �A′ to be

�A′ =
⎛
⎝b0σ+

b1σ
z

b2σ
−

⎞
⎠, b0, b1, b2 ∈ C, (33)

where b2 is restricted by the condition b0/a0 = b2/a2. The
generalized frustration-free condition (29), together with the
generalized eigenvalue condition (30), produces the hidden
spectrum generating algebra,

([H, Q] − (E + E ′)Q)|ψA,Bn〉 = 0, n = 1, . . . ,

⌊
N

2

⌋
,

(34)

which implies that the embedded equally spaced energy spec-
trum

H |ψA,Bn〉 = n(E + E ′)|ψA,Bn〉, n = 1, . . . ,

⌊
N

2

⌋
(35)

is not violated by generalizing the frustration-free condition.
The generalized conditions (29) and (30) are solve by the

local Hamiltonian given by replacing the (2,2) and (8,8)-
elements of (28) as h00

00/2 → h00
00/2 + Re(b0/a0 − b1/a1),

while the (4,4) and (6,6) elements as h00
00/2 → h00

00/2 −
Re(b0/a0 − b1/a1). Thus, the local bulk Hamiltonian under
the generalized frustration-free condition contains two more

free parameters besides the three parameters in the frustration-
free case, if one fixes the normalization of the quasiparticle
excitation states (15). However, this increased freedom dis-
appears under the presence of diagonal boundaries, when the
four linearly independent vacua degenerate. We will see this
point in the next subsection.

B. Diagonal boundary case

When the open boundary condition is imposed, the bound-
ary matrix in the matrix product state must be set as the rank
1 matrix. Here we write the boundary matrix by

Ka = |vR〉〈vL|, (36)

where the boundary vectors |vR〉 and |vL〉 are the vectors in the
auxiliary space C2. Since the matrix product state takes differ-
ent expressions depending on the choice of the boundaries, we
explicitly denote the boundary choice in the superscript,∣∣ψ (vL,vR )

A

〉 = a〈vL| �A ⊗p �A ⊗p · · · ⊗p �A|vR〉a. (37)

Throughout this subsection, we only consider diagonal
boundaries,

hL =
⎛
⎝�0 0 0

0 �1 0
0 0 �2

⎞
⎠,

hR =
⎛
⎝r0 0 0

0 r1 0
0 0 r2

⎞
⎠, (38)

where �i, ri ∈ R (i = 0, 1, 2). Since the diagonal boundaries
do not produce the quasiparticles, the expression for quasipar-
ticle excitation state (15) is still valid.

Now we look for the Hamiltonians, which have the invari-
ant subspace WSGA spanned by the matrix product state (13)
and the quasiparticle excitations (15). For the bulk solvability
in the subspace WSGA, the generalized frustration-free con-
dition (29) and generalized eigenvalue condition (30) must
be satisfied. Besides, the boundary solvability requires the
consistency conditions at the left boundary,

a〈vL|(hL �A − �A′) = EL · a〈vL| �A,

(hR �A + �A′)|vR〉a = ER · �A|vR〉a, (39)

and the right boundary,

a〈vL|hL �B = (E + EL) · a〈vL| �B,

hR �B|vR〉a = (E ′ + ER) · �B|vR〉a, (40)

respectively.
The vacuum energy takes different values for the different

choices of the boundary conditions. For instance, if we choose
the diagonal boundaries, which satisfy (39) and (40), the vac-
uum energy is given by

HB

∣∣ψ (vL,vR )
A

〉 = (EL + ER)
∣∣ψ (vL,vR )

A

〉
. (41)

For this reason, we call EL and ER the left and right boundary
energies, respectively. From the boundary solvability condi-
tions (39) and (40), we find that the generalization of the
frustration-free condition is important to obtain nontrivial
boundary solutions, since the frustration-free condition only
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allows the boundary interactions proportional to the identity
matrix.

The solutions to (39) are classified into two types each for
the left and right boundaries. The first type of solutions do not
restrict the boundary vectors,

EL = �0 − b0

a0
= �1 − b1

a1
= �2 − b2

a2
, ∀ |vL〉a, (42)

resp. ER = r0 + b0

a0
= r1 + b1

a1
= r2 + b2

a2
, ∀ |vR〉a,

(43)

and thus, leads to the degenerate vacua with degree four.
Indeed, the same degeneracy structure can be obtained in
the ground state of the AKLT model under the presence of
diagonal boundaries, since it is the special case of our model,
as was mentioned in the previous subsection. The second type
of the solutions determines the boundary vectors uniquely,

EL = �1 + b1

a1
= �2 + b2

a2
�= �0 + b0

a0
, |vL〉a = |1〉a (44)

or

EL = �0 + b0

a0
= �1 + b1

a1
�= �2 + b2

a2
, |vL〉a = |0〉a, (45)

resp.

ER = r1 − b1

a1
= r2 + b2

a2
�= r0 + b0

a0
, |vR〉a = |0〉a (46)

or

ER = r0 − b0

a0
= r1 + b1

a1
�= r2 + b2

a2
, |vR〉a = |1〉a, (47)

and therefore does not produce degeneracy for the vacuum
states. In any case, we observe that the total boundary energy
is determined by the elements of the boundary Hamiltonians
as

EL + ER = �1 + r1. (48)

In general, the degeneracy structure of the vacuum states
does not survive for the quasiparticle excitation states. Only
when we restrict the quasiparticle excitation energy as

E + EL = �0, resp. E ′ + ER = r0, (49)

which is one of the solutions to (40), the quasiparticle excita-
tion states with arbitrary boundary vectors can be the energy
eigenstates, although the quasiparticles under this restriction
carry zero energy E + E ′ = 0. The other solutions are given
by

|vL〉a = |0〉a, resp. |vR〉a = |1〉a, (50)

for which not only the quasiparticle excitation states but also
the vacuum states are not degenerate, as was obtained above.

The hidden spectrum generating algebra in this model is
produced by the bulk and boundary partial solvability condi-
tions (29), (30), (39), and (40),

([HB, Q] − (E + E ′)Q)
∣∣ψ (vL,vR )

A,Bn

〉 = 0. (51)

Since the vacuum state |ψ (vL,vR )
A 〉 has the eigenenergy given

by EL + ER, the eigenenergies of the quasiparticle excitation

states are obtained as

HB

∣∣ψ (vL,vR )
A,Bn

〉 = (n(E + E ′) + EL + ER)
∣∣ψ (vL,vR )

A,Bn

〉
. (52)

Remind that the number of quasiparticles n runs over n =
1, . . . , 
N/2�. In this way, the embedded equally spaced
energy spectrum structure is not violated by the diagonal
boundaries.

As was noted in the previous subsection, the boundary
solvability conditions reduce the degrees of freedom for the
desired Hamiltonian. For instance, when the four linearly
independent vacua have the same energy, i.e., the conditions
(42) and (43) are satisfied by the boundary Hamiltonians, the
local Hamiltonian is just given by the frustration-free local
Hamiltonian (28) up to the constant �0 + r0 determined by
choice of the boundaries. That is, the energy spectrum in the
solvable subspace matches that for the frustration-free energy
spectrum with the shift by �0 + r0.

C. Off-diagonal boundary case

Unlike the periodic or diagonal boundary cases, the
off-diagonal boundaries create and annihilate quasiparticles.
Therefore, the states with a fixed number of quasiparti-
cles (15), including the vacuum state (13), are no more the
eigenstates of the Hamiltonian. Instead, we assume the super-
position of n-quasiparticle states as the energy eigenstate,

∣∣ψ (vL,vR )
A,Bn

〉 =

N/2�∑
n=0

cnQn
a〈vL| �A ⊗p · · · ⊗p �A|vR〉a. (53)

The operator Q is again the spin-2 magnon creation operator
defined in (21). We also impose the local orthogonality (20),
which allows only k = π identical quasiparticles to exist. We
immediately notice that the superposition state (53) becomes
the energy eigenstate only when its bulk energy is zero,

E + E ′ = 0. (54)

Besides, the left and right boundary solvability conditions

a〈vL|(−cnhL �B + cn−1 �A′) = EL · a〈vL|(cn−1 �A), (55)

a〈vL|(cnhL �A) = EL · a〈vL|(−cn+1 �B), (56)

and

((−1)N cnhR �B − cn−1 �A′)|vR〉a = ER · (cn−1 �A)|vR〉a, (57)

cnhR �A|vR〉a = ER · ((−1)N cn+1 �B)|vR〉a, (58)

are required in order for (53) to be the energy eigenstate.
We found that the only nontrivial solutions to the bulk

solvability conditions (29) and (30), and boundary solvabil-
ity conditions (39) and (40) are given by the choice of the
boundary vectors |vL〉 = |1〉, |vR〉 = |0〉 and the boundary in-
teractions

hL =
⎛
⎝ 0 0 �02

0 0 0
�∗

02 0 0

⎞
⎠, hR =

⎛
⎝ 0 0 r02

0 0 0
r∗

02 0 0

⎞
⎠,

(59)
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under the restrictions on the boundary energies

EL = −ER = b1

a1
(60)

and the ratios of the amplitudes

�02 = −EL
cn+1

cn
, r02 = (−1)NER

cn+1

cn
, (61)

EL − �02�
∗
02

EL

cn

c∗
n

= −ER + r02r∗
02

ER

cn

c∗
n

= b0

a0
. (62)

That is, the only eigenvector consisting of the spin-2 magnon
excitations is the zero-energy eigenstate,

H (1,0)
B |ψA,Bn〉 = 0. (63)

Therefore, the solvable subspace of the off-diagonal boundary
model is the one-dimensional space. Interestingly, the solv-
able state (53) shows up in the middle of the energy spectrum
under the generic choice of the off-diagonal boundary con-
ditions (Appendix A). This implies that the superposition of

quasiparticle excitations is again the candidate of a nonther-
mal state.

IV. EXACTLY SOLVABLE SUBSPACE
WITH QUASIPARTICLE INTERACTIONS

In the previous section, we discussed the models with
solvable subspace coming from the hidden spectrum gener-
ating algebra. The energy spectrum in the solvable subspace
then shows the equally spaced structure, and therefore, it is
spanned by the identical quasiparticle excitation states with
k = π . In this section, we propose construction of the solvable
subspace based on Bethe ansatz solvability. The idea is to
remove the local orthogonality (20), which is the sufficient
condition for the quasiparticle excitation states with different
number of quasiparticles to be orthogonal. Actually, the local
orthogonality is too strong since the orthogonality of the en-
ergy eigenstates is guaranteed by the different eigenenergies,
as we have chosen the Hermitian Hamiltonian (10). Instead,
we impose the algebraic structure to produce integrability on
the Hamiltonian in the subspace W . Then the matrix product
state (13) and the quasiparticle excitation states

|ψA,Bn ({k�})〉 =
∑

1�x1<x2<···<xn�N

f (x1, x2, . . . , xn) tra

(
�A ⊗p · · · ⊗p �B

x1

⊗p · · · ⊗p �B
xn

⊗p · · · ⊗p �A
)
,

f (x1, x2, . . . , xn) =
∑

P∈Sn

An(P) ei
∑n

j=1 kP( j)x j , (64)

which are generalization of (15), become the energy eigen-
states in the subspace

WBA = span{|ψA〉, |ψA,B(k1)〉, . . . , |ψA,B
N/2� ({k�})〉}, (65)

if a set of quasiparticle momenta {k j} satisfies the Bethe equa-
tions. Here Sn denotes the symmetric group of degree n. The
amplitude An(P) is determined by the boundary condition.
For instance, the periodic boundary requires for An(P) to
satisfy

An(Pτ j, j+1)

An(P)
= −1 + ei(kP( j)+kP( j+1) ) − 2eikP( j+1)

1 + ei(kP( j)+kP( j+1) ) − 2eikP( j)
, (66)

in which τ j, j+1 represents the transposition between the labels
j and j + 1. The quasiparticle excitation states (64) look sim-
ilar to the Bethe states, but of course, they are not the Bethe
states in the normal sense.

The explicit forms of the Bethe equations depend on the
models. Here we impose the spin-1/2 isotropic Heisenberg
(XXX ) like relations on the Hamiltonian in W ,

h �A ⊗p �A = 0, (67)

h �A ⊗p �B = − �A ⊗p �B + �B ⊗p �A, (68)

h �B ⊗p �A = �A ⊗p �B − �B ⊗p �A, (69)

h �B ⊗p �B = 0, (70)

although the Hamiltonian consists of s = 1 spins. The first
relation is nothing but the frustration-free condition imposed

also in the previous subsection (24), and the last relation
represents the repulsive property (19), which forbid the
quasiparticles to locate at the adjacent sites. The spin-1/2
XXX -like relations (67)–(70) simultaneously determine the
Hamiltonian and the local quasiparticle creation operator. The
local quasiparticle creation operator, which solves (67)–(70)
is given by the diagonal matrix

O =

⎛
⎜⎜⎝

b0
a0

0 0

0 b1
a1

0

0 0 b0
a0

⎞
⎟⎟⎠, (71)

which apparently allows double occupation for quasiparticles,
since the repulsive relation (18) does not hold for the above
choice of O. This also indicates that the quasiparticles in
the subspace WBA interact with each other. The Hamiltonian
solves the relations (67)-(70) if the local Hamiltonian is given
by

h = −(Sx ⊗ Sx + Sy ⊗ Sy) + 1
2 h00

00Sz ⊗ Sz

− (Sx ⊗ Sx + Sy ⊗ Sy + Sz ⊗ Sz )2

+ (Sx ⊗ Sx + Sy ⊗ Sy)2 + (
1
2 h00

00 + 2
)
(Sz ⊗ Sz )2

− ((Sz )2 ⊗ 1 + 1 ⊗ (Sz )2), (72)

which leaves the one parameter h00
00 free. This local Hamil-

tonian is not in the class of the known integrable models
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[52–54]. Indeed, (72) satisfies the so-called Reshetikhin con-
dition [55–57], known as the conjecture for Yang-Baxter
solvability, only at h00

00 = 0. Actually, the Hamiltonian (72)
becomes the integrable XXC model [58] at this point [59].

Then the periodic Hamiltonian consisting of (72) has WBA

spanned by the Bethe-like states (64) as its invariant subspace,
if a set of quasiparticle momenta satisfies the Bethe equa-
tions for the spin-1/2 XXX model,

eik j N = −(−1)n
n∏

�=1
��= j

ek j+k� + 1 − 2eik j

ek j+k� + 1 − 2eik�
, j = 1, . . . , n.

(73)

Of course, the energy spectrum of the Hamiltonian match the
energy spectrum of the spin-1/2 XXX model,

H |ψA,Bn ({k�})〉 = 4

⎛
⎝ n∑

j=1

cos k j − n

⎞
⎠|ψA,Bn ({k�})〉 (74)

in the subspace WBA, which means the equally spaced energy
spectrum structure is broken in WBA. This also implies that
there is no hidden spectrum generating algebra for this model,
and therefore, no revival phenomena will be obtained for this
model. The embedded spin-1/2 energy spectrum also indi-
cates that the energy spectrum becomes gapless continuum
ranging to infinity in the thermodynamic limit N → ∞, as in
the case of the spin-1/2 XXX model, although the dimension
of the subspace dim W < 2N becomes negligibly small, com-
pared to the dimension of its complement dim W c > 3N − 2N .
This is very different structure from the solvable models
equipped with the hidden spectrum generating algebra, as they
show the embedded equally spaced energy spectra, which stay
discrete in the thermodynamic limit.

We have numerically checked the energy spectrum of the
Hamiltonian (72) and indeed obtained the embedded energy
spectrum of the spin-1/2 XXX model in the full energy spec-
trum (Appendix B). Remarkably, the embedded XXX energy
spectrum is not violated by varying h00

00, the free parameter in
the local Hamiltonian. That is, this solvable subspace is robust
against the perturbation

Hpert = α

N∑
j=1

(
E0,0

j E0,0
j+1 + E2,2

j E2,2
j+1

)
, α ∈ R. (75)

It should be noted that the model (72) does not show the
same degeneracy as that of the spin-1/2 XXX model, since
the subspace W includes only the Bethe-like states, which cor-
respond to the highest weight states of sl2 for the XXX model.
Unfortunately, we are not succeeding to construct the opera-
tor for the model (72), which corresponds to S−

tot = ∑N
x=1 S−

x
operator of the spin-1/2 XXX model so far.

V. CONCLUSIONS AND DISCUSSION

We have proposed the construction of nonintegrable spin
chains with the exactly solvable subspace. The construction is
based on the Bethe-ansatz method, which produces the invari-
ant subspace not based on the spectrum generating algebra,
and therefore, the energy spectrum in the solvable subspace

is not equally spaced. As an example, we have constructed
the spin-1 chain with the spin-1/2 XXX -type solvable sub-
space, whose Hamiltonian shows the energy spectrum of the
spin-1/2 XXX model embedded in the full energy spec-
trum. The known partially solvable models equipped with the
spectrum generating algebra in the solvable subspace show
the discrete energy spectra consisting of infinitely many but
equally spaced eigenenergies [43], while the model we have
proposed in this paper shows the continuous energy spec-
trum even in the solvable subspace at the thermodynamic
limit, as it coincides with the energy spectrum of the spin-
1/2 XXX model, although the dimension of the subspace is
negligibly small in the thermodynamic limit. This is the first
difference, which makes our model distinguished from the
known nonintegrable Hamiltonians with solvable subspaces.
Subsequently, the broken hidden spectrum generating algebra
in the subspace results in violation of the revival phenom-
ena, which are often referred as the defining features of the
models with quantum many-body scars [17,18]. The second
difference is obtained in the nature of quasiparticles in the
solvable subspace. The known solvable subspace produced by
the spectrum generating algebra is spanned by noninteracting
quasiparticle excitation states, while the Bethe ansatz solvable
subspace we have constructed in this paper is spanned by
interacting quasiparticle excitation states. These uncommon
properties as the solvable subspace might be enough for say-
ing that our model, which weakly violates ergodicity in the
Hilbert space, is a candidate of the thermalizing system with
nonthermal energy eigenstates.

We have also constructed the partially solvable spin chain
with boundary magnetic fields. Partial solvability of this
model comes from the hidden spectrum generating algebra,
if the boundary Hamiltonians are diagonal. That is, the diag-
onal boundaries do not destroy the structure of the spectrum
generating algebra in the model. Subsequently, the solvable
subspace consists of identical and noninteracting quasipar-
ticles, in which the Hamiltonian shows the equally spaced
energy spectrum. The situation is a bit different for the off-
diagonal boundary case, since the solvable subspace of the
off-diagonal boundary model is the one-dimensional space.
However, the solvable state is in the middle of the spectrum,
which can still be a candidate of a nonthermal state.

Although we have provided the construction of partially
solvable models based on the algebraic structure of conven-
tional integrable systems, there are a number of interesting
remaining problems to be addressed in the future. The first
thing is to identify which solvable states among those con-
structed in this paper, are nonthermal. We already observed
several signs indicating that the exactly solvable energy eigen-
states constructed in this paper are the good candidates of
nonthermal states. For instance, the existence of infinitely
long-lived quasiparticles is one of the characteristic features
of nonthermal states [36]. Especially when quasiparticles are
interacting, their long life-time indicates that scattering pro-
cesses are strictly restricted in such a way that quasiparticles
scatter without decaying, which makes the states consisting
of long-lived quasiparticles distinct from the typical (thermal)
states. Besides, the exactly solvable energy eigenstates for
the model with diagonal boundaries (Sec. III B) have entan-
glement entropies, which obey the sub-volume-law, as was
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TABLE II. Energy spectrum of the model with the spectrum
generating algebra under the off-diagonal boundaries.

16.849, 16.7337, 16.6279, 16.4139, 15.9501, 15.3909, 15., 15.,
15., 14.3691, 14.3503, 14.2608, 14.2187, 14.0776, 13.5355,
12.9642, 12.9597, 12.7095, 12.349, 12.1843, 12.1705, 11.5636,
11.4777, 11.4735, 10.9842, 10.9122, 10.7428, 10.2352, 10.,
9.97534, 9.67583, 9.66554, 9.5889, 9.4236, 9.35679, 9.25346,
8.89357, 8.88861, 8.64928, 8.41963, 8.03704, 7.87116, 7.86773,
7.84488, 7.63763, 7.26451, 7.23044, 6.97136, 6.7341, 6.63635,
6.57342, 6.54067, 6.46447, 6.16849, 6.15895, 6.00375, 5.72945,
5.45364, 5.38219, 5.21379, 5.21108, 5.01047, 5., 4.91893,
4.31464, 4.24784, 3.98426, 3.90293, 3.71403, 2.54418, –2.44381,
2.3304, 2.24423, 2.23303, 1.37816, –1.21692, 1.14052, 0.407693,
–0.0617388, 0.0616097, 0.

discussed in Sec. 3.3 of [25]. This is another feature of non-
thermal states, which is also expected for the Bethe-like states,
as they have the matrix-product based expressions.

Another future work is to check nonintegrability of the
models presented in this paper. We have already checked that
the Reshetikhin condition holds for the proposed model only
at the special point h00

00 = 0, indicating that the model is not
Yang-Baxter solvable except for this point. Emergence of the
Poisson distribution in the level-spacing statistics is another
widely used conjecture for testing chaotic nature of quantum
systems [60,61], which is often associated with the noninte-
grability property. After all, no rigorous proofs are known for
testing nonintegrability of models, so far.

From the mathematical point of view, it is a mystery where
partial integrability of our model comes from. We have im-
posed the spin-1/2 XXX -like relations on the matrix-valued
vectors in the quasiparticle excitation states and accidentally
found the solution, but of course, this does not mean we
can always find the solution to the similar algebraic relations
associated with the other integrable models such as the XXZ
model, supersymmetric t-J model, Hubbard model, and so on.

It would be nice to explain the existence of these solutions
from the viewpoint of the Yang-Baxter equation, which en-
ables us to use the methods developed for integrable systems
to nonintegrable models with embedded integrability.

ACKNOWLEDGMENTS

The author thanks C. Paletta and B. Pozsgay for helpful
discussions about nonintegrability of the obtained models.
The author is also grateful to N. Tsuji for deriving the spin-
operator expressions of the local Hamiltonians presented in
this paper. C.M. is supported by JSPS KAKENHI Grants No.
JP18K13465 and No. JP23K03244.

APPENDIX A: ENERGY SPECTRUM OF THE N = 4
MODEL WITH THE SPECTRUM GENERATING ALGEBRA

UNDER THE OFF-DIAGONAL BOUNDARIES

Table II gives an example in which the solvable zero-
energy eigenstate (highlighted by the bold fonts) shows up
in the middle of the spectrum under the presence of the
off-diagonal boundaries. The boundary Hamiltonians (59)
are chosen as �02 = 3, r02 = −3. The bulk parameters are
chosen as h00

00 = 5 with h11
11/h00

00 = 2/3, which is the AKLT
point. Accordingly, the bulk Hamiltonian is set to satisfy
the frustration-free condition, with the choice a0 = −√

2a1 =
−a2 = √

2/3.

APPENDIX B: ENERGY SPECTRUM OF THE N = 5
MODEL WITH THE BETHE-ANSATZ SOLVABLE

SUBSPACE

Tables III–V give the energy spectra of the models with
the Bethe ansatz solvable subspace associated with the spin-
1/2 XXX model. The parameter h00

00 in each table is chosen
as h00

00 = 0, 0.3, or 1.2, respectively. The embedded spin-
1/2 XXX energy spectrum (highlighted by the bold fonts) is
obtained, which is not violated by varying h00

00.

TABLE III. Energy spectrum of the model with the Bethe-ansatz solvable subspace for h00
00 = 0.

−13.6569, −13.6569, −13.6569, −13.6569, −13.6569, −13.6569, −13.6569, −13.1186, −13.1186, −13.1186, −13.1186, −12.4721, −12.4721,
−11.617, −11.617, −11.617, −11.617, −9.5132, −9.5132, −9.5132, −9.5132, −9.5132, −9.5132, −9.5132, −9.5132, −9.5132, −9.5132,
−9.5132, −9.5132, −9.5132, −9.5132, −8., −8., −8., −8., −8., −8., −8., −8., −8., −7.95654, −7.95654, −7.95654, −7.95654, −7.80423, −7.80423,
−7.80423, −7.80423, −7.80423, −7.80423, −7.6405, −7.6405, −7.6405, −7.6405, −7.6405, −7.6405, −7.6405, −7.6405, −7.6405, −7.6405,
−7.6405, −7.6405, −7.6405, −7.6405, −7.63005, −7.63005, −7.63005, −7.63005, −7.23607, −7.23607, −7.23607, −7.23607, −7.23607,
−7.23607, −7.23607, −7.23607, −7.23607, −7.23607, −7.23607, −7.23607, −7.23607, −7.23607, −6.35114, −6.35114, −6.35114, −6.35114,
−6.35114, −6.35114, −5.23607, −5.23607, −5.23607, −5.23607, −5.23607, −5.23607, −5.23607, −5.23607, −5.23607, −5.23607, −5.23607,
−5.23607, −5.23607, −5.23607, −5.23607, −5.23607, −4., −4., −4., −4., −4., −4., −3.95184, −3.95184, −3.95184, −3.95184, −3.72287,
−3.72287, −3.72287, −3.72287, −3.72287, −3.72287, −3.72287, −3.72287, −3.72287, −3.72287, −3.72287, −3.72287, −3.72287, −3.72287,
−3.52786, −3.52786, −3.0595, −3.0595, −3.0595, −3.0595, −2.76393, −2.76393, −2.76393, −2.76393, −2.76393, −2.76393, −2.76393,
−2.76393, −2.76393, −2.76393, −2.76393, −2.76393, −2.76393, −2.76393, −2.53562, −2.53562, −2.53562, −2.53562, −2.34315, −2.34315,
−2.34315, −2.34315, −2.34315, −2.34315, −2.34315, −1.64886, −1.64886, −1.64886, −1.64886, −1.64886, −1.64886, −1.12343, −1.12343,
−1.12343, −1.12343, −1.12343, −1.12343, −1.12343, −1.12343, −1.12343, −1.12343, −1.12343, −1.12343, −1.12343, −1.12343, −0.763932,
−0.763932, −0.763932, −0.763932, −0.763932, −0.763932, −0.763932, −0.763932, −0.763932, −0.763932, −0.763932, −0.763932,
−0.763932, −0.763932, −0.763932, −0.763932, −0.195774, −0.195774, −0.195774, −0.195774, −0.195774, −0.195774, −0.13087, −0.13087,
−0.13087, −0.13087, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
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TABLE IV. Energy spectrum of the model with the Bethe-ansatz solvable subspace for h00
00 = 0.3.

−13.6569, −13.5728, −13.5728, −13.4401, −13.4401, −12.9728, −12.9728, −12.9049, −12.9049, −12.9049, −12.9049, −12.4721, −12.4721,
−11.4187, −11.4187, −11.4187, −11.4187, −9.5132, −9.5132, −9.48707, −9.48707, −9.48707, −9.48707, −9.31358, −9.31358, −9.31358,
−9.31358, −8.88707, −8.88707, −8.88707, −8.88707, −8., −8., −8., −8., −7.6405, −7.6405, −7.63463, −7.63463, −7.63463, −7.63463,
−7.53692, −7.53692, −7.53692, −7.53692, −7.38911, −7.38911, −7.38911, −7.38911, −7.24178, −7.24178, −7.24178, −7.24178, −7.23607,
−7.23607, −7.23607, −7.23607, −7.12237, −7.12237, −7.11123, −7.08537, −7.08537, −6.93046, −6.93046, −6.93046, −6.93046, −6.91604,
−6.91604, −6.88195, −6.88195, −6.78911, −6.78911, −6.78911, −6.78911, −6.39211, −6.39211, −6.39211, −6.39211, −6.34994, −6.34994,
−6.2, −6.2, −5.4702, −5.4702, −5.41128, −5.41128, −5.41128, −5.41128, −5.23607, −5.23607, −5.23607, −5.23607, −5.23607, −5.23607,
−4.37195, −4.37195, −4.32783, −4.32783, −4.32783, −4.32783, −3.72287, −3.72287, −3.58347, −3.58347, −3.58347, −3.58347, −3.52786,
−3.52786, −3.43607, −3.43607, −3.43607, −3.43607, −3.4, −3.38211, −3.38211, −3.38211, −3.38211, −3.149, −3.149, −3.149, −3.149,
−3.12237, −3.12237, −3.07763, −3.07763, 3., 3., −2.8, −2.76393, −2.76393, −2.76393, −2.76393, −2.64315, −2.64315, −2.64315, −2.64315,
−2.62474, −2.62474, −2.549, −2.549, −2.549, −2.549, −2.34315, −2.31463, −2.31463, −2.15683, −2.15683, −2.15683, −2.15683, −1.87217,
−1.87217, −1.87217, −1.87217, −1.85326, −1.85326, −1.82805, −1.82805, −1.82718, −1.82718, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8,
1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, −1.22718, −1.22718, −1.12343, −1.12343, 1.03607, 1.03607, 1.03607, 1.03607,
0.922375, 0.922375, 0.911234, −0.788721, −0.788721, −0.788721, −0.788721, −0.776122, −0.776122, −0.776122, −0.776122, −0.77482,
−0.77482, −0.77482, −0.77482, −0.763932, −0.763932, −0.763932, −0.763932, −0.763932, −0.763932, 0.730462, 0.730462, 0.730462,
0.730462, −0.729797, −0.729797, 0.716037, 0.716037, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.192214, 0.192214, 0.192214,
0.192214, 0.19211, 0.19211, 0.19211, 0.19211, −0.17482, −0.17482, −0.17482, −0.17482, 0.149944, 0.149944, 0., 0., 0.

TABLE V. Energy spectrum of the model with the Bethe-ansatz solvable subspace for h00
00 = 1.2.

−13.6569, −13.3605, −13.3605, −12.9235, −12.9235, −12.4721, −12.4721, −12.4105, −12.4105, −12.4105, −12.4105, 12., 12., −11.0371,
−11.0371, −11.0371, −11.0371, −10.9605, −10.9605, −9.5132, −9.5132, −9.43117, −9.43117, −9.43117, −9.43117, −8.87214, −8.87214,
−8.87214, −8.87214, −8., −8., −8., −8., −7.6405, −7.6405, −7.32533, −7.32533, −7.32533, −7.32533, −7.23607, −7.23607, −7.23607,
−7.23607, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, −7.03117, −7.03117,
−7.03117, −7.03117, −6.78401, −6.78401, −6.78401, −6.78401, −6.77321, −6.77321, 6.43607, 6.43607, 6.43607, 6.43607, −6.4061,
−6.4061, −6.4061, −6.4061, −5.96757, −5.96757, −5.96757, −5.96757, −5.74062, −5.74062, −5.23607, −5.23607, −5.23607, −5.23607,
−5.23607, −5.23607, −4.73238, −4.73238, −4.58304, −4.58304, −4.58304, −4.58304, −4.57612, −4.389, −4.389, −4.38401, −4.38401,
−4.38401, −4.38401, −4.25217, −4.25217, −4.25217, −4.25217, 3.93238, 3.93238, −3.8514, −3.8514, 3.78304, 3.78304, 3.78304, 3.78304,
3.77612, −3.72287, −3.72287, 3.589, 3.589, −3.52786, −3.52786, 3.45217, 3.45217, 3.45217, 3.45217, 3.0514, 3.0514, −3.03967,
−3.03967, −2.85583, −2.85583, −2.85583, −2.85583, 2.82008, 2.82008, 2.82008, 2.82008, −2.79016, −2.79016, −2.79016, −2.79016,
−2.76393, −2.76393, −2.76393, −2.76393, −2.43671, −2.43671, −2.41017, −2.41017, −2.41017, −2.41017, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4,
2.4, 2.4, 2.4, −2.34315, 2.23967, 2.23967, 2.16049, 2.16049, −2.12275, −2.12275, 1.96393, 1.96393, 1.96393, 1.96393, 1.61017,
1.61017, 1.61017, 1.61017, −1.6, −1.57566, −1.57566, −1.57566, −1.57566, −1.4049, −1.4049, −1.4049, −1.4049, 1.39331, 1.39331,
1.39331, 1.39331, 1.32275, 1.32275, −1.12343, −1.12343, −1.08782, −1.08782, −1.08782, −1.08782, 0.9951, 0.9951, 0.9951, 0.9951,
−0.828061, −0.828061, −0.828061, −0.828061, −0.826786, −0.826786, −0.8, 0.8, −0.8, 0.775659, 0.775659, 0.775659, 0.775659,
−0.763932, −0.763932, −0.763932, −0.763932, −0.763932, −0.763932, −0.732381, −0.732381, 0.587319, 0.587319, 0.587319,
0.587319, 0.420082, 0.420082, 0.420082, 0.420082, −0.239512, −0.239512, −0.0991273, −0.0991273, −0.0676192, −0.0676192,
0., 0., 0.
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