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First-principles residual resistivity using a locally self-consistent multiple scattering method
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The locally self-consistent multiple scattering (LSMS) method can perform efficient first-principles calcula-
tions of systems with a large number of atoms. In this paper, we combine the Kubo-Greenwood equation with
LSMS, enabling us to calculate the first-principles residual resistivity of large systems. This has been imple-
mented in the open-source code LSMS. We apply this method to selected pure elements and binary random alloys.
The results compare well with experiment, and with values obtained from a first-principles effective medium
technique (the Korringa-Kohn-Rostoker coherent potential approximation). We discuss future applications of
this method to complex systems where other methods are not applicable.
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I. INTRODUCTION

Disordered systems show interesting physical and chemi-
cal properties [1–3]. Multiprincipal element alloys with high
chemical disorder have shown high strength and ductility over
large temperature ranges [4–6]. Bulk metallic glasses exhibit
ultrahigh strength, high elasticity, high fracture toughness,
high wear resistance, and other useful properties [7,8]. Qua-
sicrystals possess high thermal and electrical resistivity, low
adhesion, and have been used as the coating for nonstick cook-
ware [9]. First-principles density functional theory allows us
to compute phase behavior, band structure, mechanical, and
functional properties for these systems [10–12]. However,
the computational cost of standard density functional theory
(DFT) calculations grows as the cube of the system size,
making the study of large systems impractical. It is possible
to use an effective medium method, such as the coherent
potential approximation (CPA) [13] to model the system us-
ing few atoms. While this works well for chemical species
disorder, it is difficult to construct an effective medium for
atomic displacements, or other forms of disorder which break
crystallinity. Alternatively, we can perform classical molecu-
lar dynamics (MD) using potentials fitted against DFT data.
This approach is significantly faster in comparison to DFT,
however, obtaining these potentials is a highly difficult task,
especially for complex systems, and classical MD yields no
information concerning the electronic structure.

The locally self-consistent multiple scattering (LSMS)
method [14], based on the Korringa-Kohn-Rostoker (KKR)
Green’s function approach to DFT [15,16], offers an efficient
solution to this problem. As in the KKR method, LSMS
uses multiple scattering theory to obtain the Green’s function
of the system. However, electron scattering between widely

separated atoms is ignored. The cutoff distance for nonzero
scattering is represented by the local interaction zone (LIZ)
radius. This approximation speeds up the calculation signif-
icantly. LSMS scales linearly with the system size, making
it a practical computational tool for disorder studies. Fur-
thermore, the LSMS approach provides a natural domain
decomposition of the system and thus enables the highly ef-
ficient use of massively parallel computing architectures and
accelerators [17].

The KKR Green’s function method can be combined
with the Kubo-Greenwood linear response formula [18,19]
to obtain first-principles electrical conductivity. The Kubo-
Greenwood equation depends on products of Green’s func-
tions, which are readily available in KKR. For a random
system, this product must be averaged over the ensemble. But-
ler [20] showed that the ensemble average can be treated using
the CPA medium. The KKR-CPA conductivity method has
since been applied successfully to several systems [21–23].
Alternatively, we can represent the ensemble average using
a single, carefully constructed large structure. The Green’s
function for this system can be calculated using LSMS and
inserted into the Kubo-Greenwood equation, which produces
the electrical conductivity. This linear scaling nature of LSMS
enables us to apply this approach to systems with tens of
thousands of atoms, allowing us to calculate conductivity for
structures with intricate features such as stacking faults, dislo-
cations, and quasicrystalline order. We have implemented this
in the open source high-performance software package LSMS

[24]. The resulting conductivity depends on the LIZ radius,
and convergence with the LIZ radius will be a major point of
discussion in this paper.

The next section provides some theoretical background on
the LSMS method and the Kubo-Greenwood equation. We
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then introduce our LSMS resistivity approach and provide a
heuristic derivation for the conductivity as a function of the
LIZ radius. We test our method by applying it to selected pure
elements with a variety of structural and electronic character-
istics (Ag, Al, Li, and V) and binary alloys (AlxV1−x and Fe-9
wt % Si). We compare the results with experimental data and
computational values obtained from KKR-CPA. Finally, we
conclude by discussing areas of improvements for the method
and potential future applications.

II. METHODS

A. KKR and LSMS

The Korringa-Kohn-Rostoker (KKR) approach to density
functional theory solves for the Green’s function of the Kohn-
Sham equation [25,26]. The charge density can be obtained
from the Green’s function using

ρ(r) = − 1

π

∫ εF

−∞
dε Im{Tr[G(r, r, ε)]}, (1)

which is then used to calculate a new Hamiltonian. Using
multiple scattering theory, we express the Green’s function in
the vicinity of atomic site n as [27,28]

G(rn, rn, ε) =
∑
LL′

Zn
L (rn, ε)τ nn

LL′ (ε)Zn
L′ (rn)

−
∑

L

Zn
L (rn, ε)Jn∗

L (rn, ε), (2)

where Zn and Jn are the regular and irregular solutions to the
single-atom Schrödinger equation for the atom at site n. L and
L′ are angular momentum indices [e.g., L ≡ (lm)]. Note that
for real energies, the second term in Eq. (2) is real and does not
affect the imaginary part of the Green’s function. The multiple
scattering path matrix τ can be expressed in terms of the
single-site scattering t matrix and the free-electron propagator
g as [29]

τmn = ([T −1 − g]−1)mn, (3)

T mn = tmδmn. (4)

Here, m and n refer to atomic sites. Formally, τ obeys a Dyson
expansion

τmn = tmδmn + tmgmntn +
∑

k �=m,n

tmgmkt kgkntn + · · · (5)

= tmδmn + tmgmkτ kn. (6)

Calculating the matrix inverse in Eq. (3) is the most com-
putationally intensive step in the KKR method. This operation
scales as the cube of the number of atoms in the system. In
LSMS, we define a local interaction zone (LIZ) for each atom,
beyond which scattering is neglected (Fig. 1). This results in
a much smaller τ matrix, and the inverse scales linearly with
the system size. It is important to choose an appropriate value
of LIZ radius. A large LIZ radius slows down the calculation,
while a small LIZ radius produces inaccurate results. For a
given system, it is important to test multiple LIZ radii to
ensure convergence.

FIG. 1. Schematic depiction the local interaction zone (LIZ) for
an atom m. Scattering between m and any atom n beyond the LIZ is
ignored (τmn = 0).

B. Conductivity

Electrical conductivity obeys the Kubo-Greenwood equa-
tion [20]

σμν = 1

4
lim
δ→0

[σ̃μν (εF + iδ, εF + iδ) − σ̃μν (εF + iδ, εF − iδ)

− σ̃μν (εF − iδ, εF + iδ) + σ̃μν (εF − iδ, εF − iδ)],
(7)

σ̃μν (z1, z2) = − h̄

πN	
Tr〈 jμG(z1) jνG(z2)〉, (8)

where μ and ν refer to Cartesian directions, jμ and jν are
current operators, N is the number of atoms, and 	 is the
atomic volume. The angular brackets represent an ensemble
average over different random configurations. We express this
equation in terms of multiple scattering matrices as [20]

σ̃μν (z1, z2) = − 4m2
e

πN	h̄3

∑
mn

∑
L1L2L3L4

〈
Jmμ

L4L1
(z2, z1)τmn

L1L2

× (z1)Jnν
L2L3

(z1, z2)τ nm
L3L4

(z2)
〉
, (9)

where J is the matrix element of the current operator. Since
the sum over m generates a volume average, we replace the
ensemble average with a single, sufficiently large and repre-
sentative, random structure. Additionally, for each atom m, we
only consider atoms n within the LIZ of m. Within the LSMS
formalism,

σ̃μν (z1, z2) = − 4m2
e

πN	h̄3

N∑
m

LIZm∑
n

∑
L1L2L3L4

Jmμ
L4L1

(z2, z1)τmn
L1L2

(z1)

× Jnν
L2L3

(z1, z2)τ nm
L3L4

(z2). (10)

Combining Eqs. (10) and (7) yields the LSMS electrical con-
ductivity tensor for a given LIZ size, which is then inverted to
obtain the resistivity.

C. Dependence on LIZ radius

Because our LIZ sizes are limited by available computing
resources, we wish to model the convergence of conductivity
with increasing LIZ size. Here, we derive this dependence
heuristically. Consider a perfectly periodic crystal for which
the electron mean free path is infinite. Assuming weak scat-
tering, and truncating the Dyson expansion Eq. (6) at first
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order in g, we find the L = 0 component of the τ matrix varies
asymptotically as

τL1L2 (r, z) ≈ βL1L2 (z)
eiκr

r
, (11)

where κ =
√

2mez/h̄2.
Replacing the sums in Eq. (10) with integrals, the conduc-

tivity components σ̃ (z1, z2) can be expressed as

σ̃μν (z1, z2) ≈ A(z1, z2)
∫ rLIZ

rc

dr r2

(
eiκ1r

r

)(
eiκ2r

r

)
, (12)

where κ1,2 =
√

2mez1,2/h̄2, rc is the nearest-neighbor separa-
tion, and rLIZ is the LIZ radius. We can integrate this to obtain
the four terms needed for conductivity,

σ̃μν (rLIZ, ε+, ε+) ≈ A++
κ+

eiκ+(rLIZ+rc ) sin[κ+(rLIZ − rc)],

(13)

σ̃μν (rLIZ, ε+, ε−) ≈ A+−[rLIZ − rc], (14)

σ̃μν (rLIZ, ε−, ε+) ≈ A−+[rLIZ − rc], (15)

σ̃μν (rLIZ, ε−, ε−) ≈ A−−
κ+

e−iκ+(rLIZ+rc ) sin[κ+(rLIZ − rc)],

(16)

where ε+− = εF ± iδ, κ+ =
√

2meε+/h̄2, and we have taken
the limit δ → 0. The conductivity is given by

σμν ≈ − [A+− + A−+]

4
(rLIZ − rc) + sin [κ+(rLIZ − rc)]

4k+

× [A++eiκ+(rLIZ−rc ) + A−−eiκ−(rLIZ−rc )]. (17)

The conductivity shows a combination of linear and oscilla-
tory behavior. The oscillations occur at frequency 2kF with kF

the Fermi wave number. At large rLIZ the linear term domi-
nates, the conductivity diverges, and the resistivity vanishes,
as expected for perfectly crystalline systems. In particular, the
resistivity vanishes linearly as a function of the inverse LIZ
radius.

In order for the conductivity to converge, the τ matrix
must decay faster than 1/r. To model systems with finite
conductivity, consider the following ansatz,

τL1L2 (z) ≈ βL1L2 (z)
eiκr

r
e−αr, (18)

where α is a decay parameter determined by the inverse of the
mean free path. For weak disorder, α → 0, and we recover the
linear conductivity expression. For disordered systems, α >

0, and the conductivity component σ̃ becomes

σ̃μν (z1, z2) ≈ A(z1, z2)
∫ rLIZ

rc

dr r2

(
eiκ1r

r

)(
eiκ2r

r

)
e−2αr,

(19)

resulting in

σ̃μν (ε+, ε+) ≈ A++

[
e(2iκ+−2α)rLIZ − e(2iκ+−2α)rc

2iκ+ − 2α

]
, (20)

σ̃μν (ε+, ε−) ≈ A+−

[
e−2αrc − e−2αrLIZ

2α

]
, (21)

σ̃μν (ε−, ε+) ≈ A−+

[
e−2αrc − e−2αrLIZ

2α

]
, (22)

σ̃μν (ε−, ε−) ≈ A−−

[
e−(2iκ++2α)rLIZ − e−(2iκ++2α)rc

−2iκ+ − 2α

]
. (23)

Note the combination of oscillating and exponentially decay-
ing terms. The conductivity approaches a finite limit as

σμν ≈ a0e−2αrLIZ + a1, (24)

where

a0 = 1

4

[
A++

2ik+ − 2α
e2iκ+rLIZ − A−−

2ik+ + 2α
e−2iκ+rLIZ

+ (A+− + A−+)

2α

]
, (25)

a1 = −1

4

[
A++

2iκ+ − 2α
e2iκ+rc − A−−

2iκ+ + 2α
e−2iκ+rc

+ (A+− + A−+)

2α

]
e−2αrc . (26)

The resistivity is now finite, and its dependence on the inverse
LIZ size is nonlinear. It is possible to show that when α → 0
and rLIZ → ∞ (with αrLIZ finite), the conductivity becomes
infinite. When α → 0, we can write

a0 ≈ A+− + A−+
8α

, a1 ≈ −A+− + A−+
8α

e−2αrc ,

a0 ≈ −a1e2αrc . (27)

Inserting these expressions in (24), we get

σμν ≈ a1(1 − e−2α(rLIZ−rc ) )

≈ −e−2αrc (A+− + A−+)
1 − e−2α(rLIZ−rc )

8α
. (28)

Now, since the product αrLIZ will be finite, the numerator (1 −
e−2α(rLIZ−rc ) ) will be finite, while the denominator is 0. This
means that the conductivity will be infinite when α → 0 and
rLIZ → ∞, which is expected.

However, if α → 0 and rLIZ is finite, such that αrLIZ is
small, we can expand the exponential up to first order in αrLIZ,
resulting in

σμν ≈ − 1
4 e−2αrc (A+− + A−+)(rLIZ − rc). (29)

This shows that the conductivity varies linearly with rLIZ in
the regime where αrLIZ is small.

Finally, we can write a linear expression for resistivity
where α → 0 and rLIZ � α−1. In this regime, the conductivity
can be expressed as

σμν ≈ a1(1 − e−2α(rLIZ−rc ) ) (30)

≈ a1
e2α(rLIZ−rc ) − 1

e2α(rLIZ−rc )
(31)

≈ 2a1α(rLIZ − rc)

1 + 2α(rLIZ − rc)
. (32)
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FIG. 2. The resistivity of pure elements as a function of the local interaction zone radius. A linear extrapolation is applied based on a small
scattering approximation.

To recover the linearity of resistivity for weak scattering,
invert σ to obtain

ρμν ≈ 1 + 2α(rLIZ − rc)

2αa1(rLIZ − rc)
(33)

≈ 1

2αa1
kLIZ + 1

a1
, kLIZ = 1

rLIZ − rc
. (34)

In the small α regime, the resistivity varies linearly with the
inverse of the LIZ radius. However, the linear expression is
only valid for rLIZ � α−1. But as α → 0, the LIZ radius range
over which we see linearity will increase. As a result, using
the linear expression in lieu of the full nonlinear form might
result in smaller errors. We will explore this idea further in the
next section when we discuss the resistivity of binary random
alloys.

III. COMPUTATIONAL DETAILS

We apply the LSMS resistivity method (as implemented
in the open source code LSMS) to a 20 × 20 × 20 supercell
(16 000 atoms) for bcc structures and a 16 × 16 × 16 su-
percell (16 384 atoms) for fcc structures. A suitable starting
potential is needed for resistivity calculations. For the pure
elements and AlxV1−x binaries, we perform self-consistent
LSMS calculations to obtain a converged potential. For FeSi,
we obtain converged atomic potentials for Fe and Si from a
KKR-CPA calculation. We employ the von Barth–Hedin local

density approximation [25,30] for the exchange-correlation
functional. The angular momentum cutoff lmax was set to 3.
KKR-CPA calculations were performed using the open source
code MUST [31]. For FeSi, we perform spin-polarized calcu-
lations. Computationally intensive sections of the calculations
are GPU accelerated. All LSMS calculations are performed on
the Frontier supercomputer at Oak Ridge National Laboratory.
The calculations are highly efficient and scalable—using 1
GPU per atom, we are able to calculate resistivity for a 16 000-
atom structure with approximately a 1000-atom LIZ in under
10 min.

IV. RESULTS

A. Pure elements

For a pure element at 0 K, the residual resistivity should
vanish. We calculate LSMS resistivity of some pure elements
as a basic test of the method. Figure 2 shows the resistivity
of pure Ag, Li, Al, and V as a function of the inverse local
interaction zone radius, represented in atomic units (1 a.u. =
0.5291 Å). In Ag and Li, the transport behavior is dominated
by the valence s electrons, while V has d-electron valence
and Al has both s- and p-electron valence. Due to finite
memory, extrapolation is necessary to obtain the resistivity
at the asymptotic limit (1/rLIZ −→ 0). Based on the heuris-
tic expressions derived in the previous section, we apply a
linear extrapolation to obtain the resistivity at infinite LIZ
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FIG. 3. Resistivity of (a)–(e) AlxV1−x and (f) Fe-9 wt % Si as a function of the local interaction zone radius, denoted by the black line
with circles. The experimental value is denoted by the dotted green line [33,34]. Upper bound (blue line) and lower bound (red line) heuristic
functional forms are fit and extrapolated to obtain the residual resistivity.

radius. For most of the pure elements, the trends observed
in Fig. 2 obey our expectations. Vanadium shows anomalous
behavior—there is a sharp peak which is not explained by
the small scattering approximation. The extrapolated residual
resistivity is small for all the cases. Since our heuristic models
only produce the functional form, we are unable to determine
why there is a slight underestimate for Ag but an overestimate
for the other cases. More complex theoretical models are
required to further understand these trends.

B. Binary alloys

For random alloys, we expect the resistivity to decay expo-
nentially to a nonzero value, in accordance with the heuristic

derived in the previous section. Inverting the conductivity in
Eq. (30) yields

ρμν = b0

1 + b1e−2αrLIZ
. (35)

Figures 3(a)–3(e) show the resistivity as a function of the in-
verse LIZ radius for bcc AlxV1−x where x = 0.11, 0.19, 0.265,
0.293, and 0.34. The strong linear trend in the data implies that
the nonlinear regime has not been reached. Hence, the α pa-
rameter cannot be determined by fitting the heuristic—any α

value would yield an acceptable fit to the linear trend. Instead,
we define a range for α, which we use to establish upper and
lower bounds. We know that α is inversely proportional to the
mean free path. In the strong scattering limit, the mean free

104204-5



RAGHURAMAN, WIDOM, EISENBACH, AND WANG PHYSICAL REVIEW B 109, 104204 (2024)

TABLE I. b0, b1, c0, c1 coefficients [defined in Eqs. (36) and (37)] for AlxV1−x and Fe-9 wt % Si.

Strong scattering function Weak scattering function
ρ(rLIZ ) = b0/(1 + b1e−0.15rLIZ ) ρ(rLIZ ) = c0 + c1/rLIZ

System b0(µ	 cm) b1 c0(µ	 cm) c1 (µ	 cm bohr)

Al0.11V0.89 108 3.41 67 1265
Al0.19V0.81 157 2.45 119 1207
Al0.265V0.735 225 2.74 174 1667
Al0.293V0.707 268 1.83 215 1663
Al0.34V0.66 322 1.63 278 1442
Fe-9 wt % Si 140 1.87 98 1133

path is expected to be close to the lattice spacing [32]. The
strong scattering function should also fit the linear trend, and
become nonlinear almost immediately after the last data point.
We choose 2αmax = 0.15 Å−1 (corresponding to a mean free
path of 6–7 Å), producing the exponentially varying upper
bound function

ρupper
μν = b0

1 + b1e−0.15rLIZ
. (36)

In the weak scattering limit, the resistivity will show nonlin-
earity at a very large rLIZ. As a result, it will appear nearly
linear and we can apply the linear fitting equation

ρ lower
μν ≈ c0 + c1

1

rLIZ
, (37)

which is similar to Eq. (34), with rc → 0. Note that in this
scenario the system has a finite (but small) α and we expect
finite resistivity, given by c0. Table I contains values for the
b0, b1, c0, and c1 coefficients for AlxV1−x obtained by fitting
the LSMS resistivity. The resistivity as a function of the LIZ
radius can be bounded between the upper and lower bound
functions

ρ lower
μν � ρμν � ρupper

μν . (38)

We also calculate first principles residual resistivity within the
KKR-CPA method effective medium model of the random
alloy. Figure 4 compares the extrapolated upper and lower
bound LSMS resistivity to the experimental and CPA values.
The experimental values [33] lie between the two bounds for
all the cases. The lower bound values compare very well with
the experimental and CPA values. The upper bound values
in some cases also compare well with the experiment. At all
concentrations, the CPA values underestimate the resistivity,
which is a well-known feature of resistivities obtained from
KKR-CPA [22].

We also calculate the resistivity of bcc Fe-9 wt % Si alloy
[Fig. 3(f)]. A collinear spin-polarized calculation was per-
formed where the contribution of the spin-up and spin-down
electrons to the conductivity was calculated separately and
summed. The experimental value [34] again lies between the
lower and upper bound estimates. The fact that both the LSMS
lower bound and KKR-CPA underestimate the resistivity is
expected since the experimental values were obtained at room
temperature.

V. CONCLUSION

In this paper, we introduce the LSMS-Kubo-Greenwood
technique, which combines the Kubo-Greenwood equa-
tion with first-principles LSMS theory. Restricting scattering
within finite local interaction zones allows efficient calcu-
lation of electrical resistivity for very large systems. We
implement this method in the high-performance open source
code LSMS. Using a heuristic approach, we demonstrated that
the conductivity should grow linearly with respect to LIZ
radius and diverge for pure elements, but converge nonlin-
early for random alloys. The convergence is controlled by
a parameter α, that depends on the mean free path. In the
weak scattering regime, a convergent linear expression was
obtained. We test the method by applying it to pure elements,
where a linear trend that extrapolates to low resistivity was
confirmed. We also apply this method to binary random al-
loys AlxV1−x and Fe-9 wt % Si. A linear trend was also
observed in these systems which was fitted to obtain the upper
and lower bounds for the resistivity. Experimental resistivities
were found to lie between the two bounds, with the lower
bound values comparing well with experimental and KKR-
CPA values. This demonstrates the validity of our approach.

FIG. 4. Residual resistivity of bcc AlxV1−x as function of x.
The black circles represent lower bound values calculated using the
LSMS resistivity method, while the blue triangles represent the upper
bound values. The green circles represent resistivity obtained using
the coherent potential approximation (CPA), and the red squares
represent the experimental values [33].
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Our theory and implementation of LSMS conductivity re-
quires further improvement. While we are able to efficiently
calculate resistivity for large unit cells and LIZ sizes of up
to 1000 atoms, it should be possible to improve the code to
allow for even larger LIZ sizes. Our heuristic approach is
useful to understand the general trend and obtain upper and
lower bounds. However, a more precise functional form for
the resistivity should be derived without introducing any ad
hoc parameters.

The ability to deal with a large number of atoms opens the
door for several exciting applications. LSMS can be used to
calculate the resistivity as a function of short-range ordering in
high entropy alloys. We can study the effect of stacking faults,
dislocations, and other defects on the electrical resistivity.
We can also use LSMS to calculate the transport properties

of noncrystalline systems such as quasicrystals and metallic
glasses. These applications are the subject of ongoing work.
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