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Reciprocal asymptotically decoupled Hamiltonian for cavity quantum electrodynamics
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We develop a theoretical framework for describing light-matter interactions in cavity quantum electrodynam-
ics (QED), optimized for efficient convergence at arbitrarily strong coupling strengths and is naturally applicable
to low-dimensional materials. This Hamiltonian is obtained by applying a unitary gauge transformation on the
p · A Hamiltonian, with a shift on both the matter coordinate and the photonic coordinate, then performing a
phase rotation and transforming in the reciprocal space of the matter. By formulating the light-matter interaction
in terms of an upper-bounded effective coupling parameter, this method allows one to easily converge eigenspec-
tra calculations for any coupling strength, even far into the ultra-strong and deep-strong coupling regimes. We
refer to this approach as the reciprocal asymptotically decoupled (RAD) Hamiltonian. The RAD Hamiltonian
allows for a fast convergence of the polariton eigenspectrum with a much smaller matter and photon basis,
compared to the commonly used p · A or dipole gauge Hamiltonians. The RAD Hamiltonian also allows one to
go beyond the commonly used long-wavelength approximation and accurately describes the spatial variations of
the field inside the cavity, which ensures the conservation of momentum between light and matter.
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I. INTRODUCTION

Quantum electrodynamics has been extremely successful
in describing the fundamental quantum interaction between
light and matter [1]. Different applications of this theory, from
quantum optics [2–5] to polariton chemistry [6–10], have been
at the forefront of physics. Many approximations, including
the two-level approximation, the rotating-wave approxima-
tion, and the neglecting of second-order terms such as the
dipole self-energy (in the multipolar gauge) or the diamag-
netic term (in the Coulomb gauge) have historically been
sufficient to replicate experimental results. However, in recent
years, experimental advances in optical cavity design have
produced light-matter coupling strengths, for which these ap-
proximations are no longer valid [10–13]. This, in conjunction
with the recent increase in computational power, has led to a
revival of exact, fundamental forms of cavity QED [11,14–
16].

The most fundamental cavity quantum electrodynamics
(QED) Hamiltonian [1] is the minimal coupling Hamiltonian
(also known as the “p · A” Hamiltonian). However, as widely
discussed in the literature [12,14–17], the p · A Hamiltonian
converges very slowly in terms of matter states [12,17]. One
can resolve this issue caused by the truncation of this Hamil-
tonian’s Hilbert space by carefully considering the proper
way to apply the appropriate projection operators during the
derivation of various Hamiltonians [14,15,18]. Many oth-
ers instead use the Pauli-Fierz Hamiltonian [6,17,19–34],
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which is related to the minimal coupling Hamiltonian via
the Power-Zienau-Woolley unitary transformation (see Ap-
pendix E), transforming it into the dipole gauge (multipolar
gauge). The PF Hamiltonian, while requiring fewer matter
states (compared to the “p · A” Hamiltonian) has been shown
to require significantly more Fock states to converge when
the light-matter coupling strength is large [17,35]. These
above-mentioned convergence difficulties for both common
gauges become especially salient in the ultra-strong coupling
regime [36,37] and the deep-strong coupling regime [13],
where the Rabi splitting becomes greater than the cavity
transition frequency [13,38]. In this regime, even simple mod-
els become extraordinarily difficult to calculate in either the
dipole or Coulomb gauge [38]. Although these regimes may
seem unreachable experimentally, experimentalists in recent
years have demonstrated such couplings on multiple occa-
sions [39–41]. These experimental innovations require a new
theoretical framework to accurately model them.

In a recent paper [38], Ashida et al. introduced a repre-
sentation to model cavity QED systems for arbitrary coupling
strengths that use an effective coupling parameter, which
has a global maximum at a finite value of the original cou-
pling strength and then decays; hence, it is referred to as
the asymptotically decoupled (AD) Hamiltonian. However,
the AD Hamiltonian mediates light-matter coupling by shift-
ing the matter coordinates in their external potential by a
photonic operator. Unless the potential is of a specific form
(such as a simple cosine function), even model-system cal-
culations require applying a Taylor series expansion of the
potential. Taking inspiration from the AD Hamiltonian [38],
we introduce the reciprocal asymptotically decoupled (RAD)
Hamiltonian, which possesses the benefits of the AD Hamilto-
nian, but all components of it are separable between operators
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in the photonic and electronic degrees of freedom (DOFs),
regardless of the potential. Expressed in Fourier space, the
RAD Hamiltonian can be directly applied to periodic systems.

In formulating this representation of QED, we arrive at
three key results that make this formalism widely applicable
to many systems. We derive a general expression for the
RAD Hamiltonian for many modes and particles presented in
Eq. (25), which is the first key result. In the special case of
a single particle coupled to a single-cavity mode, the specific
expression of the RAD Hamiltonian is expressed in Eq. (28).
Then, we focus on the special case of periodic systems, where
we can parametrize the Hamiltonian in terms of the lattice
momentum k, yielding ĤRAD(k) as the second key result of
this paper in Eq. (38). Finally, we generalize the formalism,
going beyond the commonly used long-wavelength approxi-
mation (LWA) to arrive at our final key result in Eq. (61). We
show that many forms of the LWA currently in use violate
the conservation of momentum between the light and matter
DOFs, with our formulation explicitly preserving it. With
these key results, we hope that this RAD Hamiltonian will
shed light on investigating cavity QED systems, especially for
periodic systems like 2D materials and systems that go beyond
the ultra-strong coupling regime.

II. ASYMPTOTICALLY DECOUPLED HAMILTONIAN

We present a brief derivation of the asymptotically de-
coupled (AD) Hamiltonian [38] to provide the context for
the rest of this article. We begin our derivation of the AD
Hamiltonian with the most fundamental QED Hamiltonian
[1], the minimal coupling Hamiltonian (also known as the
“p · A” Hamiltonian) in the Coulomb gauge (∇ · A = 0) as
follows:

Ĥp·A =
∑

j

1

2mj
(p̂ j − z jÂ)2 + V̂ (x̂) +

∑
β

h̄ωβ

(
â†

β âβ + 1

2

)
,

(1)
where β iterates over all photonic modes (with wavevec-
tors kβ , and polarizations λ) and j is the index of the jth
charged particle (including all electrons and nuclei), with
the corresponding mass mj , charge z j , and p̂ j = −ih̄∇ j is
the canonical momentum operator. The quantized vector po-
tential Â =∑β Aβ (âβ + â†

β ) =∑β Aβ (âβ + â†
β )êβ is purely

transverse, defined by the Coulomb gauge under the long-
wavelength approximation, where â†

β and âβ are the raising
and lowering operators of the photonic DOF that satisfy
[âβ, â†

β ′ ] = δβ,β ′ and êβ is the polarization direction of the βth

quantized electric field. Furthermore, Ĥph =∑β h̄ωβ (â†
β âβ +

1
2 ) is the pure photonic Hamiltonian.

Following the procedure in Ref. [38], we derive the asymp-
totically decoupled (AD) Hamiltonian generalized for many
charged particles and many photonic modes. We first rewrite
Eq. (1) in its expanded form as

Ĥp·A = ĤM ⊗ 1̂ph + 1̂e ⊗
∑

β

h̄ωβ

(
â†

β âβ + 1

2

)

−
∑
j,β

z j p̂ j · Aβ

mj
(â†

β + âβ ) + 1̂e ⊗
∑

j

z2
j |Â|2
2mj

, (2)

where ĤM is the pure matter Hamiltonian, and 1̂e and 1̂ph

are the identity operators in the electronic and photonic sub-
spaces, respectively. For simplicity, we will omit writing these
two identity operators unless explicitly mentioned.

We introduce a new mode-dependent coupling parameter,

γβ = |Aβ |
√√√√(ωβ

h̄

)∑
j

z2
j

m j
, (3)

where we can reexpress the Ĥp·A as

Ĥp·A = ĤM +
∑

β

h̄ωβ

(
â†

β âβ + 1

2

)
−
∑
j,β

z j p̂ j · Aβ

mj
(â†

β + âβ )

+
∑
β,β ′

h̄γβγβ ′

2
√

ωβωβ ′
(â†

β + âβ )(â†
β ′ + âβ ′ )(êβ · êβ ′ ), (4)

where we have explicitly expanded |Â|2. Note that the cou-
pling strength γβ has a unit of frequency, and γβ/ωβ can be
used as the unitless coupling parameter to characterize the
light-matter coupling strength. In the second line of Eq. (4),
there are now direct coupling terms between different modes.
Equivalently, this can be written in terms of the mode’s pho-
tonic momentum p̂β , and coordinate q̂β as follows:

Ĥp·A = ĤM −
∑
j,β

z j p̂ j · Aβ

mj

√
2ωβ

h̄
q̂β

+
∑
β,β ′

1

2

[
p̂2

βδβ,β ′ + (ω2
βδβ,β ′+2γβγβ ′ (êβ · êβ ′ )

)
q̂β q̂β ′

]
,

(5)

where p̂β and q̂β are defined as

q̂β =
√

h̄

2ωβ

(â†
β + âβ ), (6a)

p̂β = i

√
h̄ωβ

2
(â†

β − âβ ). (6b)

We can then perform a normal mode analysis (see
Appendix A) on the second line of Eq. (5) to generate a set of
noninteracting modes {α}, with transformed frequencies {�α}.
As an aside, note that in the single-mode limit, this reduces
to a Bogoliubov transform (see Appendix B). The Coulomb
gauge Hamiltonian in Eq. (5) then becomes

Ĥp·A = ĤM −
∑
j,α

z j p̂ j · Aα

mj

√
2�α

h̄
q̂α +

∑
α

1

2

(
p̂2

α + �2
α q̂2

α

)

= ĤM +
∑

α

1

2

(
p̂2

α + �2
α

(
q̂α −

∑
j

p̂ j · ξ j,α

)2

− �2
α

(∑
j

p̂ j · ξ j,α

)2)
, (7)

where further details on the normal mode transformation are
contained in Appendix A, and the coupling strength ξ j,α is
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expressed as

ξ j,α =
√

2

h̄

z j

m j�
3/2
α

Aα. (8)

Note that the values of both �α and Aα must be found by the
normal mode transformation and can be represented as linear
combinations of {ωβ} and {Aβ}, respectively.

Additionally, the p̂2 terms in Eq. (7) can be grouped and
thought of as an effective kinetic energy for each jth particle.
As such, we combine this term with the matter kinetic energy
operator in ĤM and refer to it as T̂AD,

T̂AD =
∑

j

[
p̂2

j

2mj
−
∑
i,α

1

h̄�α

(p̂ j · Aα )(p̂i · Aα )
ziz j

mimj

]

=
∑

j

[ p̂2
j

2mj
−
∑
i,α

�2
α

2
(ξ j,α · p̂ j )(ξi,α · p̂i )

]
. (9)

This can be thought of as a light-dressed matter kinetic energy.
Recall that a coordinate shift operator, Ûq = e− i

h̄ q0 p̂ dis-
places q̂ by the amount q0, such that Û †

q Ô(q̂)Ûq = Ô(q̂ + q0).
Based on Ref. [38], we introduce a unitary transformation
operator, which is a shift operator in both photonic and matter
“coordinates” as follows:

ÛAD = exp

[
− i

h̄

∑
j,α

ξ j,α · p̂ j p̂α

]
. (10)

The above “double-shift” operator removes the photonic coor-
dinate shift in Eq. (7) but simultaneously creates a new shift in
all matter coordinates {x̂ j} [see Eq. (1)]. This is analogous to
the Lee-Low-Pines transformation in condensed matter, which
transforms electron-phonon couplings [42].

The asymptotically decoupled (AD) framework of the
QED Hamiltonian can be obtained by applying this “double-
shift” operator to the p · A Hamiltonian [Eq. (7)] through
ĤAD = Û †

ADĤp·AÛAD, resulting in

ĤAD = T̂AD + V̂

({
x̂ j +

∑
α

ξ j,α p̂α

})

+
∑

α

h̄�α

(
b̂†

α b̂α + 1

2

)
, (11)

where b̂α and b̂†
α are the photonic annihilation and creation

operators for the αth normal mode and are expressed as

b̂α =
√

�α

2h̄
q̂α + i

√
1

2h̄�α

p̂α, (12a)

b̂†
α =

√
�α

2h̄
q̂α − i

√
1

2h̄�α

p̂α. (12b)

Note that Eq. (11), under the single-particle limit, is the key re-
sult of Ref. [38], where �α becomes a renormalized frequency
(of the Bogoliubov transform) in the single-mode limit [see
Eq. (B9) in Appendix B].

For clarity, below we will consider the single-particle
case in a one-dimensional potential such that ê · p̂ = p̂. This

consideration simplifies Eq. (11) to

ĤAD = p̂2

2meff
+ V̂

(
x̂ +

∑
α

ξα p̂α

)
+
∑

α

h̄�α

(
b̂†

α b̂α + 1

2

)
,

(13)
where in the single-particle, one-dimensional case, T̂AD can be
simplified by defining the effective mass as

1

meff
= 1

m
+
∑

α

�2
αξ 2

α . (14)

This Hamiltonian has the advantage of an effective coupling
parameter ξα , which has an upper bound [38] at a finite value
of the original coupling strength, such that for arbitrarily
high light-matter coupling, the effective coupling parameter
tends to zero and hence decouples the light and matter DOFs,
which provides rapid convergence in the number of basis
states for each subsystem when computing eigenenergies [38].
However, Eq. (13) is also inconvenient for numerical calcula-
tions due to the requirement of a shift of the matter position
operator x̂ by a photonic operator ξα p̂α inside the potential
V̂ , which has pure imaginary matrix elements in the Fock
state representation [recall p̂α in Eq. (6b) is the photonic
momentum operator]. Thus, it is, in general, inconvenient to
evaluate V̂ (x̂ ⊗ 1̂ph + 1̂e ⊗∑α ξα p̂α ), unless one uses spe-
cial properties of V̂ for a certain type of potential {such as
trigonometric identities when V̂ (x̂) is a trigonometric function
[38]}. Furthermore, for any potential that is not translationally
invariant, one might need to expand it as V̂ (x̂ +∑α ξα p̂α ) ≈
V̂ (x̂) +∑lmax

l=1 V̂ (l )(
∑

α ξα p̂α )l , where V̂ (l )(x̂) = ∂ lV̂ /∂ x̂l , and
the results could be sensitive to the truncation of the series
lmax [38]. The scope and applicability of this form of the
QED Hamiltonian [Eq. (13) or Eq. (11)] will be significantly
expanded if this problem can be circumvented, for example,
by further transforming the Hamiltonian into reciprocal space.
This will be the focus of the current paper, as we discuss in the
next section.

III. RECIPROCAL ASYMPTOTICALLY DECOUPLED
HAMILTONIAN

To address the challenges in ĤAD as mentioned above,
we present the reciprocal asymptotically decoupled (RAD)
Hamiltonian. To derive this Hamiltonian, we first introduce
a unitary operator that performs a π/2 rotation in phase space
for all photonic modes such that Û †

π/2 f ( p̂α )Ûπ/2 = f (q̂α ),
where p̂α and q̂α are defined in Eqs. (6a) and (6b). Such an
operator has the following form:

Ûπ/2 = exp

(
− i

π

2

∑
α

b̂†
α b̂α

)
. (15)

Applying the above phase rotation operator to the AD
Hamiltonian in Eq. (11) yields

Û †
π/2ĤADÛπ/2 = T̂AD + V̂

({
x̂ j +

∑
α

ξ j,α q̂α

})

+
∑

α

h̄�α

(
b̂†

α b̂α + 1

2

)
. (16)
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We find that, instead of having the position operator x̂ j shifted
by a pure imaginary operator inside the potential, x̂ j is now
shifted by

∑
α ξ j,α q̂α , an operator with purely real matrix ele-

ments in the Fock basis. This seems to be a trivial transform;
however, by enforcing a phase rotation [swapping p̂α with
q̂α in Eq. (16)], this Hamiltonian is now purely real. Note
that this is reminiscent to the famous Kramers-Henneberger
representation [43,44], which is the semiclassical limit of
Û †

π/2ĤADÛπ/2 (e.g., see Ref. [1], Sec. IV.B.4, Eq. B.54). This
Hamiltonian in Eq. (16) drastically simplifies our task later.

To represent our operators in reciprocal space, we con-
sider the eigenstates of the momentum operator |K j〉, where
p̂ j |K j〉 = h̄K j |K j〉. Similarly, the matter identity can then be
represented as

1M =
∫

{dKi}
⊗

i

|Ki〉〈Ki|, (17)

where we are integrating over Ki for all i particles. By apply-
ing this form of unity to a matter operator, we can represent
that operator in reciprocal space. For example, p̂ j can be
written as

p̂ j =
∫

{dKi}
⊗
i< j

|Ki〉〈Ki| ⊗ h̄K j |K j〉〈K j | ⊗
⊗
i> j

|Ki〉〈Ki|

≡
∫

{dKi} h̄K j

⊗
i

|Ki〉〈Ki|, (18)

where j ∈ {1, 2, ...i, ...N} for N particles. Since T̂AD is only
a function of {p̂ j}, it is purely diagonal in this reciprocal
representation. By inserting identity into Eq. (9), we get

T̂RAD =
∫

{dKi}

×
∑

j

[ |h̄K j |2
2mj

−
∑
l,α

h̄2�2
α

2
(ξ j,α · K j )(ξl,α · Kl )

]
⊗

i

|Ki〉〈Ki|, (19)

where j, l ∈ {1, 2, ...i, ...N}. In this manner, we diagonalize
this dressed kinetic energy term.

Similarly, the interaction term V̂ ({x̂ j +∑α ξ j,α q̂α}) can be
expressed in the reciprocal space as follows:

V̂RAD =
∫

{dKi}{dK′′
i }{dxi},V

({
xi +

∑
α

ξi,α q̂α

})
⊗

i

|Ki〉〈Ki|xi〉〈xi|K′′
i 〉〈K′′

i |. (20)

By using the identity, 〈Ki|xi〉 = exp(−iKi · xi )/
√

2π , we can
then simplify our expression of V̂RAD to

V̂RAD =
∫

{dKi}{dK′′
i }{dxi},V

({
xi +

∑
α

ξi,α q̂α

})

×
∏

j

[
1

2π
ei(K′′

j −K j )·x j

]⊗
i

|Ki〉〈K′′
i |, (21)

where V ({xi +∑α ξi,α q̂α}) = 〈xi|V̂ ({x̂ j +∑α ξ j,α q̂α})|xi〉.
The term inside the square brackets of Eq. (21) is the Fourier
kernel for this many-dimensional space, with the Fourier
transform defined as

F {g(x)}(K ) = 1

2π

∫
dx g(x)eixK . (22)

This integral over {xi} in Eq. (21) is now just a Fourier trans-
form of V ({xi +∑α ξi,α q̂α}) for all matter DOFs.

Since the shift in the potential in Eq. (21) is now real [after
applying the unitary rotation in Eq. (15)], we can apply the
Fourier shift theorem

F {g(x − xo)}(K ) = 1

2π

∫
dx g(x − xo)eixK

= eixoKF{g(x)}(K ), (23)

where xo is purely real and K is the Fourier conjugate of x. By
applying the results of Eq. (23) to Eq. (21), we get

V̂RAD =
∫

{dKi}{dK′
i}, exp

(
−i
∑

j

K′
j ·
∑

α

ξ j,α q̂α

)
V ({K′

i})
⊗

i

|Ki〉〈Ki + K′
i|, (24)

where V (K ) = F{V (x)}(K ), and we introduced K′
i = K′′

i − Ki. The origin of the name of this new Hamiltonian, reciprocal
asymptotically decoupled (RAD), is now apparent, since in the Fourier domain the light-matter interaction is mediated by a
simple phase term e−i

∑
j,α K′

j ·ξ j,α q̂α in Eq. (21) (as well as inside the kinetic energy term T̂RAD). Using Eqs. (19) and (21), the total
QED Hamiltonian can then be expressed for N particles and M modes as follows:

Ĥ [N][M]
RAD =

M∑
α

h̄�α

(
b̂†

α b̂α + 1

2

)
+ T̂RAD + V̂RAD,

T̂RAD =
∫

{dKi}
N∑
j

[ |h̄K j |2
2mj

−
N,M∑
l,α

h̄2�2
α

2
(ξ j,α · K j )(ξl,α · Kl )

] N⊗
i

|Ki〉〈Ki|,

V̂RAD =
∫

{dKi}{dK′
i}, exp

(
− i

N∑
j

K′
j ·

M∑
α

ξ j,α q̂α

)

× V ({K′
i})

N⊗
i

|Ki〉〈Ki + K′
i|. (25)
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FIG. 1. The potential V (x) of the (a) steep and (b) shallow
double-well models, along with the three lowest-energy wavefunc-
tions for the electron confined in the potential. The dipole matrix of
the (c) steep and (d) shallow double well potential are shown, which
are responsible for mediating the interaction in the PF Hamiltonian
[Eq. (30)].

The above QED Hamiltonian expression is the first key result
of this paper. The QED Hamiltonian ĤRAD in Eq. (25) is
general for any potential V (x) [or its Fourier transform V (K )],
including nonperiodic systems such as the potentials shown
in Fig. 1. Compared to previous QED Hamiltonians {such as
Ĥp·A in Eq. (1), ĤAD in Eq. (11), or the commonly used Pauli-
Fierz Hamiltonian [10]}, this form has several advantages: (I)
For periodic systems that are highly nonlocalized in space,
their V (K ) will be highly localized. (II) As shown in Fig. 2(a),
the effective coupling parameter ξ j,α has a global maximum at
a finite value of the actual coupling parameter A0 [see Eq. (2)].
This means that as long as the results converge for the highest
value of ξg, they will converge for any arbitrary coupling
strength (above or below) when using the RAD form of the
QED Hamiltonian. (III) Compared to the original AD form of
the QED Hamiltonian ĤRAD in Eq. (25) is guaranteed to work
for any potential since the matrix elements only depend on the
Fourier transform of the potential (i.e., no shifts by imaginary
operators).

It is insightful to check Eq. (25) for different limits. If
we consider a single particle (N −→ 1) in a potential in-
teracting with many modes, the coupling parameter γα →
z|Aα|√ωα/mh̄, and Eq. (25) then simplifies to

Ĥ [1][M]
RAD =

M∑
α

h̄�α

(
b̂†

α b̂α + 1

2

)
+
∫

dK
|h̄K|2
2meff

|K〉〈K|

+
∫

dK dK′, e−iK′ ·∑M
α ξα q̂αV (K′)|K〉〈K + K′|,

(26)

where all {i, j, l} subscripts are removed, since there is only
one particle, and T̂RAD is rewritten using the effective mass
parameter defined by

1

meff
= 1

m
+
∑

α

�2
αξα cos φα, (27)

where cos φα = Aα · K/|Aα||K|.
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FIG. 2. (a) The effective coupling parameter ξg [Eq. (8)] as a
function of the coupling strength γc/ωc, which exhibits a bounded
nature in RAD. Eigenspectrum of the (b) steep double-well potential
[see Fig. 1(a)] and (c) shallow double-well potential [see Fig. 1(b)],
obtained from the RAD Hamiltonian (solid lines) and the PF Hamil-
tonian (open circles). In both panels, the RAD Hamiltonian was
diagonalized with 100 matter K-grid points and 20 Fock states while
the PF Hamiltonian was diagonalized with 50 matter adiabatic states
and 200 Fock states. The matter adiabatic states were obtained by
diagonalizing ĤM with 2048 matter grid points in real space to ensure
that the adiabatic energies and dipoles are properly converged, before
using them for constructing the PF Hamiltonian and diagonalization.

In the limit of a single mode and molecule ({N, M} −→ 1),
this Hamiltonian further simplifies to

Ĥ [1][1]
RAD = h̄�

(
b̂†b̂ + 1

2

)
+
∫

dK
|h̄K|2
2meff

|K〉〈K|

+
∫

dK dK′, e−iK′ ·ξcq̂cV (K′)|K〉〈K + K′|, (28)

where the α subscripts are replaced by a c subscript indicating
the single-cavity mode. q̂c is the photonic coordinate for the
single mode, and meff is the effective mass of the dressed
particle defined in Eq. (27) in the limit of a single mode.

Due to the numerical cost and computational complexity
involved for many-particle systems, all numerical results are
presented for only the single-particle limit, as represented in
Eqs. (26) and (28).

In order to expand on the RAD Hamiltonian’s utility, we
test its convergence on the two double-well models used in
Ref. [38], each in the single-particle and single-mode limit.
Figures 1(a) and 1(b) show the potential energies of a steep
potential (panel a) and a shallow potential (panel b). The two
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models are defined as

V (x) = −αx2 + βx4, α, β > 0. (29)

The shallow potential (α = 3, β = 3.85) is a good starting
model for RAD, as the potential can be regarded as slowly
varying; however, the steep potential (α = 50, β = 95) is a
harder test, since the potential will increase very quickly,
effectively requiring more basis states to converge the result.

We will make a direct comparison to the well-known
Pauli-Fierz (PF) Hamiltonian (see Appendix E for the full
derivation), which is a popular form of the QED Hamilto-
nian for computing polaritonic properties [6,15,19,20]. The
PF Hamiltonian is expressed as follows:

ĤPF = ĤM + h̄ωc

(
d̂†d̂ + 1

2

)
+ ωcμ̂ · A0(d̂† + d̂ )

+ ωc

h̄
(A0 · μ̂)2, (30)

where μ̂ is the dipole operator of the matter and d̂ is the
photonic annihilation operator for the PF Hamiltonian in the
dipole gauge, notably different from that of the annihilation
operator of the Coulomb-gauge Hamiltonian due to a unitary
transformation. Also note that A0 = γc

√
mh̄/z2ωcê is the vec-

tor potential vector for the single mode.
Since this model is in the single-particle and single-

mode limit, the expression for γβ from Eq. (3) simplifies
to γc = z|A0|

√
ωc/h̄m, and ξ j,α from Eq. (8) simplifies to

ξc = zA0

√
2/h̄m�3

c , since for a single mode A0 ≡ Aα = Aβ .
As such, a closed form of ξc in terms of γc can be written as

ξc = γc

√
2

mωc
(
ω2

c + 2γ 2
c

)3/2 ê, (31)

where we have taken advantage of the identity that for a single
mode �c = √ω2

c + 2γ 2
c from Bogoliubov transformation (see

Appendix B). This dependence of ξc on γc/ωc is seen in
Fig. 2(a). Note that the analytic expression of ξc is indepen-
dent of the nature of the matter potential V̂ (x̂), so it is also true
that for the periodic potential coupled to the cavity considered
in this paper, γc/ωc still has an upper bound.

We solve the PF Hamiltonian by representing it in the
eigenbases of ĤM and h̄ωc(d̂†d̂ + 1

2 ) [see Eq. (30)] in a gauge-
invariant truncated Hilbert space [12,15,18] followed by a
single-step numerical diagonalization. The matter eigenstates
|ψα〉 are obtained by diagonalizing the matter Hamiltonian
directly using the discrete variable representation (DVR) [45]
(see Appendix F). The matter Hamiltonian ĤM is diagonal-
ized with 2048 matter grid points to provide the converged
matter states and dipoles, which are then used as the input
to diagonalize ĤPF [Eq. (30)]. For the RAD Hamiltonian
[Eq. (28)], V (x) is represented in a much smaller 100 matter
grid point basis, and we then perform an asymmetrically nor-
malized FFT [as in Eq. (22)] to represent it in the eigenbasis
of p̂. By expressing the photonic DOF in the eigenbasis of
h̄�(b̂†b̂ + 1

2 ) and the matter DOF in the eigenbasis of p̂, we
can directly diagonalize the total Hamiltonian. Due to this,
there is no need to precompute the matter eigenstates |ψα〉 or
the dipole matrix elements for RAD.

Figures 2(b) and 2(c) showcase the convergence of the
RAD and PF Hamiltonians, with the eigenspectrum of the
two double-well potentials as functions of the normalized
coupling strength γc/ωc. Both panels are plotted on a log-log
scale, where the PF results are shown in open circles, and the
RAD results are shown in thick-solid lines. The convergence
of the two Hamiltonians is the focus of the discussion, since
they are formally equivalent and related to each other through
a unitary transformation. Since the RAD Hamiltonian is ex-
pected to converge faster than the PF Hamiltonian at large
coupling strengths, the PF will require much more matter and
Fock states to converge the results. Additionally, the steep
potential [Fig. 1(b)] was expected to be more challenging for
the RAD Hamiltonian, since we solve this Hamiltonian in
reciprocal space. Nonetheless, the convergence for the RAD
Hamiltonian was achieved using 100 matter grid points and
20 RAD Fock states [eigenstates of h̄�(b̂†b̂ + 1

2 ) in Eq. (28)],
while the PF Hamiltonian required 50 matter states and 200
PF Fock states [eigenstates of h̄ωc(d̂†d̂ + 1

2 ) in Eq. (30)]. To
be clear, the meaning of a RAD Fock state and a PF Fock state
is not the same due to the different gauges used for the pho-
tonic operators b̂ and d̂ , respectively, and can be converted to
one another (and to the p · A) via a unitary gauge transforma-
tion. However, our discussion is primarily concerned with the
convergence with the number of Fock states regardless of the
gauge (or representation), so we will not explicitly distinguish
between RAD and PF Fock states and simply refer to both
as Fock states. We note that the results from diagonalizing
the PF Hamiltonian do not yet match those of the RAD, but
increasing the basis further is not computationally feasible
for realistic calculations. However, it is already clear that the
factor of 5 reduction in the size of the converged basis (or
1/25 the number of matrix elements) is enough proof of the
feasibility of the RAD Hamiltonian.

Figure 2(c) shows results for the shallow potential
[Fig. 1(b)] using the same convergence parameters as in
Fig. 2(b). For RAD, however, only five Fock states were
required to converge the results instead of 20, implying that
the shallow (slowly varying) potential is much easier for the
RAD Hamiltonian to converge. However, the PF Hamiltonian
is not converged with 50 matter states and 200 Fock states,
which indicates that the PF Hamiltonian struggles to converge
at these large coupling strengths for both models in Figs. 1(b)
and 1(c). Appendix D shows additional numerical results
that provide insight into the contribution of higher-energy
Fock states to polariton states in both the RAD and the PF
representations.

IV. EXTENSION TO PERIODIC SYSTEMS
AND POLARITON BAND STRUCTURE

The primary objective of this paper is to provide a rigorous
and efficient Hamiltonian tailored for periodic systems. With-
out losing generality, let us consider a 3D periodic potential
function with three direct lattice basis vectors {a1, a2, a3}, and
a spatially localized function v({xi}) for one unit cell, such
that the periodic potential is expressed as

V ({xi}) = v({xi}) �
∏
i,ν

X
(

xi · aν

|aν |2
)

, (32)
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where � denotes a convolution between two functions f (x) �
g(x) = ∫∞

−∞ f (x′)g(x − x′)dx′, X(x) is the Dirac comb func-
tion, and {ν} ∈ {1, 2, 3} iterates over the direct lattice basis
vectors.

Using the Fourier transform definition in Eq. (22), as well
as the Fourier convolution theorem

F {g(x) � h(x)}(K ) = 2πF {g(x)}(K )F {h(x)}(K ), (33)

we can obtain the Fourier transformed potential V ({Ki}) as

V ({Ki}) = v({Ki}) ·
∏
i,ν

X
(

Ki · bν

|bν |2
)

, (34)

where {bν} are the reciprocal lattice basis vectors. Equa-
tion (34) can also be thought of as an implicit restatement of
Bloch’s theorem (see Appendix C). One convenient way to
define v(K ) is

v(K ) = 1

8π3Vcell

∫
Vcell

{dxi} V ({xi})ei
∑

i Ki·xi , (35)

where the above expression is the Fourier Transform of
V ({xi}) over a single unit cell, normalized by the volume of
the unit cell Vcell. However, in principle, v({Ki}) is not unique
for a given V ({xi}), but the representation of the potential in
Eq. (35) is often used and is easily accessible in electronic
structure calculations aimed at simulating periodic systems.
The inclusion of pseudopotentials, coupled with the projector
augmented wave method, for the core electrons in such pack-
ages, adds an additional complication but in principle can still
be cast in this or a similar form [46,47].

By inserting the potential from Eq. (34) into Eq. (24), V̂RAD

becomes

V̂RAD =
∑
{κ′

i}

∫
{dKi}, exp

(
− i
∑

j

κ′
j ·
∑

α

ξ j,α q̂α

)

× v({κ′
i})
⊗

i

|Ki〉〈Ki + κ′
i|, (36)

where {κ′
i} ∈ {∑ν nνbν},∀ nν ∈ Z is the set of reciprocal lat-

tice vectors, formed due to the sifting property of the Dirac
comb function.

For periodic systems, dispersion plots are more insightful
for characterizing the system compared to the eigenspectrum
of the full Hamiltonian. To calculate the polaritonic disper-
sion plot of a system described by ĤRAD, we consider the
Hamiltonian for each k point in the first Brillouin zone as

ĤRAD(k), where it is confined by a projection operator P̂k ,
a global operator that projects all degrees of freedom (matter
and photonic) to a given k point. We define this projection
operator P̂k, where k is confined to the matter’s first Brillouin
zone, as

P̂k = P̂el
k ⊗ P̂ph

kβ

=
⊗

i

⎛
⎝∑

{κi}
|k + κi〉〈k + κi|

⎞
⎠⊗

⎛
⎝∑

nβ

|nβ〉〈nβ |
⎞
⎠,

(37)

where for simplicity, we are only considering the transverse
electric (TE) polarization, such that β = {kβ, TE} and |nβ〉 is
a Fock state of excitation n with the wavevector, kβ = k with
a TE polarization direction. Note that this choice of kβ = k is
just a cross section of, in principle, a two-dimensional disper-
sion relation, but it still allows us to extract physical insight
into how coupling to cavity changes the properties of the
system. We made this specific choice of projection for kβ = k
as it is commonly done in the literature [17,48]. We want to
emphasize that this scheme is still under the long-wavelength
approximation, which is unphysical for an infinitely long 1D
chain; however, this analysis acts as a stepping stone to a
more exact form (see Sec. VI). A more general case will be
considered in Sec. VI with additional physical insight into
this specific choice of kβ = k projection. Additionally, this
projection operator confines each K′

i to the values of ki + κi,
and P̂2

k = P̂k . In doing this, we change K′
i → ki + κi, where

κi ∈ {∑ν nνbν},∀ nν ∈ Z is also a reciprocal lattice vector.
As discussed in Ref. [18], one must be careful of gauge

ambiguities when applying a projection of photonic modes.
To generate ĤRAD(k), we first truncate Eq. (1) using P̂ph

k . For
a single k term, it should be noted that including both polar-
izations is a simple extension, since êk,λ · êk,λ′ = δλ,λ′ . In this
special case of a single kβ , the normal mode transformation
simplifies to a Bogoliubov transformation (see Appendix B).
The rest of the RAD derivation then follows accordingly
from Eq. (7) onward. In this case, ĤRAD(k) is generated by
projecting ĤRAD, which is properly confined in P̂el

k ⊗ P̂ph
kβ

.

Applying this simple projection by P̂el
k does not cause any

gauge ambiguities, since it is done in the eigenbasis of {p̂ j},
essentially writing the Hamiltonian in momentum space using
a grid basis.

Using the form of V̂RAD from Eq. (36), we can express
ĤRAD(k) (the k-resolved RAD) as

ĤRAD(k = kβ ) =
∑
{κi}

∑
j

[ |h̄(k + κ j )|2
2mj

−
∑

l

h̄2�2
β

2
(ξ j,β · (k + κ j ))(ξl,β · (k + κl ))

] N⊗
i

|k + κi〉〈k + κi|

+
∑
{κi,κ

′
i}

exp

(
− i
∑

j

κ′
j ·
∑

λ

ξ j,β q̂β

)
v({κ′

i})
⊗

i

|k + κi〉〈k + κi + κ′
i| + h̄�β

(
b̂†

β b̂β + 1

2

)
, (38)

where all the integrals have now been replaced by discrete
sums, creating a drastic decrease in the size of the Hilbert
space [see Eq. (18) for a simplified example of the index-
ing in this many-particle and many mode Hilbert space].

By solving the eigenspectrum of Eq. (38) for each k point,
we can form the dispersion plot of the system. The above
expression of ĤRAD(k) is the second key result of this
paper.
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V. NUMERICAL RESULTS ON MODEL
1D PERIODIC SYSTEM

While we demonstrated in Sec. III that the RAD Hamilto-
nian can accurately simulate spatially localized Hamiltonians
for arbitrarily coupling strengths, the intent of this method
is for periodic systems. We will now demonstrate the per-
formance of the RAD Hamiltonian with a model periodic
modified Coulomb potential. This model is beyond the capa-
bilities of the AD Hamiltonian [38], explicitly requiring the
use of the RAD Hamiltonian.

As we will simulate this RAD framework with many pho-
tonic modes, it is important to define the dispersion relation
for the cavity. For the sake of simplicity, we assume that the
cavity dispersion takes the form of the typical Fabry-Pérot
cavity, and the 1D matter chain is parallel to the cavity mirrors.
In such a case, the cavity dispersion takes the form of

ωk,λ =
√

ω2
c + c2k2, (39)

where c is the speed of light inside the cavity.
Although the form in Eq. (38) is general for an arbitrary

potential, number of particles, and number of modes to the
same level of theory as the minimal coupling Hamiltonian,
for the purposes of this paper, we will test this Hamiltonian
on a single-particle, one-dimensional model with a single λ.
In this limit, ĤRAD(k) can be expressed as

ĤRAD(k) = h̄�k

(
b̂†

kb̂k + 1

2

)
+
∑

κ

|h̄(k + κ )|2
2meff

|k + κ〉〈k + κ|

+
∑
κ,κ ′

e−iκ ′ ·ξk q̂k v(κ ′)|k + κ〉〈k + κ + κ ′|, (40)

where {κ, κ ′} ∈ {2πn/a0},∀ n ∈ Z. Note that since we are
parametrizing ĤRAD in terms of k, the relationship between
ξk and γk still follows Eq. (31) but now with explicit k depen-
dence,

ξk = γk

√
2

mωk
(
ω2

k + 2γ 2
k

)3/2 ê, (41)

With this concise representation of the RAD Hamiltonian in
this limit, we are now prepared to perform numerical simula-
tions on model potentials.

We define a periodic array of modified Coulomb potentials.
We build this model based on the famous Shin-Metiu molec-
ular model [49]. We approximate the potential of each ion
as a modified Coulomb potential of V (x) = −Ze2erf (r0x)/x,
where Z is the effective charge of the ion and r0 is a parameter
to determine the steepness of the potential. Then, we place
these ions on an infinite 1D lattice, separated by the lattice
constant, a0. The localized potential then has the form

v(x) = −Ze

a0

erf (r0x)

x
, (42)

v(K ) = −Ze2

2π
�

(
0,

[
K

2r0

]2)
, (43)

where �(0, x) is the zeroth-order upper incomplete gamma
function. The Dirac comb function turns one of the integrals in
Eq. (25) into a sum. The parameter r0 can drastically affect the
shape of this periodic potential with interesting limits. In the

FIG. 3. Single electron in a periodic modified Coulomb potential
coupled to many longitudinal cavity modes. (a) Single unit cell of
the periodic modified Coulomb potential for many r0 values plotted
upon a cosine potential, where the Z for the modified Coulomb
potential is adjusted such that the modified Coulomb potential’s
first-order Fourier expansion matches the cosine potential. (b) First
40 bands in the energy eigenspectrum of this model as a function of
normalized coupling strength γ0/ω0 color-coded by k point (where γ0

and ω0 are the coupling and cavity frequency at k = 0). (c)–(f) show
the dispersion plots for normalized coupling strengths of γ0/ω0 =
0.2, 1, 10, 100, respectively, where the color shows the expectation
value of the photon number in the Coulomb gauge 〈â†â〉.

limit of r0 → 0, v(x) ∝ cos(a0x), and in the limit of r0 → ∞,
the potential approaches a delta function. Figure 3(a) shows a
single period of v(x) for various different values of r0, where
the value of Z is varied such that the magnitude of the first co-
efficient in the Fourier expansion is the same for each potential
plotted and matches the reference cosine curve plotted (black
dotted line). It should be noted that such a system would not
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realistically achieve very high coupling strengths as it is a
single particle coupled to an infinitely large cavity; however,
this model still acts as an illustrative example to demonstrate
the properties of the ultra-strong coupling regime and beyond.

The total Hamiltonian of this system then becomes

ĤRAD =
∑

α

h̄�α

(
b̂†

α b̂α + 1

2

)
+
∫

dK
h̄K

2meff
|K〉〈K|

− Ze2

2π

∑
κ ′ �=0

∫
dK |K〉〈K + κ ′| e−iκ ′∑

α ξα q̂α

× �

(
0,

[
κ ′

2r0

]2
)

, (44)

where the sum over κ ′ in theory goes to ±∞, but in practice
the upper incomplete gamma function decays so fast that only
a few values of κ ′ are significant for typical values of a0. Note
that the sum over κ ′ does not include κ ′ = 0 since that term
is in general a zero-point energy shift, and in this case, it is
a singularity for the upper gamma function. The k-resolved
form of this Hamiltonian can then be written as

ĤRAD(k) = h̄�k

(
b̂†

kb̂k + 1

2

)
+
∑

κ

h̄K

2meff
|k + κ〉〈k + κ|

− Ze2

2π

∑
κ

∑
κ ′ �=0

|k + κ〉〈k + κ + κ ′| e−iκ ′ξk q̂k

× �

(
0,

[
κ ′

2r0

]2
)

. (45)

The Hamiltonian in Eq. (45) is now in a form that can be easily
diagonalized to find the eigenenergies of this system.

Figures 3(b)–3(f) present the polaritonic dispersion ob-
tained by solving the eigenvalues of Eq. (45) for different
k points. Each point on these polaritonic dispersion plots is
obtained by projecting both the matter and the photonic DOFs
to the same k point [cf. Eq. (37)]. Although this provides a
concise description of the energetic structure of this hybrid
system, it should be noted that, in general, this is only a slice
through the two-dimensional dispersion surfaces (for matter k
and photonic kβ), to be discussed later in Fig. 5 (see below).
Regardless, this cross section still allows us to extract valuable
insights into how this 1D matter system is modified by its
coupling to the cavity. All the results for panels Figs. 3(b)–3(f)
converged completely for five Fock states and 101 κ values.

Figure 3(b) shows how these polaritonic dispersions
change with increasing coupling strength, where the value
of k is represented by the shade of the lines. Since, in prin-
ciple, γβ and ωβ are k dependent, we define the coupling
strength of the system by γ0/ω0, where the 0 subscript refers
to these values at the gamma point. This fixes the couplings
and frequencies for all other modes based on the dispersion
relation in Eq. (39). As the coupling strength goes into the
deep strong coupling regime, the bands flatten (i.e., each band
loses its dependence on k), and the total density of states
becomes sharply peaked. This band flattening can be more
clearly seen in panels Figs. 3(c)–3(f) (note the change in
vertical scales between panels) where the dispersion is shown
at various choices of coupling strength. Intuitively, this can be

understood by considering how T̂RAD [Eq. (19)] is affected by
the coupling strength. As γ0 → ∞, the effective mass meff →
∞, making T̂RAD → 0. This makes the matter dispersion of
the light-dressed particle flatten. Note that this is directly
opposite to the free-electron model, which only contains the
kinetic energy. Additionally, in this limit of T̂RAD → 0, the
commutation between ĤRAD and the matter momentum p̂
approaches zero. This allows the polaritonic bands to become
arbitrarily close together and eventually degenerate.

To take a closer look at how these polaritonic dispersion
plots behave at different coupling strengths, Figs. 3(c)–3(f)
present the dispersion curves of the polaritonic band structure
at various coupling strengths γ0/ω0, and each panel is a cross
section of the more general plot shown in Fig. 3(b). The colors
in Figs. 3(c)–3(f) now represent the expectation value of the
photon number in the Coulomb gauge, 〈â†â〉 for each state.
Recall that the results were converged using only five RAD
Fock states and were then transformed by unitary rotation
to the Coulomb gauge . When γ0/ω0 = 0.2 [Fig. 3(c)], the
dispersion relation appears as one would expect in the strong
coupling regime, where the matter bands are duplicated and
shifted up in energy by ωk for each added photon. When bands
of different photon numbers cross, there is Rabi splitting. As
the coupling increases to γ0/ω0 = 1, the standard intuition
from the strong coupling regime no longer applies. The band
structure is almost completely different from the uncoupled
case. Additionally, for bands in the same energy range as
the lower coupling case [c. 3(c)], the average photon number
is much higher, with some bands reaching an 〈â†â〉 > 30.
This effect is magnified as the coupling goes further into
the deep strong coupling regime with the lowest-energy band
for γ0/ω0 = 100 having 〈â†â〉 > 8000 for some k points.
We again emphasize that the 〈â†â〉 plotted is the Coulomb-
gauge photon number, which is the quantity accessible to
experiments and not directly related to the photon basis used
for RAD. This is a key benefit of the RAD representation.

This 1D-modified Coulomb potential model demonstrates
the strengths of the RAD Hamiltonian representation. By
modeling this matter system in the strong, ultra-strong, and
deep-strong regimes, this RAD representation provides both
a convenient intuitive understanding of seemingly unnatural
results and a computationally efficient basis to easily converge
numerical simulations.

VI. BEYOND THE LONG-WAVELENGTH
APPROXIMATION

In Sec. II, we began our discussion by assuming the
long-wavelength approximation (LWA) in the Coulomb gauge
Hamiltonian [Eq. (2)]. This approximation assumes that the
spatial variation of the vector potential field across the
matter system is small enough to be considered negligi-
ble. For a simple Fabry-Pérot cavity, this approximation is
written as

Â(r) =
∑

β

Aβ (â†
βe−ikβ ·r + âβeikβ ·r ) → Â

=
∑

β

Aβ (â†
β + âβ ), (46)
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where β is the superindex that indexes over all kβ and λ, and
r is the spatial coordinate of the cavity.

In this section, we start to relax this approximation
for a single particle coupled to many spatially varying
modes in a Fabry-Pérot (FP) type cavity with the dispersion
relation

ωβ =
√

ω2
c + c2|kβ |2, (47)

where we set kβ as the component of the photonic wavevector
that is parallel to the cavity mirrors. While experimentally,
matter coupled to FP cavities has not reached the deep-strong
coupling regime, the plane-wave basis of the EM field allows
a convenient way to model the spatial variations of the vector
potential and still allows us to glean valuable physical insights
from our results. In principle, any arbitrary cavity can be rep-
resented on a plane-wave basis, but for simplicity, we consider
an FP cavity in this paper.

We begin by expressing the Coulomb gauge Hamiltonian
for a single particle while using the exact form of Â from
Eq. (46) as

Ĥp·A = ĤM +
∑

β

h̄ωβ

(
â†

β âβ + 1

2

)

−
∑

β

z j p̂ · Aβ

m
(â†

βe−ikβ ·x̂ + âβeikβ ·x̂) + z2|Â|2
2m

.

(48)

Following the same procedure as before [Eqs. (4)–(6)],
we now define the βth mode’s spatially varying photonic
coordinate ( ˆ̃qβ) and momentum ( ˆ̃pβ) operators as

ˆ̃qβ (x̂) =
√

h̄

2ωβ

(â†
βe−ikβ ·x̂ + âβeikβ ·x̂), (49a)

ˆ̃pβ (x̂) = i

√
h̄ωβ

2
(â†

βe−ikβ ·x̂ − âβeikβ ·x̂). (49b)

These operators ˆ̃qβ and ˆ̃pβ maintain the same commu-
tation relations as q̂β and p̂β , and Ĥph =∑β p̂2

β + ωβ q̂2
β =∑

β
ˆ̃p2
β + ωβ

ˆ̃q2
β . By moving the x̂ dependence within the defi-

nitions of ˆ̃qβ and ˆ̃pβ , the normal mode analysis done in Sec. II
and Appendix A is not affected by relaxing the LWA. As
such, the expression for T̂AD in Eq. (9) is unaffected by the
LWA. We can then write the Coulomb gauge Hamiltonian
beyond the long-wavelength approximation after a normal
mode transformation as

Ĥp·A = T̂AD + V̂ (x) +
∑

α

1

2

(
ˆ̃pα (x̂)2 + �2

α ( ˆ̃qα (x̂) − p̂ · ξα )2),
(50)

where the shift of ˆ̃qα (x̂) by p̂ · ξα in the Coulomb gauge,
is now explicitly written. Note that the corresponding LWA
expression is in Eq. (7).

Further, the ÛAD operator [38] is no longer a rigorous
double shift operator since it now has explicit x̂ dependence.
Beyond the LWA, ÛAD now takes the form

ÛAD = exp

[
− i

h̄

∑
α

ξα · p̂ ˆ̃pα (x̂)

]
. (51)

With this, ÛAD is no longer x̂ independent, making it no longer
rigorously behave as a double-shift operator. However, for
states where |k · ξ| � 1, this can be accurately approximated
as a double shift operator [38]. In other words, we partially
restore the LWA but now instead of claiming that the field is
spatially invariant across the entire matter system, we make
a less restrictive approximation that the x̂ dependence of the
field is varying slowly enough such that it is negligible over
the shift performed by the photonic DOF. In this manner, we
explicitly make the approximation

Û †
ADp̂ ÛAD = p̂

[
1 +

∑
β

ξβ · kβωβ
ˆ̃qβ (x̂) + · · ·

]

≈ p̂. (52)

Note that this expression also explicitly demonstrates that in
the single-mode limit, the validity of this approximation is
proportional to the value of kβ . Since ξα is upper bounded [see
Fig. 2(a) and Eq. (8)], for both zero coupling and arbitrarily
high coupling, this approximation becomes exact, yielding the
AD Hamiltonian beyond the LWA as

ĤAD = p̂2

2meff
+ V̂ (x̂ +

∑
α

ξα
ˆ̃pα (x̂))

+
∑

α

h̄�α

(
ˆ̃b†
α (x̂) ˆ̃bα (x̂) + 1

2

)
, (53)

where now ˆ̃pα (x̂) and ˆ̃bα (x̂) explicitly depend on the matter
coordinate x̂. That is, every â{λ,kβ } now has an additional eikβ ·x̂
phase term associated with it. Note that after the normal mode

transformation ˆ̃bα (x̂) and ˆ̃b†
α (x̂) are defined in terms of ˆ̃pα (x̂)

and ˆ̃qα (x̂) [as in Eq. (12)] as follows:

ˆ̃bα (x̂) =
√

�α

2h̄
ˆ̃qα (x̂) + i

√
1

2h̄�α

ˆ̃pα (x̂), (54a)

ˆ̃b†
α (x̂) =

√
�α

2h̄
ˆ̃qα (x̂) − i

√
1

2h̄�α

ˆ̃pα (x̂). (54b)

Recall that due to the U (1) symmetry of QED, each photonic
DOF is invariant under phase rotations (with the generator of
the βth mode defined as â†

β âβ) and the matter DOF is invariant
upon a momentum boost (with the generator x̂). As such, we
can now define a new operator that simultaneously performs
a phase rotation on the βth photonic mode and a boost on
the electronic momentum (in the single-particle picture), ex-
pressed as

Ûφβ
= exp(−ikβ · x̂ â†

β âβ ), (55)

where kβ corresponds to the photonic wavevector of the
βth mode. This unitary transformation adds a e−ikβ x̂ phase
to the âβ operator such that for any operator of the
form Ô(âβeikβ ·x̂, â†

βe−ikβ ·x̂ ), transforming it would yield

Û †
φβ

Ô(âβeikβ ·x̂, â†
βe−ikβ ·x̂)Ûφβ

= Ô(âβ, â†
β ). Additionally, this

operator boosts the matter momentum, so Û †
φβ

p̂Ûφβ
= p̂ −

h̄kβ â†
β âβ .
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Since [Ûφβ
, Ûφβ′ ] = 0, we can then write the phase rotation

operator that eliminates the spatial variation of all modes as

Ûφ =
∏
β

Ûφβ
= exp

(
−ix̂ ·

(∑
β

kβ â†
β âβ

))
, (56)

which then has the properties

Û †
φ Ô({âβeikβ ·x̂}, {â†

βe−ikβ ·x̂})Ûφ = Ô({âβ}, {â†
β}) (57a)

Û †
φ p̂ Ûφ = p̂ −

∑
β

h̄kβ â†
β âβ.

(57b)

Since ˆ̃qα, ˆ̃pα, ˆ̃bα, and ˆ̃b†
α are all functions of {âβeikβ ·x̂} and

{â†
βe−ikβ ·x̂}, this means that we can use Ûφ to remove the x̂

dependence of these operators, making the problem mathe-
matically similar to the case with the LWA but under a smaller
approximation.

The properties of Ûφ shown in Eq. (57), allow us to trans-
form Û †

φ ĤADÛφ as

Û †
φ ĤADÛφ =

(
p̂ −∑β h̄kβ â†

β âβ

)2
2meff

+ V̂

(
x̂ +

∑
α

ξα p̂α

)

+
∑

α

h̄�α

(
b̂†

α b̂α + 1

2

)
, (58)

which is identical to the ĤAD under the LWA except
for the boost of −∑β h̄kβ â†

β âβ to the momentum. Upon
examination, this necessity of an additional boost can be
thought of as a restatement of the conservation of momentum
between the photonic and electronic degrees of freedom. For
a photon with the momentum h̄k to be created, the electron
loses h̄k momentum. In other words, the long-wavelength
approximation in Eq. (46) violates the conservation of mo-
mentum between the photonic and electronic DOF. In fact,
this conservation of momentum between light and matter is
destroyed even when we use Â(x̂) → Â(x), e.g., in the case
of the multicenter PZW Hamiltonian [10,17,48]. This is be-
cause the operator nature of x̂ creates the momentum boost
of Eq. (57b), and by replacing it with its value x, one no
longer has the matter momentum shift, thus violating the con-
servation of momentum for the matter-photon hybrid system.
As QED is gauge independent, this conservation of momen-
tum can also be seen in the Coulomb gauge Hamiltonian in
Eq. (48) via Â(x̂).

Now by following the same strategy of applying Ûπ/2

[Eq. (15)] and inserting identity in K space [Eq. (17)] as
is done before, the RAD Hamiltonian beyond the long-
wavelength approximation for a single electron coupled to
many modes then becomes

Ĥ [1][M]
RAD =

∫
dK

1

2meff

∣∣∣∣∣h̄K|K〉〈K| −
∑

β

h̄kβ â†
β âβ

∣∣∣∣∣
2

+
∫

dK dK′, e−iK′ ·∑M
α ξα q̂αV (K′)|K〉〈K + K′|

+
M∑
α

h̄�α

(
b̂†

α b̂α + 1

2

)
, (59)

where
∑

β h̄kβ â†
β âβ can be rewritten in terms of {b̂α, b̂†

α} using

the normal mode transformation matrix ô
↔

(see Appendix A).
As the last two lines of Eq. (59) are identical to the corre-
sponding terms in Eq. (26), the extension to periodic systems
follows identically to before, yielding

ĤRAD =
M∑
α

h̄�α

(
b̂†

α b̂α + 1

2

)

+
∑

κ

∫
1BZ

dk
1

2meff

∣∣∣h̄(k + κ)|k + κ〉〈k + κ|

−
∑

β

h̄kβ â†
β âβ

∣∣∣2 +
∑
κ,κ′

∫
1BZ

dk e−iκ′·∑M
α ξα q̂αv(κ′)

× |k + κ〉〈k + κ + κ′|, (60)

where the integral of k goes over the first Brillouin zone and
κ and κ′ are reciprocal lattice vectors.

It can be observed that when the electronic system couples
to the electromagnetic field, it breaks the translational invari-
ance (cf. Bloch’s theorem) along the electronic coordinate due
to the spatial variations of the field [see Eq. (46)] not following
the periodicity of the matter. However, by applying Ûφ (taking
p̂ → p̂ +∑β h̄kβ â†

β âβ), we regain translational invariance in
this boosted polaritonic space as shown in Eq. (60). Following
a similar analysis as in Eqs. (37) and (38) but without the ex-
plicit restriction of k = kβ , we then project Eq. (60) in terms
of both k and kβ . This allows us to generate dispersion plots
for a single particle beyond the LWA, where we parametrize
the Hamiltonian as

ĤRAD(k, kβ ) = h̄�kβ

(
b̂†

kβ
b̂kβ

+ 1

2

)

+
∑

κ

1

2meff
|h̄(k + κ)|k + κ〉〈k + κ| − h̄kβ â†

β âβ |2

+
∑
κ,κ′

e−iκ′·ξkβ
q̂kβ v(κ′)|k + κ〉〈k + κ + κ′|. (61)

This is the final key result of this paper.
Figure 4 plots the band dispersions of the 1D modified

Coulomb potential for the cross section k = kβ . We begin our
discussion with the simplest case of zero coupling, as shown
in Fig. 4(a). At first glance, this plot differs greatly from the
types of plots in Fig. 3. We note that only the diagonal matrix
elements of ĤRAD(k, kβ ) vary with k and kβ for zero coupling,
taking the form

〈k + κ, nβ |ĤRAD|k + κ, nβ〉 = h̄ωβn + h̄2

m
|κ + k − nkβ |2,

(62)

where for simplicity we subtract out any zero-point energies.
At zero coupling, b̂kβ

= âβ and �kβ
= ωβ (i.e., the RAD and

Coulomb representations of the photon operators are identi-
cal), allowing us to equivalently understand the nth Fock state
as |nβ〉 = 1√

n!
(â†

β )n|0〉 or |nβ〉 = 1√
n!

(b̂†
β )n|0〉. Using Eq. (62)

we can make sense of Fig. 4(a), where we plot the cross sec-
tion of the polaritonic dispersion for k = kβ , by focusing on
the bands of a given photon number. Without any light-matter
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(b)

(c)

p.A

RAD

p.A

RAD

0/ 0 0.0

0/ 0 0.25

0/ 0 1.0

(a)

FIG. 4. Single electron in a periodic modified Coulomb potential
coupled to many longitudinal cavity modes beyond the LWA for both
the RAD Hamiltonian (solid lines) and the Coulomb gauge Hamil-
tonian (dotted lines). (a) Zero-coupling case for which both RAD
and p · A are exact. (b) Intermediate coupling case (γ0/ω0 = 0.25)
where the approximation in Eq. (52) starts to make RAD no longer
perfectly match the Coulomb gauge. (c) Coupling of γ0/ω0 = 1.0,
where ξkβ

maximizes, representing the most challenging case for
RAD. Note that for coupling strengths beyond γ0/ω0 = 1.0, RAD
will get increasingly more accurate and converge faster, whereas the
Coulomb gauge results will require increasingly more Fock states
and matter bands to converge.

coupling, the zero-photon bands in Fig. 4(a) (n = 0, dark blue
curves) exactly follow the bare matter band dispersion. Then,
for the one-photon (n = 1) bands, k − nkβ = 0, making the
bands only have the single-photon dispersion shifted by the
matter band energies at the � point, creating three visible
light blue parabolic curves in Fig. 4(a). For the n > 1 bands,
k − nkβ = (1 − n)k. This replicates the bare matter bands
shifted up by the energy h̄ckβ ; however, the matter Brillouin
zones shrink by a factor of n − 1 such that for n = 3, two of
the bare matter Brillouin zones are squeezed into the system’s
first Brillouin zone.

We would like to emphasize that the k plotted in the disper-
sion plots in Fig. 4 is no longer the eigenvalue of the canonical
momentum, as we have boosted the momentum such that
p̂ → p̂ +∑β h̄kβ â†

β âβ . As such, k is no longer exactly the
matter lattice wavevector, since the light-matter system is no
longer translationally invariant by the period of the lattice.
Instead, k is akin to a “polaritonic wavevector” in that two
states with the same k have the same total momentum on the
system level. This quantity takes advantage of the symmetry
of the system, so, unlike the matter lattice wavevector, ĤRAD

is block diagonal in k. This feature of the RAD representation
beyond the LWA allows us to calculate realistic “polaritonic
dispersions” and visualize the light-matter hybridized bands.

Additionally, these polaritonic dispersions now allow for
an easy visualization of how transitions between polaritonic
states change the momentum and energy of the system. For
example, the crossing of two bands represents a degenerate
point in both energy and momentum. These types of plots are
reminiscent of the type of graphs used to visualize other light-
matter interactions such as Brillouin and Raman scattering of
photons.

While the prior analysis is numerically exact for the zero-
coupling case, for nonzero coupling, we are still making a
form of the LWA as is stated in Eq. (52). The natural question
is the validity of such an approximation. To benchmark the
RAD result, we must calculate the polaritonic dispersion plots
for the exact Coulomb gauge Hamiltonian. By going beyond
the LWA, we reintroduced in Eq. (48) the e±ikβ ·x̂ terms in the
vector potential Â. These terms make Ĥp·A no longer block
diagonal in k. This can be explicitly seen by transforming Ĥp·A
into reciprocal space,

Ĥp·A =
∫

dK
1

2m

(
h̄2|K|2|K〉〈K|

+
(∑

β

z|A|(â†
β B̂β + âβ B̂†

β )

)2

−
∑

β

h̄zK · Aβ{|K〉〈K|, (â†
β B̂β + âβ B̂†

β )}
)

+
∫

dK dK′,V (K′)|K〉〈K + K′|

+
∑

β

h̄ωβ

(
â†

β âβ + 1

2

)
, (63)
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where we have introduced the matter momentum boost
operators, B̂β = ∫ dK′|K′ − kβ〉〈K′| and B̂†

β = ∫ dK′|K′ +
kβ〉〈K′|, which come from sandwiching the e±ikβ ·x̂ terms with
identities of the form of Eq. (17). These B̂β and B̂†

β terms are
clearly not block diagonal in k even for periodic lattices, since,
in principle, kβ is quasicontinuous. As such, these coupling
terms between different matter k points break the original
Bloch’s theorem along the electronic coordinate. However,
this way of writing Â =∑β Aβ (â†

β B̂β + âβ B̂†
β ) also shows

how the e±ikβ ·x̂ terms lead to the conservation of momentum
between the photonic and electronic DOFs: for each creation
of a photon with momentum h̄kβ by â†

β the same amount of

momentum is boosted away from the electron by B̂β and vice
versa for âβ and B̂†

β . Equation (63) thus reinforces the neces-
sity of including the e±ikβ ·x̂ terms and simultaneously how
such terms destroy the electronic coordinate’s translational
invariance.

It may be tempting to try to resolve this difficulty by simply
replacing e±ikβ ·x̂ with e±ikβ ·xu , where xu is the location of the
uth lattice site, rewriting the Hamiltonian in the site basis
and making the approximation that the field varies slowly
across the lattice unit cell [17,48,50]. This approximation has
been thoroughly investigated in the context of the multicenter
PZW transformation, where the polaritonic Hamiltonian is ex-
pressed in the dipole gauge [17,48] (see Sec. 2.6.1 in Ref. [10]
for details). The resulting Hamiltonian does, in fact, satisfy
Bloch’s theorem since there no longer are any B̂β operators
in reciprocal space, but it still violates the conservation of
momentum.

Nevertheless, we can apply a strategy from the derivation
of ĤRAD from Eq. (59) to restore both Bloch’s theorem and
the conservation of momentum without making any approxi-
mations to Eq. (63). Intuitively, we know from Eq. (63) that
the x̂ dependence in Â(x̂) acts as a momentum boost for the
electron that balances out the momentum change from the
creation/annihilation of a photon. By absorbing the photon
and electronic DOFs’ momenta into a systemwide “polariton”
momentum, these boost operators would no longer explicitly
appear. This is reminiscent of the “conservation of crystal
momentum” argument used for electron-phonon interactions,
where the electron and phonon momenta are grouped into
a total crystal momentum (see Appendix M in Ref. [51]).
This change of variables, to a total “polaritonic” momentum,
allows us to reformulate this exact Hamiltonian using Bloch’s
theorem. Thus, by transforming the exact Coulomb gauge
Hamiltonian, Ĥp·A, by Ûφ [see Eq. (55)] we can write an
exact Hamiltonian that is block diagonal in k and conserves
momentum as

Û †
φ Ĥp·AÛφ = 1

2m

(
p̂ − z

∑
β

Aβ (â†
β + âβ ) −

∑
β

h̄kβ â†
β âβ

)2

+ V̂ (x̂) +
∑

β

h̄ωβ

(
â†

β âβ + 1

2

)
, (64)

where as with ĤRAD in Eq. (59) we transformed p̂ → p̂ +∑
β h̄kβ â†

β âβ . This expression in Eq. (64) is exact and for
our simple system can be directly calculated. To do so, we

parametrize this expression by k and kβ as

Û †
φ Ĥp·AÛφ (k, kβ ) = h̄ωβ

(
â†

β âβ + 1

2

)

+
∑

κ

1

2m
(h̄(k + κ)|k + κ〉〈k + κ|

− zAβ (â†
β + âβ ) − h̄kβ â†

β âβ )2

+
∑
κ,κ′

v(κ′)|k + κ〉〈k + κ + κ′|, (65)

where we can numerically calculate the polaritonic dispersion
plots directly as we did with ĤRAD(k, kβ ). It is worth noting
that this Hamiltonian can be transformed by the ÛAD from
Eq. (10) without any approximation; however, the additional
cross terms from the first line [namely the â†

β âβ (â†
β + âβ ) +

H.c. terms] of Eq. (64) can no longer be easily handled by a
normal mode transformation as was done in Eq. (7). Finding
a convenient form of this exact Hamiltonian is a subject of
future study.

We use the Hamiltonian from Eq. (65) as a benchmark
to check the validity of our approximation (52). The conver-
gence of this p · A Hamiltonian is slower than ĤRAD(k, kβ )
[Eq. (61)], requiring 11 bands (κ values) and 14 p · A Fock
states to converge, whereas the RAD Hamiltonian only re-
quired seven bands (κ values) and five RAD Fock states to
converge the results plotted, which is especially remarkable
due to there being five bands plotted in Fig. 4(c). Notably,
this reduction in dimension d (from 154 for p · A to 35 for
RAD) allows for a factor of ∼85 speedup for the direct matrix
diagonalization given O(d3) scaling.

Figures 4(b) and 4(c) show two different coupling strengths
with the results of RAD and the exact Coulomb gauge Hamil-
tonian. In Fig. 4(b), the coupling strength γ0/ω0 = 0.25 is
set at an intermediate value such that ξkβ

is large but not
maximized [see Fig. 2(a)], while in Fig. 4(c), the coupling
strength γ0/ω0 = 1.0 is set to the maximal value of ξkβ

and
thus represents the most challenging case for the RAD Hamil-
tonian. From the zero-coupling analysis, the RAD results
in Fig. 4(b) make intuitive sense with Rabi splitting at the
crossing of bands (most clearly seen near k = kβ ∼ 0 and
energy E ∼ 3.0 with the mixing of the green n = 2 and orange
n = 3 curves). Additionally, in this regime, the RAD results
generally match the Coulomb gauge results, with the most
obvious disagreements occurring at large matter k, as expected
from our assumption of ξmax · kmax << 1.

Figure 4(c) then goes on to test RAD for the worst coupling
strength for our approximation, γ0/ω0 = 1, the maxima of
ξkβ

. Even in this case, the characteristic properties that the
RAD Hamiltonian predicts are still valid. The single-photon
band is blue-shifted, and the matter bands collapse closer
together due to the increase of the effective mass while also
flattening due to the diminishing presence of the kinetic
energy term (due to the effective mass). Since the only ap-
proximation in this theory is that of Eq. (52), we know that as
the coupling increases to γ0/ω0 > 1 the RAD results will get
increasingly more accurate.

Figure 5 presents the 2D dispersion relation of the polariton
states along both k and kβ . Note that the polariton dispersion
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FIG. 5. Two-dimensional polariton dispersion relation for the
first four polariton bands for a coupling of γ0/ω0 = 0.25, where
surfaces are colored by band number. The k = kβ cross section is
also plotted on these surfaces weighted by the photonic character
with blue being electronic and red being photonic. Additionally, the
edges of the plot are accented in black to help parse the 3D surfaces.

curves from Figs. 3 and 4 are only cross sections of the two-
dimensional dispersions of both DOFs’s momentum, k and
kβ , where we take the diagonal cross section of k = kβ (since
we transformed k → k + kβ , this is the cross section through
the matter � point). This cross section provides a convenient
picture for transitions from the � point (i.e., matter k = 0) but
does not show all possible states of the hybrid system. Note
that for flat dispersion bands (such as those for collections of
noninteracting molecules in a Fabry-Pérot cavity), only the
matter � point is optically bright, so this cross section fully
characterizes the system [48]. However, to understand transi-
tions from an electron with momentum k0 for matter systems
with a nontrivial band structure, a cross section of k − kβ = k0

would provide more intuition. To understand the full picture,
the full 2D polariton dispersion plot is necessary. The k = kβ

cross section is also drawn on top of the surfaces of Fig. 5
with the color indicating the photonic character (represented
by 〈â†

β âβ〉) where blue represents purely electronic and red
purely photonic.

By going beyond the long-wavelength approximation,
the conservation of momentum between light and matter
is restored. This allows for more physically intuitive band
dispersions, allowing one to understand the absorption and
emission phenomena of such periodic systems without per-
forming direct absorption or photoluminescence spectra.

VII. CONCLUSIONS

In conclusion, we developed a representation that can
accurately and efficiently calculate the eigenenergies of
polariton systems for arbitrarily strong coupling strengths.
The computational cost to calculate the eigenspectra using ex-
isting Hamiltonians (such as p · A or d · E) scales unfavorably
with increasing coupling strength. We began by reviewing
the asymptotically decoupled (AD) Hamiltonian presented by
Ashida et al. in Ref. [38].

Section II generalized the key result of Ref. [38] into a form
for many interacting charged particles coupled to many pho-
ton modes [see Eq. (11)]. This is accomplished via a normal
mode transformation (Bogoliubov transform for a single-
cavity mode) followed by a many-particle and many-mode
double-shift operator [Eq. (10)]. While this representation
has a much better Fock state convergence than typical
gauges (such as the dipole gauge Hamiltonian) and has an
upper-bounded effective coupling parameter, the shift in the
matter coordinates by the photonic momentum [see Eq. (11)]
makes realistic calculations (or even more complicated model
systems like that of Fig. 3) unfeasible.

To address this challenge, we introduced the reciprocal
asymptotically decoupled Hamiltonian (RAD) in Sec. III.
In particular, we applied a phase rotation unitary transfor-
mation [Eq. (15)] and transformed it into reciprocal space,
leveraging the Fourier shift theorem [Eq. (23)]. By doing so,
the RAD Hamiltonian still holds the advantages of the AD
Hamiltonian, but the matter coordinate is no longer shifted
by the photonic momentum. Instead, the Fourier transform
of the many-body potential is multiplied by a simple phase
term of the form,e−i

∑
j,α K j ·ξ j,α q̂α [in Eq. (21)]. This allows

the eigenenergies to be calculated for any type of model or
realistic single-particle potential. As discussed in Sec. III, this
RAD representation significantly outperforms the Pauli-Fierz
Hamiltonian with Fock states and matter basis convergence,
even with highly localized potentials such as the double-well
potentials (see Fig. 1). The PF Hamiltonian still has the benefit
of being able to diagonalize the matter system first, followed
by a direct diagonalization of the light-matter Hamiltonian
[30]. The RAD Hamiltonian, on the other hand, requires one
to diagonalize all DOFs simultaneously without knowledge
of the bare-matter states, and performing ab initio polariton
simulations with the RAD Hamiltonian on realistic systems is
a subject of future work.

As RAD is formulated in reciprocal space, its prime ap-
plication is for periodic systems. Section IV applies the RAD
Hamiltonian to the special case of V̂ being periodic in nature.
Assuming the long-wavelength approximation (LWA), by ap-
plying Bloch’s theorem to RAD [Eq. (32)], and projecting
the Hamiltonian to different k points [see Eq. (37)], polariton
dispersion plots can be calculated. To go beyond the capa-
bilities of the AD Hamiltonian, in Sec. V we used the RAD
Hamiltonian to calculate the dispersion relations of a single
electron in a 1D lattice of modified Coulomb potentials (see
Fig. 3).

Finally, in Sec. VI we take RAD beyond the long-
wavelength approximation for a single particle coupled to
many cavity modes, treating the electromagnetic field as
spatially varying as a function of x̂. Doing so violates the con-
servation of momentum between the photonic and electronic
degrees of freedom for the hybrid system, as well as Bloch’s
theorem. We resolve this issue in the single-particle limit
by introducing a unitary transformation Ûφ [Eq. (55)] that
removes the explicit x̂ dependence of the field by grouping
the photonic and electronic momenta into p̂. This treatment
preserves the conservation of momentum between the light
and matter DOFs, allowing the calculation of physically
relevant “polaritonic dispersion” curves that provide an in-
tuitive understanding of absorption and emission processes.
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Additionally, in this section, we emphasize that one must
be extremely careful in making any LWA, as it can violate
the conservation of momentum between the light and matter
DOFs. To benchmark this method of going beyond the long-
wavelength approximation, we also compared these results to
the exact p · A Hamiltonian transformed by Ûφ .

This work opens many future directions in studying
polariton physics. For example, this Hamiltonian can be
immediately applied to any one-electron ab initio systems’
model potentials. Additionally, this representation could be
extended to include many-electron polariton systems. On a
more theoretical side, the strategy used to extend RAD beyond
the long-wavelength approximation could additionally be ex-
tended to also include phonon interactions, creating a total
polariton-crystal momentum, a quantum number. This paper
will enable investigations of periodic cavity QED systems
and light-matter coupling in the ultra-strong and deep-strong
coupling regimes [13].
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APPENDIX A: NORMAL MODE ANALYSIS
FOR THE QUANTIZED FIELD

As discussed in the main text, the standard Coulomb gauge
Hamiltonian can be expressed in the form

Ĥp·A = ĤM −
∑
j,β

z j p̂ j · Aβ

mj

√
2ωβ

h̄
q̂β +

∑
β,β ′

1

2

[
p̂2

βδβ,β ′

+ (ω2
βδβ,β ′ + 2γβγβ ′ (eβ · eβ ′ )

)
q̂β q̂β ′

]
, (A1)

where we introduced a new mode-dependent coupling param-
eter,

γβ = |Aβ |
√√√√(ωβ

h̄

)∑
j

z2
j

m j
, (A2)

and we defined p̂β and q̂β as

q̂β =
√

h̄

2ωβ

(â†
β + âβ ), (A3a)

p̂β = i

√
h̄ωβ

2
(â†

β − âβ ). (A3b)

To perform the normal mode analysis, it is convenient

to define the vectors of operators, �̂qph, �̂pph, and �̂ζ, and

second-order tensor of operators, ĝ
↔

as

�̂qᵀ
ph = [q̂0 q̂1 · · · q̂β · · · ], (A4a)

�̂pᵀ
ph = [ p̂0 p̂1 · · · p̂β · · · ], (A4b)

�̂ζᵀ = [A0
√

ω0 ⊗ 1̂ph A1
√

ω1 ⊗ 1̂ph A2
√

ω2 ⊗ 1̂ph

× · · · ], (A4c)

ĝ
↔ =

⎡
⎢⎣
(
ω2

0 + 2γ 2
0

)⊗ 1̂ph (2γ1γ0e0 · e1) ⊗ 1̂ph · · ·
(2γ0γ1e1 · e0) ⊗ 1̂ph

(
ω2

1 + 2γ 2
1

)⊗ 1̂ph · · ·
...

...
. . .

⎤
⎥⎦,

(A4d)

where the identity operator for the photonic DOFs 1̂ph is
explicitly written to emphasize that these are vector/matrices
of operators. Now, the Coulomb gauge Hamiltonian can be
represented as

Ĥp·A = ĤM −
√

2

h̄

(∑
j

z j p̂ j

m j

)
· ( �̂ζᵀ �̂qph )

+ 1

2

( �̂pᵀ
ph

�̂pph + �̂qᵀ
ph ĝ

↔�̂qph
)
. (A5)

Since ĝ
↔

is symmetrical and real, it can be diagonalized with
an orthogonal matrix ô

↔
. Additionally, ĝ

↔
is a positive definite

matrix. It’s eigenvalues are all positive, so its diagonalized
form can be written as

ô
↔

ĝ
↔

ô
↔ᵀ =

↔
�̂

↔
�̂, (A6)

where (
↔
�̂)α,α′ = �αδα,α′ are matrix elements of

↔
�̂ and {�α}

are the frequencies of the normal modes {α}. As such, the co-
ordinate and momentum operators of the αth normal mode are
( ô
↔�̂qph )α and ( ô

↔�̂pph )α , respectively. Additionally, the direction
and magnitude of the vector potential of the αth normal mode

can also be expressed as Aα = ( �̂ζᵀ ô
↔ᵀ)α/

√
�α .

By expressing the Coulomb gauge Hamiltonian in terms of
the {α} normal modes, we recover the Eq. (5) from the main
text

Ĥp·A = ĤM −
∑
j,α

z j p̂ j · Aα

mj

√
2�α

h̄
q̂α +

∑
α

1

2

(
p̂2

α + �2
α q̂2

α

)
,

(A7)

where we have removed all explicit intemode coupling. It
should be noted that this normal mode transformation re-
duces to a Bogoliubov transformation (see Appendix B) when
eβ · eβ ′ = δβ,β ′ .

APPENDIX B: BOGOLIUBOV TRANSFORM

The Bogoliubov transformation [52] is a convenient
method of partially diagonalizing the additional quadratic
terms for Hamiltonians with harmonic oscillators. In the
context of the cavity QED Hamiltonian, the normal mode
transformation in Appendix A reduces to a Bogoliubov trans-
formation in the single-mode and single-molecule limit. In
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this limit, Eq. (2) becomes

Ĥp·A = ĤM + h̄ωc

(
â†â + 1

2

)
− qp̂ · A0

mj
(â† + â)

+ h̄g2

2ωc
(â† + â)2, (B1)

where g = |A0|
√

ωcq2

h̄m is the coupling strength, γc in the single-
molecule limit. We then apply this transformation to the
following terms of Eq. (B1):

h̄ωcâ†â + h̄g2

2ωc
(â† + â)2. (B2)

To perform this diagonalization, we define new creation and
annihilation operators, b̂† and b̂, such that

b̂ = uâ + vâ†, b̂† = uâ† + vâ, (B3)

where u and v are in real numbers. Requiring the trans-
form to preserve the commutation relation [b̂, b̂†] = 1
leads to [b̂, b̂†] = [uâ + vâ†, uâ† + vâ] = (u2 − v2)[â, â†] =
1, thus gives the condition u2 − v2 = 1. Then, the selection of
(b̂† + b̂)/(â† + â) fully defines the transformation. We want
the result of this transformation to be diagonal and enforcing

h̄�b̂†b̂ = h̄ωcâ†â + h̄g2

2ωc
(â† + â)2 − E, (B4)

where � is the dressed photon frequency, and E is a constant
energy shift. Using the transform in Eq. (B3), we expand b̂†b̂
in terms of â and â†,

b̂†b̂ = (uâ† + vâ)(uâ + vâ†) = uv(â†2 + â2)

+ (u2 + v2)â†â + v2

= uv(â† + â)2 + (u − v)2â†â + v2 − uv, (B5)

and comparing to Eq. (B4) leads to

(u − v)2 = ωc/�, (B6a)

uv = g2/2ωc� (B6b)

E = h̄�(uv − v2). (B6c)

Relation Eq. (B6a) leads to u − v = √
ωc/�. This, to-

gether with the condition u2 − v2 = (u + v)(u − v) = 1 leads
to u + v = √

�/ωc. Using these two relations, we have

u = 1

2

⎡
⎣
√

�

ωc
+
√

ωc

�

⎤
⎦, v = 1

2

⎡
⎣
√

�

ωc
−
√

ωc

�

⎤
⎦. (B7)

Note that b̂† + b̂ = (u + v)(â† + â), thus the Bogoliubov
transformation requires (b̂† + b̂) = √

�/ωc(â† + â). Further
using Eqs. (B6b) and (B7), we have

uv = 1

4

(
�

ωc
− ωc

�

)
= g2

2ωc�
, (B8)

leading to the choice of the frequency

� =
√

ω2
c + 2g2. (B9)

Finally, using Eqs. (B6c) and (B7) we have the expression of
the constant E = uv − v2 = h̄

2 (� − ωc), representing the ZPE

different associated with two different frequencies. Note that
this is positive definite due to � � ωc and decays to zero as
g → 0. Putting all of these together, we can rewrite Eq. (2) in
the b̂ and b̂† representation as

Ĥp·A = ĤM + h̄�

(
b̂†b̂ + 1

2

)
− g

√
h̄

m�
ê · p̂(b̂† + b̂).

(B10)

This expression is equivalent to Eq. (7) in the main text for a
single mode.

The basic logic of the Bogoliubov transformation can
be understood from a much simpler perspective, with q̂c =√

h̄/2ωc(â† + â) and p̂c = i
√

h̄ωc/2(â† − â) being the pho-
tonic coordinate and momentum operators, respectively.
Alternatively,

â† = 1√
2

(√
ωc

h̄
q̂c − i

1√
ωch̄

p̂c

)
, (B11a)

â = 1√
2

(√
ωc

h̄
q̂c + i

1√
ωch̄

p̂c

)
. (B11b)

Using qc and pc, one has

h̄ωc

(
â†â + 1

2

)
+ h̄g2

2ωc
(â† + â)2 = 1

2
p̂2

c + 1

2
ω2

c q̂2
c + g2q̂2

c

= 1

2
p̂2

c + 1

2

(
ω2

c + 2g2
)
q̂2

c ≡ 1

2
p̂2

c + 1

2
�2q̂2

c , (B12)

where we have introduced �2 = ω2
c + 2g2. Introducing the

new raising and lowering operators associated with the
dressed frequency � as follows:

b̂† = 1√
2

(√
�

h̄
q̂c − i

1√
�h̄

p̂c

)
, (B13a)

b̂ = 1√
2

(√
�

h̄
q̂c + i

1√
�h̄

p̂c

)
, (B13b)

which naturally gives the condition of Bogoliubov transform
(b̂† + b̂) = √

�/ωc(â† + â), as well as satisfies Eq. (B3) us-
ing the coefficients in Eq. (B7).

In the case of many interacting particles with mass mj and
change q j , we start with a more general form of the Coulomb
gauge Hamiltonian in Eq. (2),

Ĥp·A = ĤM + h̄ωcâ†â −
∑

j

z j p̂ j · A0

mj
(â† + â) (B14)

+
∑

j

z2
j |A0|2
2mj

(â† + â)2,

where j is the index of the charged particles. The Bogoliubov
transformation for this case can also be done, by using the
many particle coupling parameter,

γc = |A0|
√√√√(ωc

h̄

)∑
j

z2
j

m j
, (B15)
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so the terms that the quadratic terms in Eq. (B14) are ex-
pressed as

h̄ωcâ†â + h̄γ 2
c

2ωc
(â† + â)2. (B16)

Following the same procedure of the Bogoliubov transform
is (b̂† + b̂) = √

�/ωc(â† + â) with the dressed frequency
� = √ω2

c + 2γ 2
c , we now have the Coulomb gauge Hamil-

tonian as

Ĥp·A = ĤM + h̄�

(
b̂†b̂ + 1

2

)
−
√

ωc

�

∑
j

z jA0

mj
ê · p̂ j (b̂

† + b̂).

(B17)

As shown in the last line of Eq. (B17), the term that is linear
in Â is now much more complex.

For N identical charged particles (such as electrons), the ef-
fective coupling parameter in Eq. (B15) becomes γc = √

Ng,
where g is the single electron-cavity coupling strength Eq. (3),

Ĥp·A = ĤM + h̄�

(
b̂†b̂ + 1

2

)
−

√
Ng

√
ωc

�

∑
j

ê · p̂ j (b̂
† + b̂),

(B18)

resulting in the familiar collective coupling between light and
matter that scales as

√
Ng.

APPENDIX C: EQUIVALENCY TO BLOCH’S THEOREM

From Ref. [51], Bloch’s theorem directly follows from the
assertion that a periodic potential can be expressed as (in our
notation),

V (x) =
∑

κ

v(κ )eiκx, (C1)

where the
∑

κ is overall possible reciprocal lattice vectors,
and v(κ ) can be defined from Eq. (35). Equations (C1) and
(32) from the main text are equivalent as shown by taking the
inverse Fourier transform of Eq. (34),

V (x) =
∫

dK v(K ) · X
(

a0K

2π

)
e−iKx

=
∑

κ

v(κ )e−iκx

=
∑

κ

v(κ )eiκx, (C2)

where the second line takes advantage of the sifting property
of the Dirac delta function and the third line comes from the
relation that v(κ ) = v(−κ ) by making the assumption that the
crystal has inversion symmetry.

We decided to use the convolutional notation in the main
text due to the increased flexibility in defining models that it
provides. With this method, v(x) can be defined outside of a
single unit cell, allowing for models that use functions, such
as Gaussians or error functions, that are defined over all space.

FIG. 6. The polariton states energies as a function of the coupling
strength γ /ωc, color-coded with the average Fock state excitation
number. The four panels plot these results for the two double well
potentials from Sec. III [shallow well, (a,b); steep well, (c,d)] for
each Hamiltonian [PF, (a,c); RAD, (b,d)]. The expectation value
of the Fock state excitation number operator is computed in each
respective Fock basis, which is not the same between the PF and
RAD Hamiltonians but are related by unitary transformation.

APPENDIX D: AVERAGE PHOTON NUMBERS
FOR DOUBLE-WELL POTENTIALS

We provide an analysis of the effective Fock state excita-
tion number as a way to probe the convergence of the RAD
Hamiltonian. It is important to note that after unitary trans-
formations, one needs to perform the same transformation on
the photonic operator and the quantum states. More detailed
discussions can be found in Sec 2.3.4 in Ref. [10]. For our
current discussion, we are only interested in the efficiency
of convergence of the RAD and PF Hamiltonians with Fock
states.

Figures 6(a)–6(d) present the eigenspectra of the two
double-well model potentials [shown in Figs. 1(a) and 1(b)] in
a given range of coupling strength up to γc/ωc = 2.5, obtained
by diagonalizing [(a) and (c)] the PF Hamiltonian and [(b) and
(d)] the RAD Hamiltonian. The color coding of the curves
reflects the value of the average Fock-state excitation number,
calculated as follows:

Nψ = 〈ψ |N̂ |ψ〉, (D1)

where N̂ is the Fock state excitation number in a given QED
Hamiltonian, and |ψ〉 is a polariton state. For the PF Hamil-
tonian N̂ = â†â, and for the RAD Hamiltonian N̂ = b̂†b̂.
Figures 6(a) and 6(b) show results for the steep-well poten-
tial [in Fig. 1(a)] for the PF (a) and RAD (b) Hamiltonians.
Note the different color bar scales. PF showcases up to seven
photons (Fock states occupation) on this scale, whereas RAD
only shows less than two. This enables faster convergence
in terms of the Fock state basis for the RAD Hamiltonian
compared to the PF Hamiltonian. We also note that, at higher
coupling strengths, the average Fock state excitation number
in the RAD Hamiltonian is much smaller; whereas, for the
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PF Hamiltonian, the Fock state excitation number increases
as the coupling strength increases. This implies that the PF
Hamiltonian requires many more Fock basis states to converge
the result at any value of coupling compared to the RAD
Hamiltonian. Figures 6(c) and 6(d) show the same information
but for the shallow-well potential [in Fig. 1(b)]. One can see
that compared to the steep well model potential presented in
panels (a) and (b), the PF Hamiltonian requires more Fock
states to converge (due to the higher Fock state excitation
number), while the RAD Hamiltonian again shows that its
Fock state excitation number goes to zero as the coupling
increases for states in the same low-energy range [due to the
intrinsic asymptotically decoupled nature of the light-matter
interaction in RAD, see Fig. 2(a)].

APPENDIX E: DERIVATION OF PAULI-FIERZ
HAMILTONIAN

We first introduce the Power-Zienau-Woolley (PZW)
gauge transformation operator [1,53] as

Û = exp

[
− i

h̄
μ̂ · Â

]
= exp

[
− i

h̄
μ̂ · A0(â + â†)

]
, (E1)

or Û = exp [ − i
h̄

√
2ωc/h̄ μ̂A0q̂c] = exp [ − i

h̄ (
∑

j z jÂx̂ j )].

Recall that a momentum boost operator Ûp = e− i
h̄ p0 q̂ displaces

p̂ by the amount of p0, such that ÛpÔ( p̂)Û †
p = Ô( p̂ + p0).

Hence, Û is a boost operator for both the photonic momentum
p̂c by the amount of

√
2ωc/h̄μ̂A0, as well as for the matter

momentum p̂ j by the amount of z jÂ. The PZW gauge operator
[Eq. (E1)] is a special case of Ûχ , such that χ = −x̂ j · Â.
Using Û † to boost the matter momentum, one can show that

Ĥp·A = Û †ĤMÛ + Ĥph, (E2)

hence Ĥp·A can be obtained [14] by a momentum boost with
the amount of −z jÂ for p̂ j , then adding Ĥph.

The QED Hamiltonian under the dipole gauge (the “d · E”
form [53,54]) can be obtained by performing the PZW trans-
formation on Ĥp·A as follows:

Ĥd·E = Û Ĥp·AÛ † = ÛÛ †ĤMÛÛ † + Û ĤphÛ †

= ĤM + h̄ωc

(
â†â + 1

2

)
+ iωcμ̂ · A0(â† − â)

+ ωc

h̄
(μ̂ · A0)2, (E3)

where we have used Eq. (E2) to express Ĥp·A, and the last
three terms of the above equation are the results of Û ĤphÛ †.
Using q̂c and p̂c, one can instead show that

Ĥd·E = ĤM + 1

2
ω2

c q̂2
c + 1

2

(
p̂c +

√
2ωc

h̄
μ̂A0

)2

, (E4)

because the PZW operator boosts the photonic momentum p̂c

by
√

2ωc/h̄μ̂A0. The term ωc
h̄ (μ̂A0)2 is commonly referred to

as the dipole self-energy (DSE).
The widely used Pauli-Fierz (PF) QED Hamiltonian

[6,19,20] in recent studies of polariton chemistry can be

(a)

(b)

k (1st BZ)

(
ygren

E
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u.
)
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(
ygren

E
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u.
)
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(
ygren

E
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u .
)
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0

/ 0

FIG. 7. Single electron in a cosine potential coupled to a cavity.
(a) The first 40 bands in the energy eigenspectrum of this model as a
function of the normalized coupling strength g/ωc color-coded by the
k point. (b)–(e) Dispersion plots for normalized coupling strengths of
g/ωc = 0.1, 1, 10, 100, respectively.

obtained by using the following unitary transformation:

Ûφ = exp

[
− i

π

2
â†â

]
. (E5)

Note that Ûφ â†âÛ †
φ = â†â, Ûφ âÛ †

φ = iâ, and Ûφ â†Û †
φ =

−iâ†, applying Ûφ on Ĥd·E, we have the PF Hamiltonian as
follows:

ĤPF = ÛφĤd·EÛ †
φ

= ĤM + h̄ωc

(
â†â + 1

2

)
+ ωcμ̂ · A0(â + â†)

+ ωc

h̄
(μ̂ · A0)2

= ĤM + 1

2
p̂2

c + 1

2
ω2

c

(
q̂c +

√
2

h̄ωc
μ̂ · A0

)2

. (E6)

The above PF Hamiltonian has the advantage of a pure real
Hamiltonian and the photonic DOF can be viewed [6,19]
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and computationally treated [55,56] as an additional “nuclear
coordinate”.

APPENDIX F: DETAILS OF NUMERICAL CALCULATIONS

The model matter Hamiltonians were diagonalized using
the discrete variable representation (DVR) [45] for the elec-
tron kinetic energy T̂ such that the Hamiltonian in the position
basis for a uniform grid takes the form

Hxx′ = Txx′ + V (x)δxx′, (F1)

with

Txx′ = h̄2(−1)x−x′

2m(�x)2

{
π2

3 , x = x′

2
(x−x′ )2 , x �= x′

}
, (F2)

where �x is the grid spacing with h̄2/2m�x2 as the en-
ergy quantum of the grid and x and x′ as the real-space
grid indices. This Hamiltonian is diagonalized directly using
standard approaches for Hermitian matrices. Additionally, the
full light-matter Hamiltonians are diagonalized in the same
manner.

To solve the PF Hamiltonian, the electric dipole matrix
elements are required, as they mediate the interactions be-
tween light and matter. They are calculated from the electronic
wavefunctions [eigenstates of Eq. (F1)] in the usual way as

μψφ = −|e|
∫

dx 〈ψ |x〉x〈x|φ〉, (F3)

where e is the elementary electric charge and |φ〉 is the φth

electronic wavefunction of Eq. (F1). All dipole matrix el-
ements were solved with 2048 grid points to converge the
lowest 50 electronic states and all transition dipole moments
between them.

The Fourier transform of the real-space potential V (x) →
V (k) in each model was computed using the asymmetrically
normalized forward-backward fast Fourier transform (FFT)
implemented in Python [with the normalization defined in
Eq. (22)] by the NumPy module without padding.

APPENDIX G: APPLICATION ON 1D COSINE POTENTIAL

We further provide additional examples of using RAD
Hamiltonian to solve 1D periodic potential. We define a cosine
potential as

V (x) = v0 cos(k0x),

V (K ) = v0

2
(δ(K − k0) + δ(K + k0)), (G1)

where v0 is the amplitude of the cosine and k0 = 2π/a0. Using
the expression of ĤRAD from Eq. (25) along with the Fourier
transform of this potential, we can define the Hamiltonian
analytically for this model as

ĤRAD = h̄�b̂†b̂ +
∫

dK ′ (h̄K ′)2

2meff
|K ′〉〈K ′|

+
∫

dK ′ v0

2
(|K ′〉〈K ′ + k0| e−ik0ξgq̂c

+ |K ′〉〈K ′ − k0| eik0ξgq̂c ). (G2)

Furthermore, we can then find the dispersion plots using an
ĤRAD(k) of the form

ĤRAD(k) = h̄�b̂†b̂ ⊗ P̂k +
∑

κ

h̄2(k + κ )2

2meff
|k + κ〉〈k + κ|

+
∑

κ

v0

2
(|k + κ〉〈k + κ + k0| e−ik0ξgq̂c

+ |k + κ〉〈k + κ − k0| eik0ξgq̂c ), (G3)

This is clearly a special case of Eq. (38), where the only
nonzero off-diagonal terms in the Hamiltonian occur when
κ ′ = ±2π/a0.

Figure 7 shows the numerical results of this cosine model.
Figure 7(a) shows how the eigenspectrum changes as the
coupling strengths evolve through the ultra-strong coupling
regime and into the deep-strong coupling regime. Panels (b)–
(d) show the dispersion plots of the polariton states for four
different coupling strengths.
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