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Understanding localized states in the band tails of amorphous semiconductors
exemplified by a-Si:H from the perspective of excess delocalized charges
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In this paper, we use a perturbation strategy to show that the band tails in the density of states (DOS)
distribution of amorphous semiconductors form due to the existence of excess delocalized charges. These charges
satisfy a Gaussian distribution with a mean of zero and vary slowly in space due to the short- and medium-range
order of amorphous materials. The charges exist due to the bond angle and bond length distortion. They induce
an extra potential energy distribution that leads to energy band fluctuation in the energy-space diagram and
consequently gives rise to localized states. A 150 × 150 × 7.5 nm large-scale finite-element excess charge
model for hydrogenated amorphous silicon (a-Si:H) is developed using a moving average smoothing that filters
a Gaussian array of random charge values. Thanks to the analytical and computational simplicity of the theory in
this paper (compared with conventional approaches considering atomistic details and complex electron-electron
interactions), this large-scale model is calculated in only 90 s and reproduces the typical exponential and linear
features found in the conduction band tail of a-Si:H and other amorphous semiconductors. Through a satisfactory
fitting to experimental a-Si:H DOS data in the literature, model parameters are semiquantitatively determined.
Unlike previous analytical and computational efforts, this large-scale model is physically unambiguous, compu-
tationally tractable, and satisfactorily accurate. The large-scale modeling capability allows reliable insights into
the geometric features of localized and extended states, which are visualized in a nonschematic manner. This
further leads to reinvestigations of several established concepts and conclusions. First, calculations in this paper
challenge the description that the wave function envelope of a localized state decays away from its center in
an exponential manner and that the spread of this exponential decay varies with energy in a power-law manner.
Second, impurity states and/or extended states are critical to enable band tail hopping. Third, low-energy states
are spatially included inside high-energy states, so the existing concept of average spatial separation of localized
states is meaningless. Fourth, the mobility edge obtained from conductivity activation energy measurements
turns out to be higher than the actual critical energy Ect that demarcates extended states from localized states;
this judgment is supported by the electron mobility-energy relation that is inferred from the geometry of states,
which validates a continuous increase of energy-specific mobility as electron energy increases from Ect .
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I. INTRODUCTION

Hydrogenated amorphous silicon (a-Si:H) was one of the
earliest candidates for the channel semiconductor in thin film
transistors that are critical in large-area electronics (LAE) and
Internet of Things (IoT) applications. The most noticeable
drawback of a-Si:H is the low electron mobility, which mainly
results from localized electron states induced by structural
disorder. Most of these localized states exist in the density
of states (DOS) distribution as a nearly exponential tail at the
bottom of the conduction band (CB) [1–3]. Similar tails have
been observed in other disordered semiconductors as well [4].
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Revealing the physical origin of these band tails was a
matter of significant discussion in the last century. Kane
[5] understood the structural disorder from the perspective
of potential fluctuation that follows a Gaussian probabil-
ity distribution. A Thomas-Fermi-type approximation was
adopted, and the DOS distribution of deep localized states
was reproduced for highly impure semiconductors. The DOS
distribution of shallow states was simulated in an improved
model by Halperin and Lax [6], where a spatial autocorrela-
tion function was introduced to model the short-range order in
amorphous solids. More accurate modeling schemes were de-
veloped later by John et al. [7], where different autocorrelation
functions were studied for disordered solids. From a different
perspective, randomly positioned charged centers were con-
sidered in the model of Overhof and Beyer [8], which they
thought could account for the existence of potential fluctua-
tions, but the essence of the charged centers and their relation
to the material structure of a-Si:H are vague. The model devel-
oped by Silver et al. [9] was like the above approach, but the
effect of charged defects was superimposed onto a backbone
Gaussian distribution of potential fluctuations, which in turn
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generated the exponential feature in the DOS distribution of
a-Si:H.

Despite their analytical rigor, none of these models probe
into and establish direct connections with the structural dis-
order of amorphous semiconductors. In addition, though
capable of reproducing DOS distributions, these models
fail to unambiguously exhibit the nature and properties of
localized tail states. In this regard, the earlier Anderson
localization theory elucidates the physical mechanisms of
electron localization [10]. However, insights are not straight-
forwardly obtained as quantum-mechanical solutions of the
potential wells model are necessary, the computational cost
of which prevents meaningful results at a reasonable three-
dimensional (3D) scale. Returning to the above DOS models,
the exponential feature of band tails is itself merely an approx-
imation. Real experimental data from field-effect techniques
[11–13], photoelectron spectroscopy [14], etc., never show
a strict exponential characteristic. It is usually reported that
a linear transitional region exists in and above the band
tail [2,11,14,15]. Some researchers even adopted double-
exponential DOS modeling to describe the band tail of a-Si:H
[16–18]. Hence, attempts to reproduce a purely exponential
band tail, as pursued by most earlier models, may lead to
incorrect interpretation of the underlying physics.

Aside from analytical and theoretical endeavors, computa-
tional approaches based on first-principles studies have also
been used to reproduce the band structure of amorphous
semiconductors such as a-Si:H [19–21]. Despite their high ac-
curacies, direct physical insights are missing, and the origins
of localized tail states remain ambiguous. Moreover, taking
detailed atomistic structures and complex electron-electron
interactions into consideration leads to such a high compu-
tational load that material models are limited to only several
hundreds of atoms even with the aid of high-performance
computing facilities. This prevents a reliable understanding
of the properties of localized states. The periodic boundary
condition may be used to virtually expand the material size,
but the reliability of such a treatment is questionable given the
structural randomness of amorphous materials. A physically
unambiguous, computationally tractable, and satisfactorily
accurate large-scale model is therefore lacking, and this gap
needs to be filled.

a-Si:H and similar covalently bonded amorphous semicon-
ductors have been gradually overshadowed by the emerging
amorphous oxide semiconductors (AOSs) since the break-
throughs of the latter in the early 21st century (e.g., [22]).
The superior electronic performances of AOSs (e.g., higher
carrier mobilities) signify a higher technological potential and
therefore place significant demand on the experimental and
application study of these materials, while old theoretical
topics, such as the focus of this paper, have received less
attention.

In this paper, we aim to reinvestigate this old topic because
it is believed that fundamentally understanding the nature
and properties of localized tail states will shed light on the
electronic conduction mechanisms of amorphous materials
and thereby provides practical guidance on the selection and
engineering of this technologically important class of materi-
als. In Sec. II, a large-scale a-Si:H model based on delocalized
charge density has been developed following a perturbation

approach that obviates the expensive need of resolving the
atomistic details and electron-electron interactions from the
beginning. In Sec. III, with the aid of a recent computational
algorithm, the model has easily and accurately reproduced the
band tail features reported so far for a-Si:H. Not only has
this model unambiguously revealed the essence and proper-
ties of localized tail states, but also it leads to insights and
critical modifications to existing concepts and conclusions
that were widely accepted. These insights will be discussed
in Sec. IV. They would not have been achieved without the
large-scale modeling capability reported in this paper. An
important modification to the room-temperature multiple trap-
ping and releasing (MTR) transport theory [12,23–25] will be
separately elaborated in a sequel to this paper [26]. Further,
the model developed in this paper possesses the merit of being
capable of downscaling which, unlike existing theories, can be
reliably applied to modeling nanoscale amorphous materials.
It will be separately presented in a sequel that the electron
mobility of a nanoscale a-Si:H device is estimated to be ∼ 14
times that of a standard a-Si:H thin film [27], thereby provid-
ing an engineering strategy that fundamentally overcomes the
notorious low mobility of a-Si:H and bringing this otherwise
excellent material back into the spotlight of LAE and IoT.

II. THEORY AND MODELING

The structure of high-quality a-Si:H can be considered
in a thought experiment where it evolves from crystalline
silicon (c-Si) through three phases. First, silicon atomic cores
rearrange themselves to form a continuous random network
(CRN) where the long-range translational symmetry of c-Si is
lost [28]. Second, silicon sp3 orbitals attempt to rearrange to
adjust to the CRN; this leads to two main results: the variation
of bond angle and length (altered overlap) and the formation
of dangling bonds (DBs; lost overlap). Third, hydrogen atoms
come into the network and passivate most DBs [29].

Assuming that the disorder in the high-quality a-Si:H is
weak, it is reasonable to take a perturbation approach and
assume that the weak disorder only causes perturbations to
the atomistic details and electron-electron interactions from
those of c-Si. Instead of rigorously resolving them from the
beginning as a first-principles study would pursue, it is accept-
able to analyze the band structure of a-Si:H using c-Si DOS
distribution as a backbone and subsequently consider effective
perturbation factors.

Due to their spatial confinement, inner orbital electrons
of silicon atoms are not separately resolved. Instead, they
are analyzed alongside the silicon nuclei; the ensembles are
atomic cores. The structural disorder of a-Si:H means that
there are displacements of silicon atomic cores from their
previous positions in the c-Si. However, the average spacing
of neighboring silicon atomic cores in a-Si:H is similar to that
of c-Si given the similar densities of the two materials even
after excluding hydrogen [30]. Further, given that the absolute
displacements of atomic cores are random with no spatial
correlations, they do not accumulate a noticeable net change
of electric environment within the material. These facts mean
that the displacements of atomic cores alone cannot noticeably
modify the backbone c-Si DOS. The above approximations
are similar to that adopted by the reputable Anderson lattice
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model which also circumvents analysis of the details and
displacements of atomic cores [10].

The existence of hydrogen atoms adds more complexity,
as they bring in extra electrons and protons into the network
which perturb the electric environment. Experimental mea-
surements show that hydrogen does leads to characteristic
peaks in the DOS distribution of a-Si:H [31,32]. These peaks
correspond to the local DOS of the hydrogen atoms them-
selves and the local DOS of the silicon atoms that are spatially
adjacent to these hydrogen atoms [32]. Nevertheless, these
characteristic peaks prevail outside the CB tail range which
is solely of interest in this paper [32]. Furthermore, not only is
the hydrogen concentration in high-quality a-Si:H films low
(typically ∼10 at. %) [2], but also hydrogen possesses a low
valency compared with silicon. The perturbation by hydrogen
to the band tail region is thus further limited. It is also worth-
while to note that hydrogen exhibits a higher electronegativity
than silicon. Hence, the extra electrons brought by hydrogen
are in closer proximity to hydrogen protons than to the rest of
the random network linked via silicon atoms. The hydrogen
atoms can therefore be treated as isolated neutral points when
analyzing the band tail structure.

Hence, the formation of the CB tail must be mainly
attributed to the bond angle and bond length distortion.
The change of orbital overlap due to the distortion has a
consequence of generating an extra nonuniformity to the dis-
tribution of delocalized valence band (VB) and CB electrons
of silicon (see the note in [33]), which, under thermal equilib-
rium, may be expressed as

ρ(r) = ρc(r) + δρ(r), (1)

where r is a position vector, ρc and ρ refer to the delocalized
electron density distribution in c-Si and a-Si:H, respectively,
and δρ is the excess charge density distribution that quantifies
the extra nonuniformity. Such a nonuniformity is not unknown
either in theories or in experiments [34–37]. Since the number
of delocalized electrons from silicon is conserved despite the
structural evolution from c-Si to a-Si:H, the neutrality rule:∫∫∫

Ω

δρ(r)dv = 0, (2)

holds true, where dv is an infinitesimal volume in the whole
spatial region (Ω) of the studied a-Si:H.

Focusing on the CB tail, the excess delocalized charge
density distribution serves as a perturbation factor that intro-
duces a minor correction to the well-known near-band-edge
parabolic DOS of c-Si:

gc(E ) = 4π (2m∗
n )3/2

h3

√
E − EC0, (3)

where m∗
n represents the effective electron mass in c-Si, EC0

denotes the CB edge of c-Si and h is the Planck constant.
The minor correction stems from the extra electric potential
distribution induced by δρ(r). As has been mentioned, the
displacements of silicon atomic cores produce trivial extra
potential because the absolute displacements of individual
atomic cores are not spatially correlated as revealed by the
network randomness. By contrast, the extra potential induced
by δρ(r) is more significant. Here, δρ(r) is determined by the
spacing between neighboring silicon atomic cores. Thus, it is

the relative displacements of atomic cores that matter, see the
note in [38]. The radial distribution function (RDF) obtained
from neutron scattering indicates that there is short-range
order in a-Si:H and that the tetrahedral bonding structure is
approximately maintained locally [2,39]. In addition, a-Si:H
also possesses medium-range order. Instead of a pure CRN
model, a blended model of CRN and paracrystallites better
accounts for the medium-range order characteristic observed
from fluctuation electron microscopy [40]. The coexistence
of short-range order and paracrystallite-like medium-range
order means that the interatomic spacings of silicon at nearby
locations are similar. This implies that δρ(r) exhibits certain
spatial correlation and that the value of δρ varies slowly
in space and allows the accumulation of noticeable electric
potential inside the material.

Like the approximation in the model of Kane [5], it is
further assumed that the superimposed potential fluctuates
considerably slowly in space relative to the spatial oscillations
of wave functions. Hence, it causes the previous c-Si energy
levels to fluctuate in the energy-space diagram in a similar
manner. Specifically, the conduction band minimum (CBM)
fluctuates as

EC (x) = EC0 + (−e)
∫∫∫

Ω

δρ(r)

4πεrε0|x − r|dv. (4)

Here, εr is the relative permittivity which is deemed con-
stant throughout the material (12 for a-Si:H [9]), ε0 is the
vacuum permittivity, and e is the elementary charge. As will
be utilized, it is useful to assume that energy levels fluctuate
synchronously, but this is acceptable only within a narrow
energy range as is the focus of this paper; it may lead to
nontrivial inaccuracies when analyzing energy levels that are
well separated (see Sec. IV A for further information).

Despite the band fluctuation, the same Fermi level is shared
throughout the amorphous system under thermal equilibrium.
This can be understood as follows. If a zero temperature was
assumed in the beginning when there were only VB electrons
that generated band fluctuation in the amorphous system,
the Fermi level should fluctuate in a similar manner to the
other energy levels. This is because all local regions could be
deemed thermally isolated from each other. At room temper-
ature, however, a portion of electrons are thermally excited
from VB to CB at every local region, immediately after which
is the spatial rearrangement of CB electrons; regions with
higher CBM energies tend to lose CB electrons to regions
where CBM energies are lower. Holes in VB act similarly in
response to the valence band maximum (VBM) fluctuation.
The redistribution of CB electrons and VB holes effectively
superimposes an extra charge distribution onto the previous
valence charge distribution at 0 K. This superimposed charge
distribution in turn induces an extra potential distribution that
tends to counteract the previous CBM and VBM fluctuation at
0 K. Nevertheless, given the far lower number of CB electrons
and VB holes than that of VB electrons, at room temperature,
the effect of free-carrier redistribution is merely to smooth
the band fluctuation rather than canceling it. In another word,
the free carriers can be treated as an attenuator which reduces
the extent of band fluctuation. The change of band fluctuation
triggers further charge redistribution. These two dynamically
interacting factors are meanwhile coupled with the effect of
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the concentration gradients of CB electrons and VB holes.
An equilibrium state is eventually established, which is when
the Fermi level is unified throughout the whole amorphous
system whereas the other energy levels fluctuate. Regions
with lower CBM energies eventually hold more electrons than
holes, indicative of lower local activation energies. Return-
ing to Eq. (1), it is the eventual steady-state distribution of
VB and CB electrons that is depicted. Therefore, δρ(r) is
said to be a macroscopic implicit reflection of the additional
electron-electron interactions induced by structural disorder.
This perturbation factor is explicitly superimposed onto the
basic electron-electron interactions in c-Si which have been
reflected by the backbone c-Si DOS distribution.

Like crystalline systems, the DOS in an amorphous sys-
tem is defined based on the maximum possible number of
electrons per unit energy interval per unit volume. Taking a
finite-element approach, a-Si:H is segmented into elements
termed short-range localities (SRLs), which are cubic regions
with a side length of a0 that is similar to the short-range order
length which typically spans from 2 to 5 Å [41]. In this paper,
a0 is chosen to be 3 Å. Consider an energy interval [E, E +
δE) and a SRL at position xi, j,k , within which the band is
deemed flat in the energy-space diagram. Here, i, j, and k
are the position indices of the SRL. Under the assumption of
fluctuation synchronicity, the maximum number of electrons
in this SRL within the energy interval is

4π (2m∗
n )3/2

h3

√
E − EC (xi, j,k )δEa3

0, (5)

in accordance with Eq. (3). Equation (5) maintains accuracy
near the local band edge EC (xi, j,k ). Here, another assumption
is that any energy level (after resolving spin degeneracy)
within any SRL holds a maximum number of a3

0/V electrons,
where V is the volume of the material (see Sec. IV B for a
brief proof). Scaling up to the whole material, the maximum
number of electrons within the specified energy interval is

g(E )V δE =
∑

i

∑
j

∑
k

{
4π (2m∗

n )3/2

h3

× �[√
E − EC (xi, j,k )

]}
a3

0, (6)

where � extracts the real part of a function. The DOS dis-
tribution g(E) of the amorphous material can therefore be
calculated if the energy distribution of EC (xi, j,k ) is known. To
this end, a Gaussian probability density function (PDF) cen-
tered at EC0 has been usually assumed [5,9,37,42]. However,
this assumption is not adopted in this paper for three reasons:

(1) The Gaussian assumption is based on multiple further
approximations which might not necessarily be accurate [5].

(2) The standard deviation σ0 of the energy distribu-
tion of EC (xi, j,k ) would be the only effective parameter that
determines the DOS profile through Eq. (6). This oversimpli-
fication significantly reduces the reliability of the theory and
limits its capability of fitting to existing DOS data.

(3) The origin and physical meaning of σ0 is unknown,
so it is not a good quantity to unambiguously reflect the
extent of structural disorder. Moreover, it is hard to evaluate
how σ0 changes with material size. This prevents a reliable

application of this modeling method to nanoscale amorphous
semiconductors which are of significant research interest.

A more prudent method is therefore developed in this
paper, where the charge density distribution δρ(r) serves as
the basis of modeling. Given the short-range order, δρ(r) is
equivalently represented by an array of point charges sitting
at the centers of individual SRLs. These equivalent excess
delocalized charges are quantified by

ql,m,n =
∫∫∫

Ωl,m,n

δρ(r)dv, (7)

where Ωl,m,n denotes the region of the SRL indexed by l ,
m, and n. Modeling an amorphous thin film now reduces to
modeling a discrete 2.5-dimensional (2.5D) array with two
attributes:

(1) Globally, the PDF of ql,m,n [instead of EC (xi, j,k ) ] fol-
lows a Gaussian distribution with a zero mean. This is based
on four reasons. First, δρ(r) meets the neutrality criterion in
Eq. (2), and so does ql,m,n. Second, given the randomness
of structural evolution from c-Si to a-Si:H and the similar
densities of the two materials, the increase and decrease of
atomic spacing should occur with similar probabilities. As
a result, there should be no evident mechanism by which
negative excess charges are created more easily than positive
excess charges, and vice versa. Hence, the charge distribution
should be symmetric around zero. Third, according to the
weak disorder assumption, there are more SRLs whose ql,m,n

is nearer zero, indicative of a PDF peaked at zero. Fourth, the
creation of excess charge density should obey the central limit
theorem given the various independently occurring noises dur-
ing the structural evolution processes from c-Si to a-Si:H.

(2) Locally, ql,m,n varies slowly in space. This property
has not been specially considered in previous literature (e.g.,
Refs. [8,9]), but its importance is emphasized here, as it is an
alternative expression of the short- and medium-range order
detailed earlier.

The autocorrelation function has been used by earlier re-
searchers to model the short- and medium-range order of
disordered systems [6,7], but they targeted the potential fluc-
tuation. Though adoptable in this paper, it is hard to ensure
that the charge array modeled in this way exhibits a Gaus-
sian distribution. This difficulty increases drastically for 2.5D
modeling. Therefore, an alternative method is investigated,
where the slow spatial variation is quantified by

max(|ql,m,n − ql+1,m,n|, |ql,m,n − ql−1,m,n|,
|ql,m,n − ql,m+1,n|, |ql,m,n − ql,m−1,n|,
|ql,m,n − ql,m,n+1|, |ql,m,n − ql,m,n−1|) � �q. (8)

This needs to hold true for almost all (defined here as
�98%) indices in the array, where �q is a constant charge
and is defined in a scaled form as

�q = δ × 4σ, (9)

with σ being the standard deviation of the Gaussian PDF
of ql,m,n and δ being a dimensionless filtering constant. The
smaller the filtering constant, the more gradual the spatial
variation.

To satisfy both attributes, firstly, a 2.5D random number
array with a Gaussian PDF of zero mean and a tentative
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FIG. 1. Simulation of an a-Si:H thin film. (a) The equivalent excess delocalized charge distributions in the middle layer of the 2.5-
dimension (2.5D) model under different window dimensions. From left to right, the window dimension w ranges from 0, 2a0, 5a0, 10a0,
to 20a0. (b) The probability density function (PDF) of charge distribution shared among the five cases in (a). (c) The dependences of the
proportion on r (as defined in text) for the five cases in (a). The corresponding filtering constants (δ′s) are derived and labeled on the top.
(d) The density of state (DOS) distribution of the 2.5D model with w = 5a0. The data are plotted to both the logarithmic scale (red, left) and
the linear scale (blue, right). The exponential, linear, and parabolic regions are labeled by the dashed lines on the curves. Quantitative and
qualitative features reported in the literature are reproduced as elaborated in text. (e) and (f) The energy distribution and spatial distribution of
the local band edges of the 2.5D model fitted in (d). (g) and (h) The geometries of states derived from (f). The green region in (g) and the blue
region in (h) denote a typical extended state and a typical localized state, respectively. The energies in (d)–(h) are evaluated relative to EC0.

standard deviation is generated in MATLAB using the built-in
NORMRND function. The numbers in this array vary drastically
in space. A 3D moving average algorithm is then adopted
to smooth the spatial variation. The window dimension (w),
which quantifies the side length of the cubic region for the
averaging operations in the algorithm, is quantitatively related
to the filtering constant δ. It will be shown shortly that the PDF
of the smoothed array still maintains the feature of a Gaussian
distribution if the array size is sufficiently large relative to w.

III. SIMULATION AND RESULTS

The direct calculation of the band edge distribution from
the excess charge distribution via Eq. (4) is essentially a
many-body interaction, which scales with N2 with N being the
number of SRLs involved. Like massive celestial and particle
simulations, advanced computing algorithms can alleviate the
numerical burden while allowing the increase of model size
[43–46]. The fast multipole method (FMM) has been chosen
to accelerate the computation in this paper, with which the
computational load only approximately scales with N [45].

For the 2.5D model here, the reputable FMM3D algorithm
developed by the Flatiron Institute has been utilized [47]. The
execution time of this Fortran-based parallel computing algo-
rithm has been evaluated, based on which the size of the model
in this paper has been chosen as 500a0 long, 500a0 wide, and
25a0 thick, corresponding to a 150 × 150 × 7.5 nm a-Si:H
thin film. The band edge calculation takes only ∼ 90 s with
an Intel Core i7-12700H CPU (14 cores, 20 threads) and a 32
GB memory (DDR5, 4800 MHz). Though it is still computa-
tionally expensive to approach the submillimeter-scale size of
a typical amorphous thin film from which most experimental
DOS data is produced, the submicrometer scale model here
is massive enough to yield semiquantitatively reliable results
that are sufficient to validate the theory in this paper.

Shown in Fig. 1(a) is the spatial distribution of the equiv-
alent excess delocalized charges in the middle layer (at z =
13a0) of the modeled thin film. From left to right, w ranges
from 0, 2a0, 5a0, 10a0 to 20a0. Although the moving aver-
age smoothing maintains the Gaussian distribution feature, it
changes the standard deviation. The results after rescaling the
five systems to match a unified standard deviation are shown
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in this figure. Its exact value, as labeled by σ in the Gaus-
sian PDF plot in Fig. 1(b), has been retrospectively derived
from the subsequent fitting to existing experimental DOS data,
which will be discussed in reference to Fig. 1(d).

For every SRL, the differences between its excess charge
value and those of its nearest neighboring sites have been
evaluated, and the maximum charge difference is recorded.
In accordance with the left-hand side of Eq. (8), a factor r0

is assigned to every SRL, which is defined as the maximum
charge difference at the SRL after being divided by 4σ . There
are only a proportion of SRLs whose r0 is less than a certain
value r. The dependence of this proportion on r has been
calculated in Fig. 1(c). According to the definition in Eqs. (8)
and (9), the value of the filtering constant δ for each choice of
w has been retrieved and is labeled in the figure. These values
are determined in such a way that 98% SRLs in the modeled
material possess an r0 that is less than δ.

Using the FMM3D algorithm, the local band edge distri-
bution has been calculated, and the DOS distribution has been
derived via Eq. (6). Both the Gaussian standard deviation σ

and the window dimension w were initially unknown. For
this semiquantitative study, w is tentatively chosen to be 5a0

(see Sec. IV C for further discussions). The value of σ is
then determined through fitting the calculated DOS curve
to experimental DOS data obtained from a glow discharged
a-Si:H sample using field-effect DOS characterization [12]
(see Sec. IV C for the reasons why these experimental data are
chosen). It is emphasized here that only the tail region DOS
data (from 0.2 to 0.14 eV below the CB mobility edge EC)
are selected for fitting. Below this range, the dangling-bond-
related midgap defect states begin to interfere. Above this
range, the data come from extrapolations [11,12,17,48,49],
which are not quantitatively reliable. The fitted DOS curve is
shown in Fig. 1(d), where an exponential region of a character-
istic temperature TC = 201 K fits well with the experimental
data. The position of EC is determined at the energy that is
0.14 eV higher than the end of the exponential branch. The
DOS value at EC matches the estimation in Ref. [2]. As in-
dicated by photoemission methods [2,31,32], the exponential
curve will gradually transition to a parabolic curve at higher
energies via a linear region that typically begins from ∼ 0.1
eV below EC [15]. These quantitative and semiquantitative
features can all be found in Fig. 1(d). In addition, it will be
shown in a sequel to this paper that using the calculated DOS
distribution in this paper, an excellent fitting to experimentally
obtained temperature-dependent electron drift mobility data is
achieved [26]. All these facts validate the accuracy of the band
fluctuation theory developed in this paper.

The band edge energy distribution is given in Fig. 1(e).
Unlike the assumption in Refs. [5,9], this distribution does not
follow a Gaussian profile. The spatial distribution of the band
edge in the middle layer is shown in Fig. 1(f). As the thickness
of the modeled sample is only 25a0, which is much shorter
than the characteristic length of band edge fluctuation, it is
expected that the spatial distributions within the other layers
are almost identical to Fig. 1(f). Thus, only the in-plane state
geometry is investigated. Shown in Fig. 1(g) is the geometry
of the extended state (see the note in [50]) at the energy of 0.1
eV, where the green regions are allowed and the black regions
are prohibited. An electron at this energy can carry net global

currents because it can migrate from an electrode on one
boundary to the counterelectrode on the opposite boundary.
By contrast, in Fig. 1(h), the localized state at the energy of
−0.05 eV, which is 0.125 eV below EC , does not connect
the boundaries, so an electron at this energy carries zero
net current. These results have partly validated the schematic
envisagement of state geometry in Ref. [51].

It is highly significant that the modeling scheme in this
paper is scalable; it can be reliably applied to nanoscale
amorphous semiconductors. A study on this subject has been
carried out, and the results will be reported in a sequel to
this paper [27]. The reason for the scalability is that the
fundamental bonding structure of a nanoscale amorphous
semiconductor is like that of its bulk counterpart if the growth
or deposition conditions of the two materials are identical.
This is especially so if the nanoscale material is directly
etched from the bulk. This means that a fraction of the mod-
eled charges in the bulk material can be directly extracted and
reliably passed on to the modeling of the nanoscale material.
By contrast, if it was only the potential fluctuation that was
modeled at the start (e.g., in Ref. [5]), it would be hard to tell
if and how the potential fluctuation in the nanoscale material
would be different from that in its bulk counterpart, thus lead-
ing to ambiguities in understanding the difference between the
properties of the two materials.

IV. DISCUSSIONS

A. Discussion on the different sensitivities of orbitals to the
excess delocalized charges

The calculation of DOS distribution in this paper assumes
that all energy levels in a previous crystalline counterpart now
fluctuate in the energy-space diagram in synchronicity such
that the local DOS distribution within a SRL of an amorphous
semiconductor is treated as being the same as that of the
crystalline counterpart. It has been stated in Sec. II that this
assumption only holds true within a narrow energy range such
as the band tail region studied in this paper. For energy levels
that are well separated, this assumption could lead to notice-
able errors. Evidence is that, in experimental DOS data, the
CB tail is steeper than the VB tail, which cannot be explained
if the fluctuation synchronicity is assumed.

In the derivation of the energy level fluctuation in Sec. II,
it is assumed that the excess charge density is distributed
uniformly within individual SRLs such that equivalent excess
charges are defined, which sit at the centers of the SRLs. In
addition, when calculating the potential at a SRL via Eq. (4),
this uniform charge distribution assumption allows the omis-
sion of the contribution to the potential from the charge within
the SRL itself, which otherwise leads to a singularity. Most
delocalized charges are valence electrons, which comprise 3

4
p electronic states and 1

4 s electronic states. Valence orbitals
therefore result from the coupling of the two types of or-
bital components, and the valence electron cloud possesses
a specific spatial geometry. Hence, delocalized charges are
not microscopically uniform; they prevail at certain regions
inside individual SRLs. Similarly, the electrons at the CBM
and VBM also follow specific spatial distributions within indi-
vidual SRLs. While the VBM comprises mainly p-like orbital
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FIG. 2. A one-dimensional (1D) illustration of the fluctuations of
valence band (VB) energy levels in a-Si. The dashed lines represent
valence band maximum (VBM; red) and the ith energy level (blue)
in the VB of c-Si, while the solid lines represent the fluctuation of
these levels in a-Si.

components, the CBM contains mainly s-like orbital com-
ponents [2]. Thus, it is expected that, compared with CBM
electrons, the VBM electrons would have more spatial overlap
with the valence electron cloud because the valence electron
cloud contains a high proportion of p components as well. As
a result, the contribution from the excess charges within a SRL
to the potential sensed by a VBM electron at this SRL can
no longer be omitted. The Coulomb interaction between the
VBM electron and the other valence electrons within the SRL
is significant due to the spatial proximity of these charges. The
potential fluctuation sensed by the VBM electrons are thus
underestimated by Eq. (4). According to Eq. (6), the actual
VB tail should therefore appear more gradual.

The entire CB spans ∼9 eV [32], whereas the CB tail in this
paper only spans an energy range of ∼0.2 eV. Hence, for the
purpose of studying the band tail, only a very narrow range of
energy levels are involved; they possess similar orbital com-
positions. The fluctuation synchronicity is thus still a good
approximation in this paper.

B. Justification of the assumption on the maximum number of
electrons allowed at an energy level within a SRL

It is stated in Sec. II that the maximum number of electrons
which can be allowed at any energy level within any SRL
is a3

0/V , where a0 is the side length of the SRL and V is
the whole volume of the material. A reductio ad absurdum
approach can be used to justify this statement.

First, it should be recalled that the existence of hydrogen
atoms is neglected when analyzing the formation of CB tail.
DBs in a-Si:H are also trivial, as most of them have been
passivated by hydrogen. It is thus more straightforward to
investigate a fictitious fourfold-coordinated unhydrogenated
amorphous silicon (a-Si) with neither hydrogen nor DBs,
which evolves from c-Si through structural disorder. The
statement being investigated is regarding the nature of all
energy levels, either in CB or VB. For ease of analysis, the
VB is considered. As illustrated in Fig. 2, due to the po-
tential fluctuation induced by the excess delocalized charge
density, the previously flat VB energy levels now fluctuate in
the energy-space diagram; depending on material deposition
conditions, this fluctuation can take any possible form and
differs for different energy levels as has been mentioned in
Sec. IV A.

Suppose that there are M energy levels in the VB of c-Si.
At 0 K, all the energy levels in the VB of a-Si are fully
occupied by electrons. If the fact was opposite to the state-
ment under investigation, the maximum number of electrons
(Ni j ) held at the ith energy level within the jth SRL of a-Si
would be quantitatively correlated with the local energy offset
[Ei(x j ) − Ei] via

Ni j = a3
0

V
+ H[Ei(x j ) − Ei], (10)

where H is a function whose form is unknown. The total num-
ber of valence electrons (M’) in a-Si at 0 K can be calculated
by considering all energy levels from all SRLs:

M ′ =
M∑

i=1

V/a3
0∑

j=1

{
a3

0

V
+ H[Ei(x j ) − Ei]

}
. (11)

It is apparent that the evolution from c-Si to a-Si does
not change the total number of valence electrons at 0 K; this
requires M=M’, the only way to ensure which is

M∑
i=1

V/a3
0∑

j=1

{H[Ei(x j ) − Ei]} = 0. (12)

This means that there needs to be a constraint between the
energy distributions of all fluctuating levels and the specific
form of the function H. While there must be mechanisms
leading to a unique form of H (if not always zero), the energy
distributions of the fluctuating levels result from the inherent
material structure that can take numerous possible forms.
Thus, it is impossible to ensure that Eq. (12) always holds true.
A contradiction occurs, so the initial assumption is justified.

C. The choice of window dimension w for the moving average
smoothing and the choice of experimental DOS data

It has been stated in Sec. III that the window dimension
w of 5a0 is tentatively chosen for the purpose of a semi-
quantitative study. It has been subsequently found that the
fitting of the DOS curve to experimental data from Ref. [12]
is attainable under other choices of window dimension. This
fundamentally stems from the fact that the fitted DOS data
are limited to a narrow energy range. A stricter fitting requires
data spanning a wider energetic window to include the linear
and parabolic region as well. The limited energy measurement
range is an inherent issue of the field effect DOS characteri-
zation used in Ref. [12]. In the field-effect measurement, the
Fermi level of the channel semiconductor shifts upward with
gate voltage, which induces charges and thereby changes the
conductivity [11]. DOS at different energies are derived based
on the assumption that the induced charges are all in localized
states [11]. To avoid inducing free carriers, the Fermi level
must therefore be kept sufficiently below the CB mobility
edge of the channel semiconductor. This sets the upper limit
of the measurable energies in a-Si:H to ∼ 0.14 eV below
EC [12]. Extrapolations beyond the measurable range up to
EC , though widely accepted [11,12,17,48,49], can be doubted,
especially in terms of the DOS value at EC , which is smaller
than the values obtained via other techniques (e.g., Ref. [52]).
As labeled in Fig. 1(d), Street [2] estimated that this value
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FIG. 3. Different combinations of window dimension w and standard deviation σ to achieve a good fitting to the experimental band tail
density of state (DOS) data. (a)–(e) The probability density functions (PDFs) of the equivalent excess delocalized charges, which enable fitting
to DOS data under different choices of w. (f) The constraint between w and σ to ensure the DOS fitting. The combinations in (a)–(e) are
labeled using black squares; these follow an exponential decay function (red line). A higher σ and/or a larger w lead to a wider calculated band
tail than the experimental result, whereas a lower σ and/or a smaller w lead to a narrower band tail.

is ∼ 2 × 1027 eV−1 m−3. Thus, only the data that are directly
obtainable from the field-effect characterization are adopted
[i.e., the dashed olive line in Fig. 1(d)].

The extended states in the CB and VB of amorphous
materials may be characterized by other techniques. The pho-
toemission measurement is a commonly used technique [32],
but it suffers from inaccuracies due to the ambiguities in
the estimation of the spatial volume from which photoelec-
trons emit. Meanwhile, it is limited in energy resolution such
that the band tail features are difficult to resolve. Total-yield
photoelectron spectroscopy has been a direct technique to
reveal the DOS both in the bands and within the mobility
gap [14,53]. Nevertheless, the interpretation of DOS from the
raw spectroscopic data is not straightforward. Quantitative
approximations need to be made. Further, the raw spectro-
scopic data are essentially count numbers. The inaccuracy
further increases due to the necessity to normalize the raw
data to a characteristic DOS peak [53], but the peak itself
might differ from one sample to another. A nearly perfect
exponential VB tail is revealed through this spectroscopy [14].
In addition to the mentioned inaccuracies, in Ref. [14], there
is a seemingly intentional quantification of the average dipole
transition matrix element R(h̄ω) as |R(h̄ω)|2 ∝ (h̄ω)−5 [14],
where h̄ω denotes the incident photon energy. In fact, a more
complex form is elaborated in Ref. [52]. Given that the band
tail DOS values are low such that they are prone to be af-
fected by the above characterization inaccuracies, total-yield
photoelectron spectroscopy is thus not favored in the energy
range of interest in this paper. Nevertheless, if the inaccu-
racy of this technique decreases for the higher CB where
DOS values are much higher, reliable full-spectrum DOS
data may be obtained through marrying the extended-state
DOS data from photoelectron spectroscopy with the band
tail DOS data from the field-effect technique. Apparently, an

accurate and reliable calibration is needed to bridge the two
types of data due to the use of different methods. More work
is needed.

There are also other techniques that characterize the
localized-state DOS. Examples include deep level transient
spectroscopy [54], the space-charge-limited current measure-
ment [55], the space charge capacitance method [56], and
scanning tunnelling spectroscopy [57]. Compared with these,
the field-effect technique is more advantageous in terms of
its accuracy and the fact that it can reliably characterize both
the deep midgap states and shallow tail states. Wide-spectrum
optical absorption techniques [58,59] may appear equally
favorable, but like the issue of total-yield photoelectron spec-
troscopy, determining the absolute DOS values from the raw
absorption data is not straightforward and may cause extra
inaccuracies.

For the above reasons, the DOS data from the field-effect
technique are selected in this paper. Due to the limited
energy range of the data, this work has to degrade to a
semiquantitative study. Nevertheless, w may still be uniquely
determined through additional characterization techniques.
Shown in Figs. 3(a)–3(e) are a set of excess delocalized charge
distributions modeled under different choices of w, which are
all capable of yielding a satisfactory fitting to the limited ex-
perimental DOS data. It is apparent that the required standard
deviation σ , which is the root mean square (RMS) excess
charge per SRL, needs to decrease as w increases, to ensure a
decent fitting. This tendency is quantified in Fig. 3(f), which
can be fitted to an exponential decay function. Deviation from
the σ -w constraint leads to a mismatch of the calculated band
tail from the experimental result, as detailed in Fig. 3(f). As
will be mentioned in Sec. IV F, though not quantitatively reli-
able, there have been theoretical and experimental attempts to
estimate the RMS excess delocalized charge in a-Si. If a more
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reliable technique is developed in the future to reveal the cor-
rect RMS charge value, w will be retrospectively determined.
For now, further quantitative judgments on the exact choice
of w are meaningless. Instead, it is the plausibility and the
significance of semiquantitatively explaining the formation of
band tails using the framework developed in this paper that
should be highlighted.

D. Reinvestigation of the localized state wave
function—Definition and profile

In a crystalline solid, the wave function specifies an elec-
tronic eigenstate which exhibits a specific wave number and
energy. Since energy levels fluctuate in a disordered solid, a
constant energy can now correspond to different local eigen-
states at different SRLs, the straightforward consequence of
which is that an electron drifting at a constant energy is
scattered from one Bloch state to another. The wave number
(thus the momentum) ceases to be a good quantum number
[2]. Nevertheless, though no longer related to an eigenstate
specified by momentum, a wave function can still be defined
in the setting of an amorphous material, which reflects the
electron probability density distribution in the vicinity of a
specific energy.

In the literature from the last century, there was a stereo-
typical description of the wave function of a localized state in
amorphous materials: the envelope of wave function decays
in an exponential manner away from its spatial center. A
concept called localization length was introduced to char-
acterize the exponential decay rate, which was believed to
vary with electron energy in a power-law form [2,60–64].
Nevertheless, based on the understanding of band fluctuation
and the definition as given in the note in [50], a localized
state in an amorphous material is energy specific and is an
ensemble made up of basic electronic states with the same en-
ergy at different SRLs. A localized state can therefore possess
satellite sites with definite boundaries [as shown in Fig. 1(h)].
This casts three doubts on the stereotypical description of the
wave function profile. First, a pure decay function cannot be
used to depict a complete localized state that contains multiple
satellite sites. The decay function may be used to describe a
single satellite site, but the spatial spreads of different satellite
sites are different even though they are at the same energy.
The localization length is thus a poorly defined quantity unless
it quantifies the average spread of all the satellite sites of
a localized state. Second, a localized state and its satellite
sites possess clear spatial boundaries, see the note in [65],
outside which the electron probability is zero, so the asymp-
totic decay is not a favored description of wave functions.
Third, even if a single satellite site is focused, endeavors are
needed to validate if the wave function envelope within the
satellite site approximately follows an exponential profile. It
is thus necessary to reinvestigate this old field considering the
understanding of band structure from the perspective of band
fluctuation in this paper.

Consider an infinitesimally small energy interval [E, (E +
δE)] and a spatial set V s that includes the centers of multiple
neighboring SRLs within an amorphous solid. According to
the expression in Eq. (5), the number of electrons within the
spatial region denoted by V s and within the energy interval is

FIG. 4. Calculation of the wave function at E= −0.05 eV for the
modeled 2.5-dimensional (2.5D) thin film in Fig. 1. (a) The electron
probability density distribution near the middle layer. (b) The one-
dimensional (1D) probability density distribution near y = 201a0 at
the middle layer [labeled by the dashed line in (a)]. These low-
resolution calculation results do not resolve high-frequency Bloch
components, so they approximate the envelope of wave function.

calculated as

Ne(E , s) =
∑

(i, j,k)∈V s

4π (2m∗
n )3/2

h3 �[
√

E − EC (xi, j,k )]δEa3
0

1 + exp
(E−EFa

kT

) ,

(13)

where EFa denotes the Fermi level of the amorphous solid,
k is the Boltzmann constant, and T denotes temperature.
Equation (13) is meaningful only when V s is large enough
to allow the Fermi-Dirac statistics which does not resolve
the high-frequency Bloch components of electron distribution.
The corresponding low-resolution electron probability density
distribution is therefore

|	(E , s)|2 = Ne(E , s)

Vs
∑

s Ne(E , s)
, (14)

where s indicates the position of the set V s, 	(E , s) denotes
the low-resolution wave function, and Vs is the volume of the
spatial region denoted by V s. Using Fig. 1(h) as an example
(i.e., at E= −0.05 eV) and grouping every 53 neighboring
SRLs into a set V s, the electron probability density distribu-
tion is calculated in Fig. 4, where (b) is a one-dimensional
(1D) presentation near y = 201a0 and z = 13a0 as denoted by
the dashed black line in (a). In the calculation, the Fermi level
is assumed to be at 0.62 eV below EC based on the measure-
ment of a real a-Si:H sample [25]. Subsequent calculations
do not observe any variation of the wave function profile with
Fermi level position. This is at least true within a reasonable
range of Fermi level positions from 0.4 to 0.8 eV below EC .
The robustness of the calculated wave function to the choice
of Fermi level essentially results from the normalization in
Eq. (14), where the change brought by different choices of
Fermi level tends to cancel in the ratio form.

It should be noted again that the actual wave function
contains Bloch components that are of high spatial frequen-
cies. The existence of these Bloch components validates an
assumption made in Sec. II that the wave function oscillation
is significantly faster than the potential fluctuation. Exclusive
of these high-frequency components, the calculated results
here are sufficient for the purpose of studying the envelope
of wave functions, which casts doubts on the stereotypical
exponential decay assumption.
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As a localized state does not necessarily exist in the form
of a single cluster in space, its localization length is better
defined by the average spread of its satellite sites. Not shown
here, it is easy to find that, unlike what was widely accepted
(e.g., Ref. [64]), the localization length defined this way does
not vary with energy in a power-law manner.

E. Reinvestigation of the mobility-energy relation
and the position of mobility edge

The conductivity of an a-Si:H can be evaluated via [2]

σ =
∫ +∞

EL

g(E )eμ(E ) f (E )dE , (15)

where the contribution from holes is neglected and the integral
starts from the lowest state of electron carriers at EL below
EC . Here, f (E) is the Fermi-Dirac distribution, and μ(E) is
defined as an energy-specific electron mobility, the form of
which was of dispute in the last century. The main argument
was on whether, assuming a 0 K temperature, μ(E) would
discontinuously drop to zero as the electron energy crosses EC

[2,4]. This mobility-energy relation can now be reinvestigated
considering the modeling developed in this paper.

The mobility of an extended-state electron at a certain
energy depends on two factors: the connectivity and the scat-
tering strength. The connectivity evaluates the ease for an
electron at a constant energy to find a complete path to migrate
from one boundary of the material to the counterboundary.
The connectivity at the critical energy (Ect ) that demarcates
extended states from localized states is just above zero, and
the motion of electrons at this energy is highly constrained
as the conduction path is just narrowly formed. The higher
the energy of a state, the better the connectivity, thus the
higher the electron mobility at this energy. Due to the band
fluctuation, extended-state electrons are frequently scattered
from one momentum to another. Meanwhile, forbidden re-
gions [such as the black regions in Figs. 1(g) and 1(h)] serve
as barriers that also scatter the electrons. These two scattering
mechanisms significantly reduce the mean free path of an
extended-state electron, thus reducing its mobility by around
two orders of magnitude compared with the free electron
mobility in c-Si [47,66]. The change of mobility with energy
should be continuous given the continuous evolution of state
geometry, as can be inferred from Fig. 1(f). Hence, it is be-
lieved that, at 0 K, the electron mobility starts from zero at
Ect and continuously increases with an increasing energy. This
favors Cohen’s point of view [4].

The classical percolation theory may be used to give a
rough quantification of the mobility-energy relation [64,67],
but this is only reliable near Ect where the connectivity is
highly limited such that the effect of scattering is secondary.
The connectivity eventually saturates at higher energies in the
CB, and these are where the scattering strength becomes the
dominant factor that affects the electron mobility. However,
the scattering strength at these high energies depends on the
extent of the fluctuation of the relevant energy levels, which
cannot be predicted now. Moreover, the electron mobility also
depends on the effective electron masses, but their values at
these high energies are unknown, which can be significantly
different from those near Ect . Nonetheless, these ambiguities

FIG. 5. Illustrations of two possible band tail hopping mecha-
nisms. (a) Impurity-assisted hopping. (b) Combined phonon-assisted
hopping and multiple trapping and releasing (MTR). The orange
sphere denotes an electron. The purple arrows indicate the migration
of the electron.

can be neglected, as the mobility-energy relation is much more
important near the CBM where most electronic transport takes
place.

Under the 0 K assumption, electron hopping is prohibited,
so the mobility below Ect would be zero, as these localized
states do not connect the boundaries of the material. If a finite
temperature is considered instead, the hopping mechanism
exists and dominates the transport at low temperatures [25],
which therefore maintains nonzero mobilities for electrons
below Ect . In a stereotypical description of electron hopping,
the wave functions of localized states decay away from their
spatial centers in an exponential manner such that overlaps
exist between spatially and energetically adjacent localized
states to allow tunnelling [2,60–62]. This description of wave
function spreads, however, has been questioned in Sec. IV D
based on the band fluctuation theory. The following mecha-
nisms are thus proposed to account for the band tail hopping.

As illustrated in Fig. 5(a), the first is impurity-assisted
hopping. Unlike the ordinary localized tail states that form
due to band fluctuation, impurity states in the band tails are
typically related to extrinsic atoms such as dopants. Their
wave functions can sit in the band tail, spread out in space,
and might bridge over the forbidden regions between the
satellite sites of a localized state, which can enable band tail
hopping near a constant energy. Without the impurity states,
electron tunnelling between neighboring satellite sites will not
be possible because the wave functions of the satellite sites
have zero overlap due to their definite boundaries. This casts
doubts on the description of tunnelling mentioned in Ref. [51].
Shown in Fig. 5(b) is another mechanism based on a combi-
nation of phonon-assisted hopping and multiple trapping and
releasing (MTR) processes. Some forbidden regions can be
bridged by higher localized states whose spatial spreads are
wider. Thus, if an electron is thermally excited from a deep
localized state to a shallow localized state, it can migrate
through some of the forbidden regions of the previous deep
state. However, shallow localized states still cannot eventually
connect the boundaries of the material. Hopping conduction
cannot occur unless a complete conduction path through the
sample is formed. Therefore, for the electron to eventually
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migrate through the whole sample, it has to, at some points, be
thermally released to an extended state; this is when the MTR
mechanism comes into play, which describes the interaction
between localized states and extended states [12,23–25]. For
a-Si, electronic transport can be almost entirely described by
MTR near room temperature, but MTR mechanism rapidly
becomes insignificant as temperature decreases since the time
for a localized-state electron to be thermally released to an
extended state increases rapidly as temperature decreases
[23,25]. In comparison, the pure phonon-assisted hopping
is less affected by temperature. Thus, the overall band tail
hopping conductivity, which is averaged over both the pure
phonon-assisted hopping and the MTR processes, decreases
less drastically with temperature than the conductivity of a
pure MTR transport [25].

In the old theories, the band tail hopping does not involve
any extended states or impurity states because it was believed
that localized states were randomly and independently dis-
tributed in the amorphous material as scattered islands, whose
wave functions extend out to overlap with each other, thus
forming conduction paths [2,64]. Nevertheless, based on the
framework in this paper, extended states and/or impurity states
are essential; in reality, the phonon-assisted hopping mecha-
nism and MTR mechanism should be almost always coupled.
In addition, some old hopping theories are based on a stereo-
typical concept called average spatial separation of localized
states [68,69]. They believe that this average separation can be
easily calculated by taking the − 1

3 power of the total density of
localized states that is evaluated through integrating the DOS
over the entire band tail. However, according to the model in
this paper, a more convincing depiction should be that low-
energy states are always spatially included inside high-energy
states. Wherever a low-energy state is allowed, a high-energy
state is also allowed. Hence, the concept of average separation
is meaningless. This concept only makes sense for localized
states that are related to defects (e.g., DBs in unhydrogenated
a-Si) and impurities (e.g., donors and acceptors) which are
physical entities that enable Coulomb interactions with elec-
trons, but it is the disorder-related localized states studied in
this paper that are predominant in quantity and form band
tails.

Based on the above analyses for the mobility above and
below Ect , a convincing mobility-energy relation at a fi-
nite temperature is envisaged and schematically illustrated in
Fig. 6. As has been analyzed, above Ect , the electron mobil-
ity continuously increases as the electron energy increases.
Below Ect , the mobility drops asymptotically to zero as the
energy decreases since the deeper the state, the more distant
and smaller the satellite sites, and the harder the hopping.

According to the original definition of mobility edge, EC

should be the same as Ect . Nevertheless, it is not feasible to
experimentally determine the critical demarcation energy, as
there is currently no technique to characterize the geometry
of states. Instead, the mobility edge is indirectly determined
via the activation energy of conductivity in temperature-
dependent measurements. Near room temperature, hopping
conduction is neglected and transport in a-Si:H is dominated

FIG. 6. Illustration of the mobility-energy relation and the en-
ergy distribution of electron density. Ect demarcates localized states
and extended states. EC is the experimentally derived conduction
band mobility edge through activation energy measurements. The
red curve illustrates the actual μ(E) curve under a finite temperature,
while the green line depicts a constant mobility model that is adopted
in the interpretation of conductivity and drift mobility results. The
cyan curve illustrates the energy distribution of electron density. All
the scales are for illustration purposes only.

by the MTR mechanism [25], which leads to a conductivity:

σ =
∫ +∞

Ec

g(E )eμ(E ) f (E )dE . (16)

In a typical approximation, the mobility is treated as being
zero below the mobility edge and being a constant above the
mobility edge [2]; this simplifies Eq. (16) to

σ = eμCnext, (17)

where μC is a constant mobility termed extended-state mobil-
ity or free electron mobility [49], and next denotes the summed
density of all extended-state electrons. Given the energy dis-
tribution profile of the extended-state electrons illustrated by
the cyan curve in Fig. 6, next is further approximated as [49]

next = g(Ec) f (EC )kT, (18)

which therefore leads to a conductivity of [2]

σ = eμCg(Ec)kT exp

[
− (EC − EF )

kT

]
. (19)

Like the effect of phonon scattering in crystalline materials,
μC is believed to decrease with an increasing temperature T.
This relation was theoretically derived by Mott as μC ∝ T −1

[70], which simplifies Eq. (19) to a pure thermally activated
form. More generally, assuming μC ∝ T −p, where p is around
(but not necessarily) unity, Eq. (19) still exhibits a thermally
activated form which only trivially varies with p. The posi-
tion of EC is determined via the activation energy (EC − EF )
through measuring the logarithmic slope of Eq. (19).
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FIG. 7. Investigations of the geometries of states at different
energies for the 2.5-dimensional (2.5D) model in Fig. 1(f). (a) The
geometry of the state at the critical demarcation energy Ect . (b)
A localized state geometry replicated from Fig. 1(h). (c) The state
geometry at the fitted mobility edge EC in Fig. 1(d). (d) The energy
dependence of state volume. The energies and volumes of the states
in (a)–(c) are indicated using the corresponding colors.

However, considering the actual profile of a μ(E) curve, it
is too crude to treat the mobility above EC as being constant.
Compared with the mobility at higher energies, the mobility
in the vicinity of Ect appears too trivial to be incorporated.
If one must use a constant mobility approximation, Eq. (17)
should instead incorporate only the portion of extended-state
electrons beyond an energy that is higher than Ect and neglect
the contribution to the conductivity from those in the vicin-
ity of Ect . This is illustrated by the green line in Fig. 6. In
Eqs. (18) and (19), EC should therefore denote an effective
mobility edge; this experimentally measurable mobility edge
is thus higher than the actual critical energy Ect that demar-
cates localized and extended states. This result is also favored
in Ref. [71]. From a microscopic perspective, a reinvestigation
of the MTR transport theory based on the geometry of states
in this paper will be elaborated in a sequel to this paper, where
a more rigorous study of the positions of the effective mobility
edge and Ect is presented [26].

In addition, using the simplified constant μ(E) approxi-
mation, the extended-state mobility μC defined in Eq. (17),
which can be deduced from time-of-flight transient drift mo-
bility measurements, turns out to be higher than the actual
mobility at the demarcation energy. The former is derived
to be ∼ 15 cm2/(V s) [49], while the latter is believed to be
∼ 0.01 cm2/(V s) at room temperature, which is the lower
limit of Brownian motion [4].

Returning to Fig. 1(d), the fitted mobility edge apparently
corresponds to an extended state whose energy is higher than
the demarcation energy that instead sits near the bottom of the
linear DOS region. The state geometry of the latter is shown
in Fig. 7(a). For comparison, the geometry of a localized state
is replicated in Fig. 7(b) from Fig. 1(h). Figure 7(c) exhibits
the geometry of the extended state at the fitted effective mo-

TABLE I. Reported RMS charge in a-Si (summarized from
Ref. [36]).

Literature RMS excess charge (×|e| per atom)

Guttman et al. 1980 (theoretical)a 0.2
Klug and Whalley 1982 (experimental)b 0.18–0.32
Ley et al. 1982 (experimental)c 0.11
King et al. 1983 (theoretical)d 0.04
Kugler et al. 1988 (theoretical)e 0.021

aReference [34].
bReference [72].
cReference [37].
dReference [35].
eReference [36].

bility edge. The size of state increases with an increasing
electron energy; this tendency has been quantified and shown
in Fig. 7(d). Given the random nature of the model, it is
not surprising to find that the demarcation energy sits at the
position where the volume of the state takes up ∼ 50% of
the material; this energy position is where a complete path
through the material is just formed. The volume ratio at the
effective mobility edge is also obtained, but due to the differ-
ent size of the model from that of the real material where the
DOS data are obtained, it is hard to tell if this volume ratio is
universally true. Nevertheless, it is the semiquantitative result
that matters, and this has been produced.

F. Discussions of the RMS excess charge value

Earlier works estimated, either theoretically or experimen-
tally, the RMS excess charge value in a-Si [34–37,72]; these
values are listed in Table I with the lowest reported value
being 0.021 electron units per silicon atom [35]. A closer
investigation of Fig. 1(b), however, leads to an RMS excess
charge of 7.15 × 10−4 electron units per SRL.

Klug and Whalley [72] held the viewpoint that effective
atomic charges are generated in an amorphous material due
to the change of atomic dipole moments induced by the dis-
placements of atoms. However, it is hard to tell how such
effective charges are correlated with the charges defined in
this paper, as the latter act as real electrostatic charges that
can induce electric potential, while the former might not.
Even if they are related, the RMS charge value derived by
Klug and Whalley [72] is not reliable because their estimation
based on infrared spectroscopic results contains considerable
simplifications [36].

The charges are more clearly defined in the experimental
work by Ley et al. [37], where they attribute the observed
broadening of silicon 2p core level spectra in a-Si to the
charge transfer into or out of the valence shell of each sil-
icon atom. Their quantification of the RMS charge transfer
(thus the RMS excess charge per silicon atom) is based on
another tight-binding calculation result in which the core level
chemical shift scales linearly with the charge transfer and
the scaling factor is 2.2 eV per charge transfer of a unit
electron [73]. However, the following three aspects should
be noted. First, there is no evidence that the scaling is nec-
essarily linear. The scaling factor is crudely calculated based
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on only a single pair of data coming from the tight-binding
calculation of the electronegativity of the Si−O bond in α-
quartz and the measured chemical shift of the silicon 2p
core level. Second, the tight-binding calculation itself can be
questioned, as different parameter choices can lead to dif-
ferent results; this is shown in their Fig. 8 [73]. Third, the
tight-binding results are obtained in the specific context of
α-quartz. The effect of the existence of oxygen atoms on the
chemical shift is considered entirely from the perspective of
charge transfer between silicon and oxygen atoms, but the
actual mechanism is apparently much more complex. The
authors do not consider this, so the quantitative result, 2.2
eV chemical shift per unit charge transfer, should be highly
specific to α-quartz and should not be generally applicable to
other solids such as the a-Si studied by Ley et al. [37]. Aside
from the issues with the tight-binding calculation mentioned
above, the experiment targets 2p orbitals. Like the analysis
in Sec. IV A, considering spatial proximity, the 2p electrons
are more sensitive to the spatial distribution of valence elec-
trons, while CBM electrons, which are of s-like electronic
states, are less sensitive. The results in Sec. III of this paper
are based on the latter, so the lower RMS charge value is
understandable.

The theoretical investigation conducted by Guttman et al.
[34] assigns net charges to individual silicon atoms through
a population analysis of one-electron eigenfunctions. This
is built on a CRN where each silicon atom is fourfold co-
ordinated. Their larger RMS net atomic charge value than
Fig. 1(b) can be attributed to the reliability issue of the
CRN model itself. The structure of a real a-Si contains a
significant number of coordination defects such as DBs [2],
which facilitate the reduction of the overall network coordina-
tion number to an ideal value 2.45 [74]. The rigid fourfold
coordinated CRN models adopted by these earlier theoret-
ical investigations [34,36] are apparently overcoordinated,
where bond strains accumulate. Based on the microscopic
origin of excess delocalized charges described in Sec. II,
the fourfold CRN models therefore result in higher RMS
charge values.

The model used by King et al. [35] targets a-Si:H. Though
each silicon atom is still fourfold coordinated, the incorpo-
ration of hydrogen reduces the network coordination such
that strains are relaxed. Based on this more reliable model,
they have calculated the net atomic charges for both a-Si:H
and unhydrogenated a-Si, the latter having considered DBs
by setting the Hamiltonian parameters related to hydrogen to
zero (i.e., by eliminating hydrogen atoms from the network).
The resultant RMS atomic charges are still high, which can
be doubted because the Hamiltonian parameters are taken
from the calculations for c-Si. Meanwhile, the model is rather
crude, as admitted by the authors themselves. Moreover, they
calculated the local charges through evaluating the number of
occupied electronic states based on their own DOS calcula-
tion. The reliability of the calculated DOS distribution and
the Fermi level they derived are doubtful. Further, it should
be noted that the CRN models adopted by the above studies
contain <315 silicon atoms due to their computational com-
plexity [34–36]; the statistical feature may not be sufficiently
manifested in these models due to their limited sizes. This

FIG. 8. Density of state (DOS) curves plotted in both logarithmic
and linear scales, calculated in different stochastic trials with the
same charge distribution standard deviation σ and the same window
dimension w.

issue, coupled with the inaccuracy of model parameters, may
lead to qualitative errors.

Another interesting point to be noted is that, though not
clearly mentioned in the literature, these theoretical calcu-
lations were most likely to have been conducted under a
zero-temperature setting. As has been mentioned in Sec. II,
the excitation and redistribution of free carriers at an elevated
temperature attenuates the 0 K band fluctuation and thus leads
to a steeper band tail according to Eq. (6). According to
Fig. 3(f), this steeper tail indicates either a lower RMS excess
charge value or a smaller w. The redistribution of free carriers
is driven by CBM and VBM fluctuations and should thus
follow their spatial characteristics. According to Fig. 1, band
fluctuation is much slower than typical delocalized excess
charge fluctuation, so it is anticipated that the redistribution
of free carriers should at least not lead to a faster charge
fluctuation. In fact, given that the number of the free carriers
are trivial among all the delocalized charges, w at the elevated
temperature should be almost identical to that at 0 K. Thus, it
is certain that the steeper tail must be correlated with a reduced
RMS delocalized charge value. As a result, the lower RMS
charge value in this paper, which is under a room-temperature
setting, is reasonable.

Looking back on this paper, experimental DOS data are
utilized in the derivation of charge distribution. These data
come from a glow discharged a-Si:H sample [12]. a-Si:H is
expected to exhibit a lower RMS charge value than the pure
a-Si studied in the above literature because the passivation of
DBs by hydrogen atoms reduces bond length fluctuation in the
material [37] and thus also leads to a steeper CB tail.

In the end, the semiquantitative study in this paper is
deemed convincing and is sufficient to reveal the origin of the
localized states and account for the profile of the CB tail.

G. Investigation of the stochasticity and the robustness
of the proposed modeling scheme

Due to the stochastic nature when generating the 3D array
using the NORMRND function at the very initial stage, the
calculated DOS curves are expected to differ for each trial.
To evaluate the extent of such differences and validate the
robustness of the proposed modeling scheme, another seven
trials of modeling have been conducted. The set of DOS
curves shown in Fig. 8 are calculated based on the charge
distributions modeled with w and σ that are the same as those
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of Fig. 1(d). It is evident that the effect of stochasticity is pre-
dominantly on the absolute horizontal positions of the DOS
curves, whereas the relative energy ranges of the exponential
and linear regions, the characteristic temperature of the expo-
nential region, and the slope of the linear region remain almost
unchanged regardless of the stochasticity. Without knowing
addition information such as electron affinity, which specifies
the absolute value of EC , any trial is acceptable and can lead
to generally the same σ and w upon fitting to experimental
DOS data. Therefore, σ and w are believed to be rough but
reliable quantifications of the extent of material disorder. The
robustness of the modeling scheme is thus validated.

V. CONCLUSIONS

In conclusion, in this paper, we have developed a physi-
cally unambiguous, computationally tractable, and satisfacto-
rily accurate large-scale model to account for the formation of
band tails in the DOS distributions of amorphous semiconduc-
tors. Here, a-Si:H is used as an example. Rather than resolving
detailed atomistic structures and complex electron-electron
interactions from the beginning, this model is based on a per-
turbation approach which attributes the existence of localized
band tail states in a-Si:H to the band fluctuation induced by
an excess delocalized charge density distribution. This excess
charge density distribution forms as a result of bond angle
and bond length distortion in a-Si:H. Through finite-element
analyses, equivalent discrete excess charges are modeled. It
is then reasonably assumed that these excess charges follow
a Gaussian distribution and vary slowly in space due to the
short- and medium-range structural order in amorphous semi-
conductors. A 150 × 150 × 7.5 nm a-Si:H thin film model is
constructed through a moving average smoothing technique
that filters a Gaussian array of 6.25 × 106 random charge
values. The band fluctuation induced by the excess charges
is easily evaluated using the 3D FMM algorithm developed
by the Flatiron Institute. Accordingly, the DOS distribution is
obtained, and the key model parameters are determined in a
semiquantitative manner through fitting the calculated DOS

distribution to existing experimental data. The satisfactory
fitting retrospectively validates the reliability of the proposed
perturbation approach.

Unachieved by earlier analytical and computational en-
deavors the authors are aware of, the large-scale model in this
paper has nonschematically revealed the geometric features of
localized and extended states; this has profound significance
on the understanding of charge transport in a-Si:H. A sequel
to this paper will continue this topic, where important modi-
fications are made to the established MTR theory considering
the understanding in this paper [26]. Based on the insight
of state geometries, several existing concepts are questioned
or reinvestigated in this paper. These include the envelope
profile of localized wave functions, the mechanisms of band
tail hopping, the mobility-energy relation, and the position of
mobility edge.

The model is robust against the stochasticity of random
number generation at the initial stage. Most importantly, it
is scalable, meaning that it can be reliably utilized to study
nanoscale amorphous semiconductors deposited under a sim-
ilar condition to that of their bulk counterparts. This will
become increasingly important as device dimensions continue
to be reduced, and this topic will be elaborated in the next
paper by the authors, which estimates an ∼14 times increase
of electron mobility in a nanoscale a-Si:H device compared
with that of a standard a-Si:H thin film [26].

The supporting data for this article are openly available
from the University of Cambridge repository (Apollo) at Ref.
[75].

ACKNOWLEDGMENTS

Y.L. appreciates the technical support from Fanyu Ding on
the setup of FMM3D. This paper is supported by the UKRI
Engineering and Physical Sciences Research Council under
Grant No. EP/W009757/1. The authors acknowledge the Rank
Prize for their Return to Research Grant. Y.L. is grateful to the
Cambridge Commonwealth, European and International Trust
for their Ph.D. scholarship.

[1] F. Urbach, The long-wavelength edge of photographic sensitiv-
ity and of the electronic absorption of solids, Phys. Rev. 92,
1324 (1953).

[2] R. A. Street, Hydrogenated Amorphous Silicon (Cambridge
University Press, New York, 1991).

[3] T. Tiedje, B. Abeles, and J. Cebulka, Urbach edge and the
density of states in hydrogenated amorphous silicon, Solid State
Commun. 47, 493 (1983).

[4] M. H. Cohen, Review of the theory of amorphous semiconduc-
tors, J. Non-Cryst. Solids 4, 391 (1970).

[5] E. O. Kane, Thomas-Fermi approach to impure semiconductor
band structure, Phys. Rev. 131, 79 (1963).

[6] B. Halperin and M. Lax, Impurity-band tails in the high-density
limit. I. Minimum counting methods, Phys. Rev. 148, 722
(1966).

[7] S. John, M. Chou, M. Cohen, and C. Soukoulis, Density of
states for an electron in a correlated Gaussian random potential:
Theory of the Urbach tail, Phys. Rev. B 37, 6963 (1988).

[8] H. Overhof and W. Beyer, A model for the electronic transport
in hydrogenated amorphous silicon, Philos. Mag. B 43, 433
(1981).

[9] M. Silver, L. Pautmeier, and H. Bässler, On the origin of ex-
ponential band tails in amorphous semiconductors, Solid State
Commun. 72, 177 (1989).

[10] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[11] W. Spear and P. Le Comber, Investigation of the localised state
distribution in amorphous Si films, J. Non-Cryst. Solids 8, 727
(1972).

[12] W. Spear, The study of transport and related properties of amor-
phous silicon by transient experiments, J. Non-Cryst. Solids 59,
1 (1983).

[13] C. Chen, K. Abe, H. Kumomi, and J. Kanicki, Den-
sity of states of a-InGaZnO from temperature-dependent
field-effect studies, IEEE Trans. Electron Devices 56, 1177
(2009).

104203-14

https://doi.org/10.1103/PhysRev.92.1324
https://doi.org/10.1016/0038-1098(83)91075-X
https://doi.org/10.1016/0022-3093(70)90068-2
https://doi.org/10.1103/PhysRev.131.79
https://doi.org/10.1103/PhysRev.148.722
https://doi.org/10.1103/PhysRevB.37.6963
https://doi.org/10.1080/01418638108222108
https://doi.org/10.1016/0038-1098(89)90518-8
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1016/0022-3093(72)90220-7
https://doi.org/10.1016/0022-3093(83)90514-8
https://doi.org/10.1109/TED.2009.2019157


UNDERSTANDING LOCALIZED STATES IN THE BAND … PHYSICAL REVIEW B 109, 104203 (2024)

[14] K. Winer, I. Hirabayashi, and L. Ley, Exponential conduction-
band tail in P-doped a-Si:H, Phys. Rev. Lett. 60, 2697 (1988).

[15] R. Street, J. Kakalios, and M. Hack, Electron drift mobility in
doped amorphous silicon, Phys. Rev. B 38, 5603 (1988).

[16] R. Vandergaghen and C. Longeaud, Experimental determi-
nation of hydrogenated amorphous silicon and amorphous
silicon-germanium alloy electron transport parameters from
time of flight experiment, J. Non-Cryst. Solids 97, 1059 (1987).

[17] J. Marshall, P. LeComber, and W. Spear, Comments on the
calculation of the extended state electron mobility in amorphous
silicon, Solid State Commun. 54, 11 (1985).

[18] C. Longeaud, G. Fournet, and R. Vanderhaghen, Determination
of the density of states of the conduction-band tail in hydro-
genated amorphous silicon, Phys. Rev. B 38, 7493 (1988).

[19] K. Jarolimek, R. De Groot, G. De Wijs, and M. Zeman, First-
principles study of hydrogenated amorphous silicon, Phys. Rev.
B 79, 155206 (2009).

[20] N. Cooper, C. Goringe, and D. McKenzie, Density functional
theory modelling of amorphous silicon, Comput. Mater. Sci. 17,
1 (2000).

[21] D. A. Drabold, P. Fedders, S. Klemm, and O. F. Sankey, Finite-
temperature properties of amorphous silicon, Phys. Rev. Lett.
67, 2179 (1991).

[22] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H.
Hosono, Room-temperature fabrication of transparent flexible
thin-film transistors using amorphous oxide semiconductors,
Nature (London) 432, 488 (2004).

[23] T. Tiedje and A. Rose, A physical interpretation of dispersive
transport in disordered semiconductors, Solid State Commun.
37, 49 (1981).

[24] P. Le Comber, A. Madan, and W. Spear, Electronic transport
and state distribution in amorphous Si films, J. Non-Cryst.
Solids 11, 219 (1972).

[25] P. Le Comber and W. Spear, Electronic transport in amorphous
silicon films, Phys. Rev. Lett. 25, 509 (1970).

[26] Y. Luo and A. Flewitt, Revisiting the multiple trapping and
releasing electronic transport in amorphous semiconductors ex-
emplified by a-Si:H (unpublished).

[27] Y. Luo and A. Flewitt, Increased electron mobility of hydro-
genated amorphous silicon in the context of a nanogap device
(unpublished).

[28] W. H. Zachariasen, The atomic arrangement in glass, J. Am.
Chem. Soc. 54, 3841 (1932).

[29] J. Poortmans and V. Arkhipov, Thin Film Solar Cells: Fabrica-
tion, Characterization and Applications (John Wiley & Sons,
Chichester, 2006).

[30] T. Haage, U. Schmidt, H. Fath, P. Hess, B. Schröder, and H.
Oechsner, Density of glow discharge amorphous silicon films
determined by spectroscopic ellipsometry, J. Appl. Phys. 76,
4894 (1994).

[31] B. Von Roedern, L. Ley, and M. Cardona, Photoelectron spectra
of hydrogenated amorphous silicon, Phys. Rev. Lett. 39, 1576
(1977).

[32] W. Ching, D. J. Lam, and C. C. Lin, Electronic states and bond-
ing configurations in hydrogenated amorphous silicon, Phys.
Rev. B 21, 2378 (1980).

[33] VB electrons and CB electrons are delocalized electrons in the
sense that they, unlike core electrons, are not tightly confined
around a single atomic core. However, this concept of localiza-
tion should be differentiated from the localization of states that

are used in contexts such as localized-state electrons; the former
describes spatial confinement at the atomic scale, whereas the
latter describes spatial confinement relative to the scale of the
studied solid. CB electrons can be in localized states; this is
when they cannot move throughout an amorphous material to
carry net currents, but they are essentially delocalized from the
atomic perspective.

[34] L. Guttman, W. Ching, and J. Rath, Charge-density variation in
a model of amorphous silicon, Phys. Rev. Lett. 44, 1513 (1980).

[35] H. King, B. Kramer, and A. MacKinnon, Density of states and
charge distribution in hydrogenated amorphous silicon, Solid
State Commun. 47, 683 (1983).

[36] S. Kugler, P. R. Surján, and G. Náray-Szabó, Theoretical esti-
mation of static charge fluctuation in amorphous silicon, Phys.
Rev. B 37, 9069 (1988).

[37] L. Ley, J. Reichardt, and R. Johnson, Static charge fluctuations
in amorphous silicon, Phys. Rev. Lett. 49, 1664 (1982).

[38] In a 3D setting, the spatial correlations of the absolute displace-
ments and the relative displacements can differ. This is easily
understood by considering the extra degree of freedom brought
by the bond angle variation.

[39] J. Fortner and J. Lannin, Radial distribution functions of amor-
phous silicon, Phys. Rev. B 39, 5527 (1989).

[40] P. M. Voyles and J. R. Abelson, Medium-range order in amor-
phous silicon measured by fluctuation electron microscopy, Sol.
Energy Mater. Sol. Cells 78, 85 (2003).

[41] S. Lan, L. Zhu, Z. Wu, L. Gu, Q. Zhang, H. Kong, J. Liu, R.
Song, S. Liu, G. Sha, et al., A medium-range structure motif
linking amorphous and crystalline states, Nature Mater. 20,
1347 (2021).

[42] Z.-Q. Zhang and P. Sheng, Density of localized states near
the band edge of disordered systems, Phys. Rev. Lett. 57, 909
(1986).

[43] R. Hockney and J. Eastwood, Computer Simulations Using
Particles (McGraw-Hill, New York, 1981).

[44] J. Barnes and P. Hut, A hierarchical O(N log N) force-
calculation algorithm, Nature (London) 324, 446 (1986).

[45] L. Greengard and V. Rokhlin, A fast algorithm for particle
simulations, J. Comput. Phys. 73, 325 (1987).

[46] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee,
and L. G. Pedersen, A smooth particle mesh Ewald method,
J. Chem. Phys. 103, 8577 (1995).

[47] T. Askham, Z. Gimbutas, L. Greengard, L. Lu, J. Magland,
D. Malhotra, M. O’Neil, M. Rachh, V. Rokhlin, and F. Vico,
Flatiron Institute fast multipole libraries, (2021).

[48] A. Madan, P. G. Le Comber, and W. Spear, Investigation of
the density of localized states in a-Si using the field effect
technique, J. Non-Cryst. Solids 20, 239 (1976).

[49] A. Hourd and W. Spear, Determination of the extended-state
electron mobility in a-Si, Philos. Mag. B 51, L13 (1985).

[50] According to the band fluctuation model, in amorphous solids,
the same electron energy may correspond to different momenta
at different spatial locations. The terminologies extended state
and localized state in the literature typically exist in the context
of a specific energy. This is especially so when analyzing elec-
tronic transport, where it is the energies of electrons, rather than
their momenta, that are vital. These terminologies need to be
distinguished from the electronic states within individual SRLs.
The latter are momentum-specified local eigenstates which are
relevant to DOS calculations. Resolving spin degeneracy, an

104203-15

https://doi.org/10.1103/PhysRevLett.60.2697
https://doi.org/10.1103/PhysRevB.38.5603
https://doi.org/10.1016/0022-3093(87)90254-7
https://doi.org/10.1016/0038-1098(85)91022-1
https://doi.org/10.1103/PhysRevB.38.7493
https://doi.org/10.1103/PhysRevB.79.155206
https://doi.org/10.1016/S0927-0256(99)00037-3
https://doi.org/10.1103/PhysRevLett.67.2179
https://doi.org/10.1038/nature03090
https://doi.org/10.1016/0038-1098(81)90886-3
https://doi.org/10.1016/0022-3093(72)90004-X
https://doi.org/10.1103/PhysRevLett.25.509
https://doi.org/10.1021/ja01349a006
https://doi.org/10.1063/1.357267
https://doi.org/10.1103/PhysRevLett.39.1576
https://doi.org/10.1103/PhysRevB.21.2378
https://doi.org/10.1103/PhysRevLett.44.1513
https://doi.org/10.1016/0038-1098(83)90634-8
https://doi.org/10.1103/PhysRevB.37.9069
https://doi.org/10.1103/PhysRevLett.49.1664
https://doi.org/10.1103/PhysRevB.39.5527
https://doi.org/10.1016/S0927-0248(02)00434-8
https://doi.org/10.1038/s41563-021-01011-5
https://doi.org/10.1103/PhysRevLett.57.909
https://doi.org/10.1038/324446a0
https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.1063/1.470117
https://doi.org/10.1016/0022-3093(76)90134-4
https://doi.org/10.1080/13642818508240550


YUEZHOU LUO AND ANDREW JOHN FLEWITT PHYSICAL REVIEW B 109, 104203 (2024)

electronic state allows a maximum of one electron. To avoid am-
biguities, in this paper and its sequels, unless in the contexts of
electronic state, DOS, or Bloch state, a state in all other contexts
refers to an ensemble that is inclusive of all electronic states
with the same energy. These electronic states are at different
spatial locations.

[51] H. Fritzsche, Optical and electrical energy gaps in amorphous
semiconductors, J. Non-Cryst. Solids 6, 49 (1971).

[52] W. Jackson, S. Kelso, C. Tsai, J. Allen, and S.-J. Oh, En-
ergy dependence of the optical matrix element in hydrogenated
amorphous and crystalline silicon, Phys. Rev. B 31, 5187
(1985).

[53] K. Winer and L. Ley, Surface states and the exponential
valence-band tail in a-Si:H, Phys. Rev. B 36, 6072 (1987).

[54] D. Lang, Deep-level transient spectroscopy: A new method to
characterize traps in semiconductors, J. Appl. Phys. 45, 3023
(1974).

[55] W. Den Boer, Determination of midgap density of states
in a-Si:H using space-charge-limited current measurements,
J. Phys. Colloques 42, C4-451 (1981).

[56] A. Glade, W. Fuhs, and H. Mell, Frequency and temperature
dependence of the space charge capacitance in a-Si:H films,
J. Non-Cryst. Solids 59, 269 (1983).

[57] D. Bonnell, Scanning Probe Microscopy and Spectroscopy:
Theory, Techniques, and Applications (Wiley-VCH, New York,
2000), 2nd ed.
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