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Entanglement entropy scaling in critical phases of one-dimensional quasiperiodic systems
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We study the scaling of the entanglement entropy in different classes of one-dimensional fermionic quasiperi-
odic systems with and without pairing, focusing on multifractal critical points/phases. We find that the
entanglement entropy scales logarithmically with the subsystem size NA with a proportionality coefficient C,
as in homogeneous critical points, apart from possible additional small oscillations. In the absence of pairing, we
find that the entanglement entropy coefficient C is nonuniversal and depends significantly and nontrivially both
on the model parameters and electron filling, in multifractal critical points. In some of these points, C can take
values close to the homogeneous (or ballistic) system, although it typically takes smaller values. We find a close
relation between the behavior of the entanglement entropy and the small-q (long-wavelength) dependence of the
momentum structure factor S(q). S(q) increases linearly with q as in the homogeneous case, with a slope that
grows with C. In the presence of pairing, we find that even the addition of small anomalous terms affects very
significantly the scaling of the entanglement entropy compared to the unpaired case. In particular, we focused on
topological phase transitions for which the gap closes with either extended or critical multifractal states. In the
former case, the scaling of the entanglement entropy mirrors the behavior observed at the critical points of the
homogeneous Kitaev chain, while in the latter, it shows only slight deviations arising at small length scales. In
contrast with the unpaired case, we always observe C ≈ 1/6 for different critical points, the known value for the
homogeneous Kitaev chain with periodic boundary conditions.

DOI: 10.1103/PhysRevB.109.104202

I. INTRODUCTION

The study of entanglement in many-body systems has been
a great example of success where remarkable new insights
were attained by applying concepts from quantum infor-
mation theory to condensed matter systems. Among them,
the universal scaling of the entanglement entropy in confor-
mal critical points of one-dimensional (1D) systems stands
out [1–4]. At these critical 1D systems, the entanglement en-
tropy of a finite subsystem of an infinite system with NA sites,
scales as S = C log(NA) + cte, where C = c/3 for systems
with periodic boundary conditions (we refer below to systems
with periodic boundaries unless otherwise stated) and c is the
universal central charge of the corresponding conformal field
theory. For a free fermion chain (that can be mapped to the
XX model, through a Jordan-Wigner transformation), c = 1.
However, at the critical points of the topological phase tran-
sitions in the Kitaev chain (or XY model), we have c = 1/2.
In the presence of a gap, the entanglement entropy also scales
logarithmically up to a length scale of the order of the inverse
energy gap, above which it saturates. Given the universality of
the entanglement entropy scaling, it does not depend on model
details for a group of models that are all described by the same
low-energy conformal field theory. This includes the addition
of inhomogeneities such as disorder, which can therefore still
lead to universal behavior [5–11].

Other very interesting inhomogeneous systems for which
entanglement has been less studied are quasiperiodic systems.

These systems offer a wide range of exciting physics, from
interesting localization properties [12–24] to topological fea-
tures and edge physics [25–27]. Interest in quasiperiodic
systems has been recently renewed due to progress in
experiments in optical lattices [13,15,16,28,29] and metama-
terials [14,22,25,27,30], and the increased focus on moiré
systems [31,32].

In one dimension, quasiperiodic systems host rich lo-
calization physics, transitions between extended ballistic
phases with plane-wave-like eigenstates and localized phases,
where the wave function is exponentially localized in real-
space [12–16]. At the critical point, the eigenstates are
multifractal both in real and momentum space. For some sys-
tems, non-fine-tuned phases with multifractal eigenstates can
arise [33–40]. The entanglement entropy has been previously
studied in quasiperiodic systems [41–47]. For the half-filled
paradigmatic Aubry-André model [12], it was found to scale
logarithmically with subsystem size at the extended phase
and critical point, and to saturate in the localized phase at
length scales larger than the localization length [43,45,48].
The results in Ref. [42] indicated that the scaling behavior
of the entanglement entropy was different in extended and
critical points of the Aubry-André model at different fillings.
In the extended phase, the entanglement entropy was found
to behave as in the homogeneous case, scaling with C ≈ 1/3.
At the critical point, however, a different coefficient C ≈ 0.26
was observed [45]. The entanglement entropy of a generalized
Aubry-André model with long-range (power-law decaying)
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hoppings was also studied in Ref. [47], at half-filling. For
some parameters, it was found that C �= 1/3 even in the ex-
tended phase. In critical phases, C was always found to be
significantly lower. This raises the question on whether ex-
tended and critical phases can always be distinguished based
on the scaling of the entanglement entropy. Moreover, a lot
remains to explore on the behavior of the entanglement en-
tropy in more generic regimes and different critical points and
critical phases. In the presence of pairing, the entanglement
entropy has not been studied so far on critical points, to our
knowledge.

In this work, using numerically exact methods, we study
the behavior of the entanglement entropy in different classes
of one-dimensional quasiperiodic systems both with and
without pairing terms. We focus on multifractal critical
points/phases and find that even though the entanglement
entropy scales logarithmically with the subsystem size, apart
from possible small oscillations, the coefficients C depend
significantly on the model parameters and electron filling in
the absence of pairing. In fact, we observe that C ≈ 1/3 at
some critical points, with the entanglement entropy behaving
similarly to the homogeneous case. Interestingly, the scaling
of the entanglement entropy is closely related with the long-
wavelength (low-energy) behavior of the momentum structure
factor S (q), growing linearly with q, with a slope that in-
creases with C.

To understand the impact of the pairing terms, we studied
the quasiperiodic Kitaev chain, focusing on critical points of
topological phase transitions. In this case, we found that the
entanglement entropy behaves very similarly to the homo-
geneous Kitaev chain, where C = 1/6, irrespectively of the
model parameters. This is true no matter whether extended
or multifractal states are present at the critical point, with the
most significant deviations from the C = 1/6 behavior only
occurring for the latter case, at small length scales.

Our results show that while in the absence of pairing the
scaling of the entanglement entropy can vary quite signif-
icantly in critical phases and even become very similar to
the homogeneous case, the addition of pairing terms, even
if small, is highly relevant and the scaling tends to become
very similar to the homogeneous Kitaev critical chain at suffi-
ciently large length scales.

II. MODEL AND METHODS

A. Models

We consider the following class of Hamiltonians:

H = −t
∑

n

(c†
ncn+1 + c†

n+1cn) +
∑

n

Vnc†
ncn

+ �
∑

n

(cncn+1 + c†
n+1c†

n ), (1)

where c†
n creates an electron at site n and Vn will be

considered to be either of the following quasiperiodic poten-
tials: V (1)

n = V cos(2πτn + φ) − μ and V (2)
n = cos(2πτn +

φ)/[1 + α cos(2πτn + φ)] − μ. In the definitions of Vn, τ is
an irrational number that we take to be τ = (

√
5 − 1)/2, φ is a

(phase) shift in the quasiperiodic potential and μ is the chemi-
cal potential. In what follows, energy will be measured in units

of t . We will study three particular cases of the Hamiltonian
in Eq. (1): the Aubry-André model (� = 0 and V (1)

n ) [12],
the Ganeshan-Pixley-Sarma (GPS) model, with � = 0 and
V (2)

n [49], and the quasiperiodic Kitaev chain model, � �= 0
with V (1)

n . For the GPS model, the localization phase dia-
gram is analytically known, hosting extended, localized and
critical phases [39,49]. For the quasiperiodic Kitaev chain,
the localization and topological phase diagrams in the (V,�)
plane have also been explored [33,35,50,51]. In particular, for
μ = 0, a topological phase transition between a topological
phase with zero-energy majorana modes and a trivial phase
takes place. At this critical point there is also a localization
transition between phases with critical multifractal eigenstates
(topological) and localized eigenstates (trivial).

To simulate finite systems we followed the usual procedure
carried out for QPS [52–54]: for each size N = Fn, we take τ

to be a rational approximant of the inverse of the golden ratio,
τ = τn = Fn−1/Fn, where Fn is the nth Fibonacci number.
Note that in this way the finite system is incommensurate (the
system’s unit cell for τ = τn has precisely N sites, the total
system size) and we may apply periodic boundary conditions
(PBC) without defects.

B. Entanglement entropy and fidelity

We can write the quadratic fermionic Hamiltonian in
Eq. (1) in the Nambu representation,

H = 1

2
C†HC, H =

(
h �

�† −hT

)
, (2)

where C = (c1, . . . , cN , c†
1, . . . , c†

N )T is a Nambu vector and

h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

V0 −t 0 · · · −t

−t V1 −t · · · 0

0 −t . . . · · · ...

...
... · · · VN−2 −t

−t 0 · · · −t VN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 � 0 · · · −�

−� 0 � · · · 0

0 −�
.. . · · · ...

...
... · · · 0 �

� 0 · · · −� 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

with these matrices satisfying h = h† and � = −�T . The
single-particle correlation matrix can then be defined as χ =
tr(Z−1e−βHCC†) = I − nF (H ), where β is the inverse tem-
perature, Z is the partition function, and nF is the Fermi-Dirac
distribution. To compute the entanglement entropy, we con-
sider our subsystem A to contain the first NA sites of the full
chain containing N sites. The entanglement entropy can then
be computed as

SA = −Tr[χA ln χA], χA = [χ]i, j∈A∪(A+N ), (5)

where i, j are entries of matrix χ, A is the set of site indexes of
subsytem A and A + N are the indices obtained by summing
N to each of the site indices in A.
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In what follows, we average the results for the entangle-
ment entropy over random uniformly distributed realizations
of phase φ, unless otherwise stated. For the calculations in the
Aubry-André and GPS models, we also average over random
twisted boundary conditions, by closing the boundaries with
a phase twist eik (k = 0 for PBC) [18]. We estimate the error
bars of the average entanglement entropy through the error of
the mean.

For a 1D critical system whose continuum limit is a con-
formal field theory, we have that [2,3]

S = C log

(
N

π
sin(πNA/N )

)
+ C′, (6)

where NA is the number of sites in subsystem A, in which
case the central charge of the conformal field theory is given
by 3C, for periodic boundary conditions. For NA � N we
therefore have S = C log NA. For the homogeneous fermionic
chain with no anomalous terms (V = � = 0), we have that
C = 1/3. For the Kitaev chain (V = 0,� �= 0), however, we
have that C = 1/6 because the central charge takes half the
value of the homogeneous chain. For � = 0 and V �= 0,
the C = 1/3 scaling was found to hold for V within the
extended phase [45] in the half-filled Aubry-André model.
However, Ref. [47] found regimes where C was smaller even
for electron fillings within the extended phase for a long-
range Aubry-André model, in the presence of multifractal
to extended mobility edges. In the localized phase, S only
grows logarithmically for NA � ξ , where ξ is the localization
length [45,47,48]. At critical points containing multifractal
eigenstates, S was found to still scale logarithmically with
NA, although with significantly smaller C, accompanied by
possible log-periodic oscillations [55], as previously observed
for aperiodic quantum spin chains [56,57].

We will also compute the ground state fidelity, defined
as [58,59]

F (	(λ), 	(λ′)) = | 〈	(λ)〉 	(λ′)|, (7)

where |	(λ)〉 is the system’s ground-state and λ is some
selected parameter of the model. In the case of noninteracting
fermions, the overlap in Eq. (7) can be simply computed
through F (	(λ), 	(λ′)) = | det(�†

λ�λ′ )|, where �λ is a N ×
M matrix containing the M filled single-particle eigenstates in
its columns. Taking λ′ = λ + δλ, we can compute the leading-
order term of the fidelity as δλ → 0. This term corresponds to
the fidelity susceptibility χF , which can be defined as [59,60]

χF = − ∂2F

∂ (δλ)2
= lim

δλ→0

−2 log F

(δλ)2
. (8)

In the following, we choose δλ small enough for χF to be
converged. The finite-size scaling of χF can be used to tackle
critical points and critical exponents. At a critical point, the
maximum of χF , typically scales super extensively and its
maximizant approaches the critical point as the system size
is increased [59].

C. Localization probes

To inspect the localization properties, we compute inverse
participation ratios (IPR). For each single-particle eigenstate
|ψα〉 = ∑

n ψα
n |n〉, where {|n〉} is a basis localized at each

site (or the Nambu basis for � �= 0), the generalized IPR is
given by IPRα (q) = (

∑
n |ψα

n |2)−q
∑

n |ψα
n |2q [61]. In gen-

eral, we have IPRα (q) ∼ N−τ (q), where τ (q) = Dr (q)(q − 1).
In the extended phase, we have Dr (q) = D, while in the
localized phase the IPRs become L-independent for L suf-
ficiently larger than the localization length and therefore
Dr (q) = 0. Critical points/phases in 1D quasiperiodic sys-
tems have multifractal eigenstates, in which case Dr (q) is a
nonlinear function of q. For the quasiperiodic Kitaev chain,
we also define a momentum space generalized IPR. In the
diagonal basis defined as γα = ∑

i uα,ic
†
i + vα,ici, we define

ũα,k = L−1/2 ∑
j e2π jk/Luα,i and ṽα,k = L−1/2 ∑

j e2π jk/Lvα,i.
The momentum-space generalized IPR is then given by
IPRk (q) = ∑

k (|ũα,k|2q + |ṽα,k|2q) ∼ L−τk (q). In this case, we
have τk (q) = Dk (q)(q − 1), with Dk (q) = 0 for ballistic ex-
tended states, Dk (q) = 1 for localized states and Dk (q) is
again a nonlinear function of q for multifractal states. In what
follows, we mostly compute the real-space IPR and set q = 2,
unless otherwise stated, defining IPR = IPR(q = 2).

D. Topological invariant

Finally, to inspect topological properties of the quasiperi-
odic Kitaev chain, we make use of the topological invariant
introduced in Ref. [51]. By writing the Hamiltonian in terms
of two species of Majorana fermions, the equations of motion
for zero energy Majorana modes can be written in terms of
transfer matrices (see Appendix B for details). The transfer
matrix for one of the species of modes is defined, for a sys-
tem of length N , as AN = ∏N

n=1 An, where Ai j
n = Vn/(� +

t )δi,0δ j,0 + (� − t )/(� + t )δi,0δ j,1 + δi,1δ j,0. For the other
species, the transfer matrix is Bn = σxA−1

n σx. A topological
invariant can then be defined as in Ref. [51],

νT = −(−1)n f , (9)

where n f is the number of eigenvalues of AN with magnitude
smaller than unity. Inside a topological phase νT = −1(n f =
0, 2), while in a trivial phase νT = 1(n f = 1).

E. Structure factor

To compare the results for the entanglement entropy scal-
ing with other physical observables, we also compute the
momentum structure factor, defined as

S (q) = N−1
∑

j,l

[〈n jnl〉 − 〈n j〉〈nl〉]eiq( j−l ). (10)

In the noninteracting limit, S (q) can be computed through

S (q)= 1

N

N∑
i, j=1

[〈c†
i c j〉δi j −〈c†

i c j〉〈c†
j ci〉 + 〈c†

i c†
j 〉〈c jci〉]eiq(i− j),

(11)
where all these single-particle correlation functions can be
computed at once through the correlation matrix χ defined
above. In gapless extended phases, S (q) typically behaves as
S (q) = K

2π
q at small q [62].
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FIG. 1. Results for the Aubry-André model. (a), (b) χF /L at
fillings ρ = 1/4 (a) and ρ = mod (57τ, 1) (b), for fixed twist
κ = 1.7 and φ = 1.123/N . The insets show the energy gap as a
function of system size for V = 2. (c) Entanglement entropy as
function of log NA up to NA = N/2 for V = 2, for ρ = 1/4 (green),
ρ (1) = mod (10τ, 1) (orange), and ρ (2) = mod (57τ, 1) (purple),
and for system sizes N = {377, 610, 987} (respectively, from lighter
to darker color shade). Averages over Nc = 1800 configurations were
made. (d) Entanglement entropy for NA ∈ [1, N], for N = 987, for
the same parameters as in panel (c).

III. RESULTS

A. Aubry-André and GPS models

We start by analyzing the Aubry-André model. Some care
is needed when computing the entanglement entropy, since
energy gaps are known to open at commensurate fillings ρn =
mod (nτ, 1), n ∈ Z [63,64]. In fact, by applying perturbation
theory in the quasiperiodic potential with respect to the ho-
mogeneous system, one finds that a gap is opened at filling
ρn at order |n| in perturbation theory and therefore the gap
size typically decreases with |n|. While in the extended phase,
gaps can only be effectively opened for |n| � ξ , where ξ is
the correlation length (ξ = 1/ log(2/V ) in the extended phase
for the Aubry-André model [12]), at critical points/phases
ξ diverges and gaps can open at any order. For a finite sys-
tem, we cannot get arbitrarily close to an incommensurate
filling and we may end up choosing a (gapped) commensurate
filling for some sizes. To try to avoid this problem we (i)
start by choosing a number N ′

p = ρN� of filled states, where
x� rounds x to the nearest integer; (ii) compute the energy
gaps �0

g = ε(N ′
p) − ε(N ′

p − 1) and �1
g = ε(N ′

p + 1) − ε(N ′
p),

where ε(Np) is the single-particle eigenenergy of the Npth
eigenstate, and choose the final number of filled states to
be Np = N ′

p − 1 + arg min j{� j
g}, j = 0, 1. In this way, by

always choosing the smallest gap closer to the chosen fill-
ing ρ we minimize the risk of accidentally coming across a
commensurate filling for a given system. In Fig. 1 we show
the results for the fidelity susceptibility and entanglement

entropy obtained by carrying out the procedure just described
for the Aubry-André model, at quarter-filling (ρ = 1/4), com-
paring with the results for a close commensurate filling ρ57 =
mod (57τ, 1) ≈ 0.228. In Fig. 1(a) we find true criticality
since χF is superextensive at the critical point. This arises
from the gapless nature of the chosen filling, as can be seen
by the decreasing of the energy gap, �g, with N at the critical
point [inset of Fig. 1(a)]. For the commensurate filling, the
system is gapped as can be seen by the convergence of �g

in N , in the inset of Fig. 1(b). Even though this gap is quite
small, we can see that there is clearly no divergence in χF /N
for a sufficiently large system size at the critical point. In this
case, the system is always gapped, even at the critical point,
which gives rise to an avoided criticality. These qualitative
differences naturally manifest in the scaling of the entangle-
ment entropy, as shown in Figs. 1(c) and 1(d). While in the
gapless case, it scales as log NA for NA � N , only saturating
at extensively larger length scales � � N/2 [see Eq. (6)], in
the gapped case, it only grows up to a N-independent length
scale ξg, inversely proportional to the gap size. In Figs. 1(c)
and 1(d) we also compare the results for fillings ρ (1) = ρ10

and ρ (2) = ρ57, where we clearly see that S saturates for
NA � ξ (1)

g and NA � ξ (2)
g > ξ (1)

g since �(1) > �(2).
From this point on we focus on incommensurate/gapless

fillings. In Fig. 2(a) we compute the entanglement entropy
for the quarter-filled Aubry-André model, and for V close to
the critical point. At the critical point we see that S scales
as log NA with C ≈ 0.23, slower than in the homogeneous
system. Interestingly, close to the critical point we see that S
closely follows the critical behavior for length scales NA � ξ ,
where ξ is the correlation length (ξ = 1/ log(2/V ) in the ex-
tended phase, while ξ = 1/ log(V/2) in the localized phase).
For NA � ξ , we see a crossover to a scaling with C = 1/3
in the extended phase, as in the homogeneous case, while
there is a saturation in the localized phase. In Fig. 2(b), we
compute the scaling of S in different critical points/phases
of the GPS model, comparing with the results obtained deep
in the extended phase. We see that the scaling of S in the
critical phase can vary significantly, and even closely resem-
ble the homogeneous/extended scaling. This is in contrast
with previous results obtained for the Aubry-André model
with long-range hoppings for which C was always found to
be significantly lower than in the homogeneous or extended
case, when the fillings were chosen in regions of multi-
fractal eigenstates. We also note that even though S grows
with log NA, it also shows small oscillations. These oscil-
lations are expected: in fact log-periodic oscillations were
previously found at the critical point of the half-filled Aubry-
André model with τ = 1/

√
2 [55] and also in aperiodic spin

chains [56,57]. In Figs. 2(c) and 2(d), we compute C at
localization-delocalization transitions [Fig. 2(c)] and inside
the critical phase [Fig. 2(d)] by fitting S(NA) to Eq. (6). We
find that C can take a wide range of nonuniversal values. In-
terestingly, for localization-delocalization transitions at filling
ρ = 1/4 we find that the scaling of the entanglement entropy
for the Aubry-André and GPS models is compatible, in agree-
ment with the critical point universality proposed in Ref. [55].
This again suggests that at extended-localized transitions the
behavior of entanglement entropy is universal for significantly
different models at fixed fillings, as conjectured in Ref. [55].
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FIG. 2. (a) Entanglement entropy S for the Aubry-André model, for filling ρ = 1/4. The blue, green and red data points correspond
to V = 1.95 (extended), V = 2 (critical) and V = 2.05 (localized), respectively. The dashed lines are guides to the eye for the scaling of
the entanglement entropy. The gray dashed line indicates log ξ = 2.7, where ξ is approximately the exact correlation length for V = 1.95
(ξ = 1/ log 2/V ) and V = 2 (ξ = 1/ logV/2). (b)–(d) Results for the GPS model. (b) S for different critical points [V = 1, α = 2, ρ = 0.47
(green); V = 1, α = 2, ρ = 0.538 (light blue); V = 1, α = 0.539, ρ = 0.25 (gray)] and an extended point (ρ = 0.25, α = 0,V = 1). S was
shifted so that the maxima coincide for all the analyzed points, where P0 is the extended point and P is the point being analyzed. These points
are signaled in panels (c), (d), with the plot markers matching the ones in this figure. The dashed lines show the slopes C obtained by fitting S
to Eq. (6) for all NA, where the fits are shown in the inset. (c) IPR for the GPS model around an extended-to-localized transition, for L = 987
and V = 1, along with fitting results for C at different points. The black line denotes the analytical mobility edge between the extended and
localized phases. (d) IPR for the same model, in a range of parameters containing the critical phase, together with the value of C extracted from
the fit within this phase. The error bars correspond to the standard deviation of mean between the fitted C for the three larger considered sizes,
N = {610, 987, 1597}. For all the calculations of the entanglement entropy in panels (a)–(d), we averaged over 1800 configurations of shifts
and twists for N = {377, 610, 987} and 252 configurations for N = 1597.

We now try to establish a connection between the scaling
of S and other physical properties. At critical points, correla-
tion functions of the type 〈OiO j〉 are expected to decay in a
power-law fashion as 〈OiOi+ε〉 ∼ |ε|−yO for large enough |ε|.
Taking the simplest correlation function, 〈c†

i ci+ε〉, we find that
〈c†

i ci+ε〉 ∼ |ε|−1 in the extended phase with the interesting
possible formation of moiré patterns (see Appendix B); while
in the localized phase 〈c†

i ci+ε〉 ∼ e−|ε|/ξ , where ξ is the local-
ization length. At critical phases/points, however, there are
very large fluctuations as function of ε and it becomes chal-
lenging to define the power-law exponent. In fact, the scaling
of the maxima of these fluctuations is compatible with |ε|−1.
Therefore, no significant distinctions in the scalings of gr (ε)
were found in the critical regions. The connection between S
and the general behavior of correlation functions is therefore
more subtle. In fact, a clear relation between the entanglement
entropy and the low-momentum scaling of the structure factor
S (q), given in Eq. (10), can be found. In Fig. 3(a) we can
see that only the slope of the scaling, K [see below Eq. (10)],
changes at critical points, while the linear scaling in q still
holds as in the extended phase, up to small oscillations. By
computing K for the different critical and extended points that
we studied in Fig. 2, and comparing the results with C, we
verified that K increases with C as shown in Fig. 3(b). While
at extended points we have K ≈ 1 (blue points in Fig. 3) as in
the homogeneous case, in the critical case the values of K can
vary significantly.

B. Quasiperiodic Kitaev chain

The quasiperiodic Kitaev chain has a well-known phase
diagram in the � − V plane for μ = 0 [33], shown in the
inset of Fig. 4 (see also Ref. [35] for full localization phase
diagram and Ref. [65] for exact analytical solution). Here
we computed the entanglement entropy at the critical line
of the transition between a topological phase with critical

eigenstates, having majorana zero modes, and a trivial local-
ized phase. The results for C are shown in Figs. 4(a) and 4(b).
For (V,�) = (2, 0), C has the value of the Aubry-André criti-
cal point (C ≈ 0.26 at half-filling [45]). However, for finite �,
C quickly becomes smaller, getting close to the homogeneous
Kitaev chain’s value, C = 1/6, with the most significant devi-
ations arising only at small NA. This can be observed by fitting
the scaling of the entanglement entropy at small NA across
the critical line—Fig. 4(b)—for which we see a significant
V - or �-dependence. When fitting S to Eq. (6) using all NA,
we found that C is essentially constant for different critical
points of the transition, in contrast to the critical points of the
unpaired models, for which C varied significantly. In Fig. 4(c)

FIG. 3. (a) Structure factor S(q) for the same critical points
analyzed in Fig. 2, with the corresponding values of C indicated in the
legend. The black dashed lines correspond to the S(q) = Kq/(2π ),
with the K computed in panel (b) for the corresponding critical point.
(b) C vs K for the different critical (green) and extended (blue)
points studied in Fig. 2. K was computed through K = 2πS(δq)/δq,
with δq = 20π/N and for a fixed random configuration of κ and
φ (the results of S(q) depend very weakly on κ and φ). The error
bars correspond to the standard deviation of the obtained results for
the system sizes N = {1597, 2584, 4181}. The extended points are
clustered close to K = 1, marked with the vertical dashed line.
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(c)

FIG. 4. (a) S for the quasiperiodic Kitaev chain, for μ = 0 and
different (V,�) across the topological transition shown in the in-
set of panel (b), given by �(V ) = V/2 − 1. The values of V are
indicated close to the corresponding curves. The dashed magenta
lines correspond to linear fits made for NA � 20. (b) C obtained
by fitting S to Eq. (6) for all NA (blue) and by making a linear fit
of the (log NA, S) data only for NA � 20 (yellow). The data points
were computed by averaging the results obtained for the system sizes
N = {610, 987, 1597} and the error bars correspond to the standard
deviation. The inset contains the topological phase diagram in the
(V, �) plane. The blue dashed line in the inset indicates the explored
range of the critical line. (c) Structure factor S(q) for N = 1597, a
random φ and for different V along the critical line shown in the
inset of (b). In the right figure we show a close-up of the results at
smaller q. The red dashed line corresponds to S(q) = Kq/(2π ) with
K = 1/2.

we show results for the structure factor S (q) along the critical
line. We see that for any finite � (V > 2), the small-q behavior
of the structure factor follows the expected behavior of the ho-
mogeneous Kitaev chain—S (q) = Kq/(2π ) with K = 1/2.
Deviations from this behavior are observed for larger q the
larger the �. This perfectly correlates with the results of the
entanglement entropy, where deviations from the homoge-
neous behavior only occur up to length scales that decrease
with �.

To understand whether the almost constant value of C was
a special feature of the analyzed transition, we also studied
the μ �= 0 case. In this case we can have reentrant topological
transitions, similar to what is observed for topological Ander-
son insulators, in the disordered case [66,67]. This is shown in
Fig. 5(a) for � = 1. In this figure, we can see that we can start
in a trivial phase, at μ > 2, and transition into a topological
phase by increasing V . The topological phase contains zero-
energy modes as expected, which we illustrate in Fig. 5(c). At
an even larger value of V , we have a new topological transition
back into a trivial phase. These two topological transitions are
however of different nature in terms of localization properties.
Exactly at the transition point the eigenstates are ballistic in

Topological

Trivial

FIG. 5. Results for � = 1. (a) S for N = 233 and NA = [N/6],
with each point corresponding to an average over 75 realizations.
The full black line shows the phase boundaries obtained through
the topological invariant in Eq. (9). The inset show the results for
this topological invariant at a fixed μ cut (μ = 2.2) marked by the
cyan dashed line. (b) Finite-size scaling of S for variable N and
NA = [N/2]. We averaged over Nc = 1800 configurations for N �
987 and Nc = 252 for N = 1597. (c) IPR results for N = 987, with
open boundary conditions, and for parameters at the cyan dashed cut
in panel (a). (d) S at critical points P1 and P2 indicated in panel (a).
The lighter, intermediate and darker colors correspond, respectively,
to N = 610, 987, 1597, with the results respectively averaged over
Nc = 1800, 1800, 252 configurations. The inset contains the results
for the multifractal exponent τk (q), computed by fitting IPRk (q) for
N ∈ [144, 2584]. We used Nc ∈ [25 − 725] configurations of φ for
P2 and a single random configuration for P1 (the φ-dependence is
negligible in this case). We note that for P1, τk (q) deviates signifi-
cantly from 0 for small q, which we attribute to finite-size effects.

the first and multifractal in the second. This is shown in the
inset of Fig. 5(d), where we plotted τk (q) for examples of
these transitions, at points P1 and P2, indicated in Fig. 5(a). We
can see, however, that the scaling of the entanglement entropy
is similar for both transitions, apart from the existence of
oscillations in the critical case, as in the other studied critical
points.

IV. DISCUSSION

In this work, we characterized in detail the entan-
glement entropy in different models of one-dimensional
fermionic quasiperiodic systems, focusing on multifractal
critical points/phases. In the absence of pairing, we found
that the entanglement entropy follows the expected behavior
for one-dimensional critical systems, but can show possi-
ble small oscillations. Similar log-periodic oscillations were
previously found in Refs. [56,57] for aperiodic spin chains
and in Ref. [55] both for the noninteracting and interacting
Aubry-André model. In the absence of pairing, we found
that the characteristic coefficient C that governs the scaling
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of the entanglement entropy with subsystem size NA and
total size N depends significantly on the model parameters
and electron filling. At some critical points, we observed
that the entanglement entropy even behaves similarly to the
homogeneous case, with C ≈ 1/3. This is in contrast with
previous studies where C was always found to be significantly
smaller at critical multifractal phases/points, compared to
the homogeneous case [45,47]. Although there are significant
variations of C, we find that compatible values are obtained
for the Aubry-André and GPS models at critical points of
localization-delocalization transitions, for a fixed filling. This
is in agreement with Ref. [55], where a universal behavior
of the entanglement entropy was found at the localization
transitions of different half-filled quasiperiodic chains. We
also compared the behavior of the entanglement entropy with
correlation functions and found that C was closely related
with the long-wavelength behavior of the momentum structure
factor.

For critical quasiperiodic Kitaev chains, we found that the
addition of even small pairing terms is highly relevant for
the behavior of the entanglement entropy. Independently of
studied critical points, we find that it behaves similarly to the
homogeneous critical Kitaev chain, where C = 1/6, departing
from the nonuniversal larger values of C computed in the
unpaired case. The most significant deviations from C = 1/6
only occur at small length scales. In very good agreement with
these results, the small momentum behavior of the structure
factor also follows the expected behavior of the homogeneous
Kitaev chain, with deviations only arising at larger momenta.
The topological nature of the quasiperiodic Kitaev transition
may be behind the resilience of the entanglement entropy and
structure factor behaviors for the analyzed critical points.

Future interesting studies include to address the impact of
interactions on the entanglement entropy, in critical phases
with multifractal eigenstates. In Ref. [55], short-range spin-
less interactions were found to be irrelevant at critical points
between extended and localized phases, so we expect that our
results at these transitions also hold in the interacting case.
However, interactions can be relevant in multifractal critical
phases of quasiperiodic systems [68], which may change the
behavior of the entanglement entropy.
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FIG. 6. (a) Entanglement entropy for the homogeneous Kitaev
chain, for μ = 0 and variable �. Note that the energy gap increases
with �. Therefore, for larger �, S saturates for smaller NA, of the
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Kitaev chain, for � = 0.1, μ = 2 (critical point). SA scales with the
correct pre-factor C ≈ 1/6 consistent with the central charge c = 1/2
of the Kitaev model.
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APPENDIX A: QUASIPERIODIC KITAEV CHAIN: CLEAN
LIMIT AND TOPOLOGICAL PROPERTIES

In this Appendix, we provide additional details on how
the topological properties of the quasiperiodic Kitaev chain
were studied in the main text. For V = 0, this model is homo-
geneous and exhibits a phase transition at |μ| = |t |, for any
� [51]. At this point, the entanglement entropy scales with
C = 1/6 [1]. Otherwise, the system is gapped and the entan-
glement entropy saturates for large enough NA. We reproduce
these results, in Fig. 6.

To study the topological properties of the model, in partic-
ular for the phase diagram in Fig. 5(a), we used a topological
invariant first defined in Ref. [51]. We now provide some ad-
ditional details on this quantity. Let us introduce the Majorana
fermions an and bn such that cn = (an + ibn)/2. an and bn sat-
isfy {an, bn} = 0 and {an, am} = {bn, bm} = 2δmn (and there-
fore a2

n = b2
n = 1). The Hamiltonian for the quasiperiodic

Kitaev chain becomes

H = i

2

∑
n

((−t + �)anbn+1 + (t + �)bnan+1

+ [V cos(2πτn + φ) − μ]anbn) + cte. (A1)

The Majorana zero modes are represented by the operators
�a = ∑

n αnan and �b = ∑
n βnbn, whose amplitudes αn and

βn satisfy the zero-energy equations of motion for the Hamil-
tonian in Eq. (A1):

(t − �)αn−1 + (t + �)αn+1 − Vnαn = 0,

−(t + �)βn−1 − (t − �)βn+1 + Vnβn = 0, (A2)

where Vn = V cos(2πτn + φ) − μ. We can write these decou-
pled equations in the transfer matrix form:(

αn+1

αn

)
= An

(
αn

αn−1

)
, An =

(
Vn

�+t
�−t
�+t

1 0

)
, (A3)(

βn+1

βn

)
= Bn

(
βn

βn−1

)
, Bn = σxA−1

n σx, (A4)
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FIG. 7. Results for nκ (a), gκ (ε) (b), and gr (ε) (c), for the quarter-filled Aubry-André model, for different values of V in each column
(indicated above the corresponding column). In panel (a) we label some values κn = κF + 2πτn, n ∈ Z. (b) The first inset from left to right is
a log plot, showing that gκ (ε) decays exponentially with ε for V = 1.5, with a exact correlation length ξ = 1/ log(2/V ), while the last two insets
are log-log plots showing that |gκ (ε)| decays as a power-law envelope for V = 2 and V = 2.5. (c) The red line in the leftmost figure corresponds
to the exact result gr (ε) = sin(κF ε)/(πε), for V = 0. The first three insets correspond to log-log plots showing the power-law envelop decay
of |gr (ε)|, while the last plot is a log plot showing the exponential decay for V = 2.5 with the exact localization length ξ = 1/ log(V/2).
We note that there are moiré patterns that can be noted in the middle figures. These have a periodicity �ε = 2π/(κF − κ−2), where κF

is the Fermi momentum and κ−2 is indicated in panel (a). All the dashed/full lines in the insets are guides to the eye. The results are all
for N = 1597, φ = 1.123, κ = 0.001, except for V = 2 where we used N = 4181. A very small κ was used simply to break fermi-level
degeneracies. Note that since this introduces a small imaginary part in χrr′ , we just took the real part of gr (ε) in the figures.

where σx is a Pauli matrix. Considering a semi-infinite chain
starting at site n = 1, we have α0 = β0 = 0. At site n = N + 1
we have (

αN+1

αN

)
= AL

(
α1

0

)
, AN =

N∏
n=1

An. (A5)

In the same way, we can define

BN =
N∏

n=1

Bn. (A6)

To have Majorana modes localized at the edges of the
chain, both the eigenvalues of AN should be either smaller
or larger than one in magnitude as N → ∞. In the former

case, we have a localized a mode, while in the latter, we have
a localized b mode (at the left boundary). If only one of the
eigenvalues of AN is larger than unity, then both the a and
b modes are not normalizable and we cannot have localized
Majorana modes.

Based on these considerations we can define a topological
invariant as in Ref. [51]:

νT = −(−1)n f , (A7)

where n f is the number of eigenvalues with magni-
tude smaller than unity. For n f = 0, 2, νT = −1 and the
phase is topological. For n f = 1, νT = 1 and the phase is
trivial.
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APPENDIX B: SINGLE-PARTICLE CORRELATION
MATRIX IN THE AUBRY-ANDRÉ MODEL

We finally provide additional results on single-particle cor-
relation functions for the Aubry-André model. We define the
real and momentum-space single-particle correlation matrices
as

χrr′ = 〈c†
r cr′ 〉, (B1)

�κκ ′ = 1

N

∑
rr′

ei(κr−κ ′r′ )χrr′ . (B2)

For translational invariant systems, �κκ ′ is diagonal. In
fact, we have nκ ≡ �κκ = �[−(κ − κF )] − �[−(κ + κF )],
where κF is the Fermi momentum. An interesting question
is what happens to �κκ ′ when we switch on the quasiperiodic
perturbation. On the one hand, gaps will open and nκ will stop
being the Heaviside function. On the other hand, off-diagonal
elements appear in �κκ ′ because translational invariance is
broken.

We take the Aubry-André model as an example. For
the Aubry-André model, different momenta are coupled
if κ − κ ′ = 2πτ j, j ∈ Z, or, for a commensurate approxi-
mant with τ n

c = Fn−1/Fn, if κ − κ ′ = 2πτ n
c j, j = 0, . . . , N −

1 [12]. Therefore, it is convenient to use κ j = 2πτ n
c j and

κ ′
j = 2πτ n

c j′, with j, j′ = 0, . . . , N − 1 and define

� j j′ = 1

N

∑
rr′

ei2πτ n
c ( jr− j′r′ )χrr′ . (B3)

Note that due to periodic boundary conditions,
� j+mN, j′+lN = � j j′ for m, l ∈ Z. To have an idea on how
� j j′ behaves for j �= j′, we define

gκ (ε) = 1

N

∑
j

� j, j+ε . (B4)

For ε = 0, we have that g(0) = Tr(|�|) = ν, where ν is the
filling. We define an analogous quantity for the real-space
correlation function:

gr (ε) = 1

N

∑
r

χr,r+ε . (B5)

We provide a summary of the results in Fig. 7, for the
quarter-filled Aubry-André model. For V = 0, states with
definite crystal momentum κ form the eigenbasis of the
Hamiltonian and therefore �κκ ′ is a diagonal matrix [which
can be seen from the results for gκ (ε)], with nκ ≡ �κκ =
{1, |κ| � κF

0, otherwise. From this, one can easily obtain that gr (ε) =
sin(κF ε)/(πε), ε > 0. For V > 0 within the extended phase,
we can see that �κκ ′ is no longer diagonal, but gκ (ε) de-
cays exponentially away from the diagonal with a correlation
length ξ = 1/ log(2/V ), the exactly known correlation length
for the extended phase of the Aubry-André model. Further-
more, nκ develops additional discontinuities at wave vectors

FIG. 8. |gr (ε)| at the different critical points also considered in
Fig. 2(b). In particular: (a) V = 1, α = 2, ρ = 0.47; (b) V = 1, α =
2, ρ = 0.538; (c) V = 1, α = 0.539, ρ = 0.25. The computed entan-
glement entropy coefficient C is indicated above the figure of the
corresponding critical point. The dashed black lines are guides to the
eye corresponding to a |gr (ε)| ∼ ε−1 scaling.

κn = κF + 2πτn, n ∈ Z, to which the Fermi momentum kF

couples in perturbation theory [63]. We note however that in
practice, the coupling does not occur for any n due to the finite
correlation length ξ : kF does not effectively couple to kn for
|n| � ξ .

Even within the extended phase, curious situations can
arise as we illustrate in Fig. 7 for the quarter-filled Aubry-
André model. In this case there is a small-order κn cor-
responding to n = −2 very close to the Fermi momentum
κF [69], which gives rise to the small momentum win-
dows with large nκ shown in Fig. 7(a). This translates in
the formation of a real-space beating (moiré) pattern with
wave vector �κ = κF − κ−2. This can be simply under-
stood if one just considers the diagonal contributions of
�κκ ′ , given by χrr′ ≈ N−1 ∑

κ e−iκ (r−r′ )nκ . Taking the large
contributions at κ ∈ [κ−2, κF ]

⋃
[−κF ,−κ−2], that we call

χ
(�κ )
rr′ , and assuming that they are approximately a constant

ñ�κ , we get χ
(�κ )
rr′ ≈ (2π )−1ñ�κ (

∫ −κ−2

−κF
+ ∫ κF

κ−2
)dκe−iκ (r−r′ ) ∼

cos[κF (r − r′)] + cos[κ−2(r − r′)], from which the beating
effect seen in gr (ε), in Fig. 7(c), is immediately captured.
At the critical point V = 2, the correlation length diverges
and the off-diagonal elements of �κκ ′ start to decay in a
power-law fashion, as can be seen from the results of |gκ (ε)|.
In this case, the beating effect in gr (ε) just mentioned be-
comes less obvious due to the more complex structure of the
momentum-space correlation matrix. Interestingly, using the
Aubry-André duality, one can easily check that the real- and
momentum-space matrices χrr′ and �κκ ′ become equal at the
critical point. Finally, in the localized phase, the off-diagonal
elements of χrr′ decay exponentially with the localization
length ξ = 1/ log(V/2), while the off-diagonal elements of
�κκ ′ decay with a power-law envelope.

From Fig. 7, we can see that the behavior of the real- and
momentum-space correlation matrices at the critical point is
highly nontrivial. In fact, we show in Fig. 8 that there is no
clear distinction in the scaling of gr (ε) for example critical
points that have a significantly different scaling of the entan-
glement entropy C.
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