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Initial conditions after quenching from a high-temperature paraelectric phase to a low-temperature ferroelec-
tric phase have a substantial impact on the temporal development and formation of stable polarization domain
structures which eventually determine physical properties and the functionality of ferroelectrics. Based on the
recently advanced exactly solvable model of the stochastic domain structure kinetics in a uniaxial ferroelectric
[Phys. Rev. B 107, 144109 (2023)], we study the effect of the magnitude of the initial disorder, its initial
correlation length, and polarization correlation function on the system evolution. For different shapes of the initial
correlation function, the time-dependent correlation length and the two-point polarization correlation coefficient
are calculated analytically, demonstrating universal features and good agreement with the available experimental
data. Particularly, the magnitude of the charge density correlation function reveals a strong reduction of the
bound charges at the nominally charged domain walls which was recently observed experimentally in uniaxial
ferroelectrics. Consequently, the integrodifferential equations of evolution for the polarization correlation func-
tion and the mean polarization are numerically solved for different initial conditions. The temporal dependence
of the polarization mean value and variance are evaluated, demonstrating the bifurcation behavior depending on
the applied electric field. The impact of the initial state properties on the coercive field deciding between the
single- and multidomain final states of the system is disclosed.

DOI: 10.1103/PhysRevB.109.104117

I. INTRODUCTION

Quenching from a high- to a low-temperature phase has a
versatile effect on different physical properties of materials.
Particularly, quenching temperature and/or cooling rate have
a significant effect on the formation of polarization domain
structure and consequent application-related properties of fer-
roelectrics [1–7]. Thus, in various single-crystalline materials,
the cooling-rate influence on the domain structure evolution
was observed [1–6], which allowed control of the domain
wall mobility in telluric acid ammonium phosphate (TAAP)
[1] and triglycine sulfate (TGS) [2] single crystals, domain
shape and size in lead germanate (PGO) single crystals [3],
and enhancement of the dielectric constant in lead-magnesium
niobate/lead titanate (PMN-PT) single crystals [4,5]. Par-
ticularly, in situ three-dimensional (3D) observation of the
domain wall dynamics in TGS single crystal was observed at
different quenching temperatures by second-harmonic gener-
ation microscopy [6]. A significant effect of the cooling rate
on the formation of domain structure and the consequently
enhanced piezoelectric properties was observed on bismuth
ferrite–barium titanate (BFO-BT) ferroelectric ceramics [7].
The quenching and cooling rate also affected the phase
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symmetry, characteristic temperatures, and phase composition
in sodium bismuth titanate–barium titanate (NBT-BT) relaxor
ferroelectrics [8–10], allowing the improvement of their func-
tional properties.

Additional possibilities for controlling the domain struc-
ture development are provided by cooling in the external
electric or elastic field. Thus, the cooling rate effect on the
formation of ferroelastic domain structures in strained ferro-
electric films was observed on lead titanate (PT) [11] and lead
zirconate titanate (PZT) [12] epitaxial thin films. For 3D sam-
ples, the effect of hydrostatic pressure on the phase diagram
and domain formation kinetics was studied theoretically in
potassium nitrate and potassium dihydrogen phosphate (KDP)
crystals [13] and experimentally and theoretically in BT [14].
Alternatively, when applying an electric field, different do-
main pattern evolutions were observed in PGO [3], TGS [15],
and TAAP [16] with and without the field.

Formation of polarization domain structures in ferro-
electrics after quenching is a stochastic process, and it was
previously treated by means of stochastic theories. In the
work by Kalkum et al. [17], the formation of periodic
domain structures in a uniform system subject to a spa-
tially modulated electric field was considered based on the
approach developed by Ishibashi and Takagi [18]. Alterna-
tively, Rao and Chakrabarti [19] advanced a random-field
model of domain growth based on the stochastically extended
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Landau-Ginzburg-Devonshire (LGD) approach. In the men-
tioned models, however, the feedback via electric depolariza-
tion fields emerging together with the domain appearance was
not accounted for. Darinskii et al. [20] developed an LGD-
based stochastic approach for the two-component polarization
with the self-consistent account of the emerging depolariza-
tion fields. In their work, the transient development of the
inhomogeneous phase was not studied, and correlation func-
tions of the stochastic variables were not considered, which is
the focus of this paper.

Recently, the authors advanced an exactly solvable model
of the stochastic domain formation in uniaxial ferroelectrics
which accounts self-consistently for electric interaction be-
tween emerging polarization domains [21]. In this paper, this
model is used to investigate to what extent the temporal devel-
opment of the domain structure depends and can be controlled
by initial conditions and the applied electric field. This paper
is organized as follows. In Sec. II, the basic assumptions of
the stochastic model and the underlying LGD thermodynamic
potential are formulated. In Sec. III, the evolution equations
for the stochastic polarization and the electric potential are
briefly presented as well as the previously derived system of
the integrodifferential equations for the mean polarization and
the polarization correlation functions [21]. The solution of
these equations is then reduced to the numerical analysis of
the system of nonlinear differential equations for the mean
value and variance of the polarization. In Sec. IV, analytical
expressions for the correlation length and the polarization
correlation coefficient are derived for three different shapes
of the initial polarization correlation function and compared
with the available experimental data for TGS. In Sec. V, the
domain formation kinetics is studied by the numerical solution
of the coupled differential equations for the mean value and
variance of the polarization for the three cases of the above
introduced initial correlation functions. The charge density
fluctuations and the implications for the charged domain walls
are then studied in Sec. VI. Finally, the physical results ob-
tained in Secs. IV–VI are discussed in Sec. VII and concluded
in Sec. VIII.

II. PHYSICAL MODEL

Let us consider a uniaxial single-crystalline ferroelectric
with the polarization along the z axis of the Cartesian coor-
dinate system, as is shown in Fig. 1. It delineates a typical
experimental geometry of a ferroelectric plate of thickness
h f , attached to a bottom electrode and a dielectric layer of
thickness hd at the top side covered with a top electrode al-
lowing for application of an external voltage. The LGD energy
functional of the system can be presented in the form [22,23]:

� = �0 +
∫

Vf

[
1

2
AP2

z + 1

4
BP4

z + 1

2
G(∇Pz )2

−PzEz − ε0εb

2
E2

]
dV −

∫
Vd

ε0εd

2
E2dV, (1)

with the temperature-dependent coefficient A =
α0(T − Tc), α0 > 0, T < Tc, which is the temperature of
the second-order paraelectric-ferroelectric phase transition,
and the other temperature-independent coefficients B > 0 and

FIG. 1. A ferroelectric single crystal of thickness hf placed on
the bottom electrode and separated from the top electrode by a
vacuum or dielectric layer of thickness hd is infinite in the (x, y) plane
parallel to the ferroelectric surface. The only polarization direction is
along the vertical z axis of the Cartesian (x, y, z) frame.

G > 0. Here, E denotes the local electric field; ε0, εd , and
εb are the permittivity of vacuum, of the dielectric layer, and
the background permittivity of the ferroelectric, respectively,
while Vf and Vd denote the volumes of the ferroelectric plate
and the dielectric layer, respectively.

We use in the following dimensionless physical variables
normalized to their natural characteristic values in the phase
transition problem. Thus, we denote a dimensionless polar-
ization π = Pz/Ps normalized to the spontaneous equilibrium
polarization Ps = √|A|/B, and a dimensionless electric field
ε = E/E0, with the value of E0 = Ps|A|. Spatial coordinates
are normalized to a characteristic length λ = √

G/|A|, which
has the meaning of the characteristic domain wall thickness,
and the time t is normalized to t0 = �/|A| as τ = t/t0 with the
Khalatnikov constant � [21].

We consider the evolution of the system from an initial
state obtained by quenching from a high-temperature para-
electric phase to a ferroelectric one at temperature T < Tc.
Since the initial state is a random one, all physical vari-
ables become stochastic variables too and will be treated in
this model as Gauss random fields as suggested previously
[24,25]. If temperature T is not too close to Tc and the mag-
nitude and spatial scale of disorder are large enough, the
development of the system is dominated by the quenched
disorder while the thermal fluctuations can be neglected, as
was shown in Ref. [21].

The polarization can be represented as π (r, τ ) = π̄ (τ ) +
ξ (r, τ ), with the dimensionless mean polarization magnitude
π̄ (τ ) = 〈Pz(r, τ )〉/Ps, depending on the dimensionless time τ,

and the stochastic polarization ξ (r, τ ) such that 〈ξ (r, τ )〉 = 0.
Here, the sign 〈. . .〉 denotes statistical averaging over all pos-
sible system realizations. Then a dimensionless local electric
field reads

ε(r, τ ) = εaẑ − αzπ̄ (τ )ẑ − ∇φ(r, τ ). (2)
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Here, a uniform electric field in the ferroelectric in the z
direction, εa, is determined by a voltage V applied to the
electrodes and the chosen sample geometry and material pa-
rameters [21]:

εa = εdV

(εd h f + εbhd )E0
. (3)

The second term in Eq. (2) represents the mean de-
polarization field in the ferroelectric due to the average
polarization π̄ with the depolarization coefficient αz =
hd/ [(εdh f + εbhd )ε0|A|], while the last term is the stochas-
tic electric depolarization field due to the stochastic electric
potential φ(r, τ ), so that 〈∇φ〉 = 0.

III. THE GOVERNING EQUATIONS

By variation of the energy functional in Eq. (1) with respect
to the polarization and the electric potential, respectively, a
closed system of evolution equations for these two variables
can be derived [21]:

∂π

∂τ
= π + π − π3 + εz

φ = η
∂π

∂z
, (4)

where the first one is the time-dependent Ginzburg-Landau
(TDGL) equation, and the second one is the Poisson equa-
tion with a dimensionless susceptibility parameter η =
1/(ε0εb|A|).

The Gauss random variables can be completely char-
acterized by a full set of two-point correlation functions
between all variables [26]. It turns out that only two of
them are relevant for the temporal development of the con-
sidered system from the initial quenched state, namely,
the autocorrelation function for the stochastic polarization
K (s, τ ) = 〈ξ (r1, τ )ξ (r2, τ )〉, with s = r1 − r2, and the
cross-correlation function between z components of polariza-
tion and electric field �zz(s, τ ) = 〈εz(r1, τ )ξ (r2, τ )〉 [21]. All
the correlation functions are interrelated with each other, as
was shown in Refs. [21,27]. Particularly, �zz(s, τ ) is related
to K (s, τ ) as

�zz(s, τ ) = −η
∂2

∂s2
z

K (s, τ ). (5)

In terms of the Fourier transforms defined as

K (s, τ ) = 1

(2π )3

∫
d3q exp(iqs)K̃ (q, τ ), (6a)

K̃ (q, τ ) =
∫

d3s exp(−iqs)K (s, τ ), (6b)

this relation can be converted into an explicit algebraic expres-
sion:

�̃zz(q, τ ) = −η
q2

z

q2
K̃ (q, τ ). (7)

Thus, the problem of the time-dependent spatial correla-
tions is reduced to finding the function K̃ (q, τ ) and the mean
polarization value π̄ (τ ), for which the system of nonlinear

integrodifferential equations was derived previously [21]:

dπ̄

dτ
= π̄ [1 − αz − 3K (0, τ )] − π̄3 + εa

dK̃

dτ
= 2

[
1 − 3π̄2 − 3K (0, τ ) −

(
q2 + η

q2
z

q2

)]
K̃ . (8)

The knowledge of K̃ (q, τ ) allows evaluation of an im-
portant characteristic of the system evolution, the correlation
length L(τ ), defined by the relation [24]:

L−2(τ ) =
∫

d3q q2K̃ (q, τ )∫
d3qK̃ (q, τ )

. (9)

Another important system characteristic is the polarization
dispersion, or variance, D(τ ) = K (0, τ ), which can be ex-
pressed as the integral of the Fourier transform in Eq. (6a).

The first-order differential equation in the second line of
Eq. (8) can be solved, allowing the expression of the function
K̃ (q, τ ) through its initial value K̃ (q, 0) determined by corre-
lations in the initial state after quenching [21]:

K̃ (q, τ ) = K̃ (q, 0)μ(τ ) exp

[
−2

(
q2 + η

q2
z

q2

)
τ

]
, (10)

where the auxiliary function μ(τ ) is defined as

μ(τ ) = exp

{
2τ − 6

∫ τ

0
dτ ′ [π̄2(τ ′) + D(τ ′)]

}
. (11)

The time behavior of both functions μ(τ ) and K̃ (q, τ )
is essentially determined by the variance D(τ ). This makes
finding D(τ ) the central problem in the study of correlations.
The variance can be found by solving the system of nonlinear
differential equations [21]:

dπ̄

dτ
= π̄ (1 − αz − 3D) − π̄3 + εa

dD

dτ
= [2 − 6π̄2 − 6D − ν(τ )]D, (12)

with an auxiliary function:

ν(τ ) = 2

L2(τ )
+ 1

2τ

[
1 − 2√

π

√
2ητ exp(−2ητ )

erf (
√

2ητ )

]
. (13)

In the following, this system of equations will be analyzed
and solved numerically for different initial physical condi-
tions, which may be realized while quenching, and different
applied field magnitudes. Some characteristics of the system,
however, may be found analytically in a closed form, as will
be shown in the next section.

IV. CORRELATION LENGTH AND CORRELATION
COEFFICIENTS FOR DIFFERENT INITIAL CONDITIONS

We start with a derivation of some useful general relations.
When considering only isotropic initial disordered states after
quenching, meaning that K̃ (q, 0) = K̃ (q, 0), as will be done
in the following, the functions L(τ ) and μ(τ ) can be conve-
niently expressed in terms of an auxiliary function:

κ (τ ) =
∫ ∞

0
dq q2exp(−2τq2)K̃ (q, 0). (14)
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Then from the definition of L(τ ), Eq. (9), one finds

L−2(τ ) = −1

2

∂

∂τ
ln κ (τ ), (15)

which can be directly evaluated from the characteristics of
the initial state only. This demonstrates that properties of the
initial state are decisive for the subsequent evolution of the
system.

Furthermore, by the integration of the second line in Eq.
(12) and using the definition of μ(τ ), Eq. (11), it follows that

μ(τ ) = D(τ )

D(0)
exp

[∫ τ

0
dτ ′ν

(
τ ′)]. (16)

By substituting the expression for ν(τ ), Eq. (13), into
Eq. (16) and using the relation in Eq. (15), Eq. (16) can be
transformed to

μ(τ ) = 2√
π

√
2ητ

erf (
√

2ητ )

κ (0)

κ (τ )

D(τ )

D(0)
. (17)

Using the definition of κ (τ ), Eq. (14), it is easy to check that
κ (0) = 2π2D(0).

The properties of the initial quenched state can, in princi-
ple, be different and depend on various factors like quenching
temperature, cooling rate, etc., as was discussed in Sec. I. The
expressions in Eqs. (10), (14), (15), and (17) allow exact eval-
uation of the experimentally observed correlation coefficient
C(s, τ ) = K (s, τ )/D(τ ) and the correlation length L(τ ) for an
arbitrary isotropic initial correlation function K (s, 0). We will
consider in the following three examples of K (s, 0) and study
the effect of their shape on the system evolution. One of the
reasons for this comparative analysis is that the experimen-
tally observed correlation coefficient C(s, τ ) exhibits at small
distances linear dependence on s at any times τ which could
not yet be adequately described [21].

A. Initial correlation function
of a Gaussian shape

This case was treated in Ref. [21]. For completeness, we
shortly reproduce the main results here. Assuming

K (s, 0) = K0 exp

(
− s2

2r2
c

)
, (18)

with the Gauss parameter rc and the magnitude K0 = D(0),
we get its Fourier transform:

K̃ (q, 0) = (2π )3/2K0r3
c exp

(
− r2

c q2

2

)
. (19)

This choice determines the auxiliary functions:

κ (τ ) = 2π2K0

(
1 + 4τ

r2
c

)−3/2

, (20)

and

μ(τ ) = 2√
π

√
2ητ

erf (
√

2ητ )

(
1 + 4τ

r2
c

)3/2 D(τ )

D(0)
, (21)

as well as the correlation length:

L(τ ) =
√(

r2
c + 4τ

)/
3. (22)

The according rather formidable expressions for the lon-
gitudinal and transverse polarization correlation coefficients
may be found in Ref. [21]. The correlation coefficient
C(s, τ ) does not exhibit a linear behavior in s for small
distances at any time τ and thus cannot adequately de-
scribe experimental observations on TGS presented in many
works [15,28–32].

B. Initial correlation function of an exponential shape

To describe the linear spatial behavior of C(s, τ ) for small
distances s at least at the beginning of the system evo-
lution, we now assume the initial correlation function of
the form:

K (s, 0) = K0 exp

(
− s

ξ

)
, (23)

with a characteristic length ξ . This function has the Fourier
transform:

K̃ (q, 0) = 8πK0

ξ (q2 + ξ−2)2 . (24)

The corresponding auxiliary functions read

κ (τ ) = 2π2K0

[
(1 + 2σ 2) exp(σ 2)erfc(σ ) − 2√

π
σ

]
, (25)

and

μ(τ ) = 2√
π

√
2ητ

erf (
√

2ητ )

×
[

(1 + 2σ 2) exp(σ 2)erfc(σ ) − 2√
π

σ

]−1 D(τ )

D(0)
,

(26)

where a combined variable σ = √
2τ/ξ was introduced for

convenience.
The correlation length follows then from Eqs. (15) and (25)

as

L(τ ) = ξ√
2

×
√ √

πσ (1 + 2σ 2) exp(σ 2)erfc(σ ) − 2σ 2

(1 + σ 2) − 3
2

√
π σ

(
1 + 2

3σ 2
)

exp(σ 2)erfc(σ )
.

(27)

In the limiting case τ → 0, the characteristic length be-
haves as L(τ ) ∼= (πξ 2τ/2)1/4 and, thus, vanishes at τ =
0, differently from the Gaussian function case, Eq. (22).
However, asymptotically, at τ → ∞, L(τ ) ∼ √

4τ/3 as in
Eq. (22). A comparison of the analytical results in Eqs. (22)
and (27) with the experiment by Tomita et al. [15] is shown in
Fig. 2.

Relevant for experiments, the transverse correlation coeffi-
cient C(s, τ ) = K (s, τ )/D(τ ) for the distance s = (s⊥, 0) can
be calculated by substituting Eqs. (24) and (26) into Eq. (10)
resulting in the expression:

C⊥(s⊥, τ )

= 8

π

√
2ητ exp(−2ητ )

erf (
√

2ητ )[
√

π (1 + 2σ 2) exp(σ 2)erfc(σ ) − 2σ ]
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FIG. 2. Fitting the experimental data for L(τ ) from Tomita et al.
[15] by Eq. (27) using the fitting parameter ξ = 1 and the time
scaling τ = t/t0, with t0 = 6000 s (the solid line). The points present
experimental results, while the dashed line is the fitting by Eq. (22)
using the parameters rc = 1 and τ = t/t0, with t0 = 1600 s.

×
∫ ∞

0
dq

q2 exp(−σ 2q2)

(1 + q2)2

×
∫ 1

0
dz

z exp(2ητ z2)√
1 − z2

J0

(
qzs⊥

ξ

)
. (28)

As is seen from the example evaluations of Eq. (28) for dif-
ferent times τ in Fig. 3, the function C(s, τ ) initially exhibits
a linear dependence on s⊥ but then quickly transforms with
increasing time to a curve with a smooth maximum.

A comparison of Eq. (28) with the experimental data for
the correlation coefficient C⊥(s⊥, τ ) from Tomita et al. [15] is
shown in Fig. 4. Hereby, the parameters ξ = 1 and t0 = 6000 s
are taken over from the fitting of L(τ ) in Fig. 2, while the
dimensionless polarizability η = 10 is chosen by the best fit
of the experimental data on correlations.

FIG. 3. The time development of the spatial dependence of the
correlation coefficient C⊥(s⊥, τ ), Eq. (28), using the parameters
ξ = 1 and η = 1 and represented for the dimensionless times τ =
0.001, 0.01, 0.1, and 1.

FIG. 4. The correlation coefficient C⊥(s⊥, τ ) evaluated using
Eq. (28) for different times as is shown in the plot (solid lines) is
compared with the experimental data by Tomita et al. [15] repre-
sented for the respective times by solid symbols. The parameters ξ

and t0 in Eq. (28) are taken over from the fitting of L(τ ) in Fig. (2),
while the dimensionless polarizability η = 10 was chosen by the best
fit of the experimental correlation data.

While the global spatial dependence is in principle cap-
tured by the formula in Eq. (28), including the minimum in
the negative region, the linear spatial dependence at the origin
is missing in the considered time region since the spatial
dependence of C⊥(s⊥, τ ) transforms quickly from a sharp to
a smooth maximum, as demonstrated in Fig. 3. Thus, the as-
sumption of the initially linear correlation function, Eq. (23),
does not help to improve the spatial dependence of C⊥(s⊥, τ )
at later times.

C. Initial correlation function of an error function type

Let us consider another case with an initial linear spatial
dependence at small distances given by the complementary
error function:

K (s, 0) = K0 erfc

(
s

ξ

)
, (29)

with the Fourier transform:

K̃ (q, 0) = − 4
√

πK0ξ

q2

[
1 + i

√
π

qξ

(
1 + q2ξ 2

2

)

× exp

(
−q2ξ 2

4

)
erf

(
iqξ

2

)]
. (30)

This results in the auxiliary functions:

κ (τ ) = 4πK0

[
arctan

(
1

2σ

)
− σ

2(σ 2 + 1/4)

]
, (31)

with the combined variable σ = √
2τ/ξ as above and

μ(τ ) =
√

2πητ

erf (
√

2ητ )

[
arctan

(
1

2σ

)
− σ

2(σ 2 + 1/4)

]−1 D(τ )

D(0)
.

(32)
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FIG. 5. Fitting the experimental data for L(τ ) from Tomita et al.
[15] by Eq. (33) using the fitting parameter ξ = 1 and the time scal-
ing τ = t/t0, with t0 = 6400 s (the solid line). The points represent
experimental results, and the dashed line is the fitting with Eq. (22)
using the parameters rc = 1 and τ = t/t0, with t0 = 1600 s.

The correlation length follows then from Eqs. (15) and (31)
as

L(τ ) = 2ξ

(
σ 2 + 1

4

)√
2σ arctan

(
1

2σ

)
− σ 2

σ 2 + 1
4

. (33)

In the limiting case τ → 0, the characteristic length be-
haves as L(τ ) ∼= (π2ξ 2τ/8)1/4 and, thus, vanishes at τ = 0,

differently from the Gaussian function case, Eq. (22). How-
ever, asymptotically, at τ → ∞, again, L(τ ) ∼ √

4τ/3 as in
Eq. (22). A comparison of the analytical results in Eqs. (22)
and (33) with the experiment by Tomita et al. [15] is shown in
Fig. 5.

The experimentally measurable transverse correlation co-
efficient C(s, τ ) = K (s, τ )/D(τ ) for the distance s = (s⊥, 0)
can be calculated by substituting Eqs. (30) and (32) into
Eq. (10), resulting in the expression:

C⊥(s⊥, τ ) = −2

π

√
2ητ exp(−2ητ )

erf (
√

2ητ )
[
arctan

(
1

2σ

) − σ
2(σ 2+1/4)

] ∫ 1

0
dz

z exp(2ητ z2)√
1 − z2

×
∫ ∞

0
dq exp(−σ 2q2)J0

(
qzs⊥

ξ

)[
1 + i

√
π

q

(
1 + q2

2

)
exp

(
−q2

4

)
erf

(
iq

2

)]
. (34)

As well as in the case of the initial exponential correlation
function, the example evaluation of Eq. (34) for different
times τ in Fig. 6 exhibits initially a linear dependence on s⊥
which then quickly transforms with increasing time to a curve
with a smooth maximum.

A comparison of Eq. (34) with experimental data for
the correlation coefficient C⊥(s⊥, τ ) from Tomita et al. [15]

FIG. 6. The time development of the spatial dependence of the
correlation coefficient C⊥(s⊥, τ ), Eq. (34), using the parameters
ξ = 1 and η = 1 and represented for the dimensionless times τ =
0.001, 0.01, 0.1, and 1.

shown in Fig. 7 demonstrates traits like the case of the initial
exponential correlation function, Fig. 4. For the evaluation of
Eq. (34), the parameters ξ = 1 and t0 = 6400 s were taken
over from the fitting of L(τ ) in Fig. 5, while the dimension-

FIG. 7. The correlation coefficient C⊥(s⊥, τ ) evaluated using
Eq. (34) for different times as is shown in the plot (solid lines) is
compared with the experimental data by Tomita et al. [15] repre-
sented for the respective times by solid symbols. The parameters ξ

and t0 in Eq. (34) are taken over from the fitting of L(τ ) in Fig. (5).
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FIG. 8. (a) Periodic normalized polarization profiles with zero (solid line) and nonzero (dashed line) domain wall thicknesses. Both
polarization stripe structures have a period of unity with positive and negative polarization domains of the width 1

2 . (b) Correlation coefficients
for the polarization distributions in (a) shown respectively by the solid and dashed lines.

less polarizability η = 10 was chosen by the best fit of the
experimental correlation data.

Again, the global spatial dependence provided by the
formula in Eq. (34) captures, in principle, the experimental be-
havior including the minimum in the negative region, but the
linear spatial dependence at the origin is missing in the con-
sidered time region since the spatial dependence of C⊥(s⊥, τ )
quickly transforms with time to a smooth maximum, as can
be expected considering Fig. 6. Thus, the assumption of the
initially linear correlation function of any shape, exemplified
above by Eqs. (23) and (29), does not help to improve the spa-
tial dependence of C⊥(s⊥, τ ) at later times. This suggests that
the spatial behavior of the correlation coefficient C⊥(s⊥, τ ) is
rather determined by the structure of the second line of Eq. (8)
than by the initial condition to this equation, K̃ (q, 0). Further-
more, the apparent discrepancy between the experimental data
and the theory near the origin may have another reason, which
will be discussed in the next section.

D. Spatial dependence of model correlation functions

Following the pioneering works by Tomita et al. [15] and
Orihara et al. [28], the statistical treatment of the stochastic
polarization development in TGS was performed by other
groups [29–32] in the same spirit of the Ising model, namely,
by assigning the values of the scalar order parameter +1 and
−1 inside black and white domains, respectively, reflecting
the two opposite polarization states. This simplified treatment
excludes a possible smooth spatial variation of the polariza-
tion and, thus, assumes the domain walls of zero thickness. To
comprehend what role this treatment of the experimental data
plays, we will consider below a couple of insightful examples
of correlation functions.

To this end, we take two periodic stripe domain structures
of zero total polarization with zero and nonzero domain wall
thicknesses, respectively, delineated in Fig. 8(a). The smooth
polarization distribution represented by the dashed line in
Fig. 8(a) is described by a harmonic function:

π (x) = cos
(πx

2h

)
, (35)

with the parameter h = 1
4 , while the steplike polarization

stripe structure consists of positive and negative domains of
equal widths a = b = 1

2 , respectively.
Since these structures exhibit long-range order, they are,

strictly speaking, not stochastic. Nevertheless, they can be
characterized by a spatially averaged two-point correlation
function in the same way as was done in experiments [15,29–
32]. Using the results of appendix B of Ref. [21], the po-
larization correlation coefficients for the two polarization
distributions depicted in Fig. 8(a) can be represented by plots
in Fig. 8(b).

The smooth correlation coefficient represented by the
dashed line in Fig. 8(b) corresponds to the harmonic polar-
ization distribution shown also by the dashed line in Fig. 8(a).
It is described, for the chosen parameter h = 1

4 , by the func-
tion C(s) = cos(2πs). The correlation coefficient, represented
piecewise by straight solid lines in Fig. 8(b), corresponds to
the steplike polarization distribution shown by solid lines in
Fig. 8(a). Starting from the origin, this correlation coefficient
is described by the dependence C(s) = 1−4s. When applying
the definition of the characteristic length L by the condition
C(s) = 1

2 , as in the experiments [15,29–32], one obtains L =
1
8 for the latter function. Using this, the correlation coefficient
may be expressed as C(s) = 1−s/2L, coinciding with the
scaling behavior near the origin declared in the experiments
[15,29–32]. Notably, this behavior is observed for the do-
main structure with the abrupt polarization variation and the
zero-thickness domain walls, while the smeared polarization
distribution in Fig. 8(a) is characterized by the correlation
coefficient with a smooth maximum in Fig. 8(b). This suggests
that the apparent linear spatial behavior of the experimental
correlation coefficients might originate from the treatment of
the experimental data, neglecting spatially smeared polariza-
tion variations.

V. EFFECT OF INITIAL CONDITIONS ON THE DOMAIN
FORMATION KINETICS AND THE COERCIVE FIELD

In this section, we study the effect of different initial shapes
of the polarization correlation function as well as the effect of
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FIG. 9. Phase trajectories of the system starting from the initial
values π̄ (0) = 0 and D(0) = 0.1 and the initial correlation func-
tion, Eq. (18) for the parameter values rc = 1, η = 10, αz = 0.625.
Curves 1–6 correspond to the values of the dimensionless exter-
nal electric field in the sample εa = 0; 0.04; 0.076; 0.077; 0.1; 0.2,
respectively.

the magnitude of the initial spatial scale and the initial dis-
order on the temporal domain structure formation at different
applied electric field values.

Since the polarization correlation function K (s, τ ) is com-
pletely determined by its initial shape K (s, 0) via Eq. (10) and
the auxiliary time-dependent function in Eq. (17), the time
development of the system is governed by the variance D(τ )
and the average polarization π̄ (τ ). The latter two dependences
may be derived by solving the system of nonlinear differential
equations in Eq. (12). This is performed here numerically by
means of the MATLAB package (ver. R2023b). Based on the
above fitting of the experiments on TGS by Tomita et al.
[15], in Figs. 4 and 7, we fix the dimensionless parameter of
susceptibility at η = 10. The geometrical dimensions of the
structure in Fig. 1 necessary for calculations are chosen as
h f = 1 mm and hd = 20 µm, which is typical for experiments
[15,29–32]. The dielectric permittivity of the materials is
taken as εb = 10 and εd = 3. This choice leads to the value of
the parameter αz = hdεbη/(εd h f + εbhd ) = 0.625. The other
involved parameters are varied.

A. Development from the initial correlation function of a
Gaussian shape

To comprehend typical behavior patterns of the variables
π̄ (τ ) and D(τ ), we first consider example solutions of the
equation system in Eq. (12) for the initial correlation function
of the Gaussian shape, Eq. (18), fixing the initial values at
π̄ (0) = 0, D(0) = 0.1, rc = 1 and varying the applied field
values. The choice of the initial correlation function K (s, 0)
is reflected in Eq. (13) via the correlation length L(τ ), which
is taken in this case in the form of Eq. (22). The results are
presented on the phase diagram in coordinates (π̄ , D) for
different values of the field εa as indicated in Fig. 9.

Development of the domain structure after quenching oc-
curs nonmonotonically and differs depending on the value of
the applied electric field. The pattern of trajectories in Fig. 9

exhibits bifurcation behavior near the coercive field value
about εcr = 0.0765, separating the regions of polydomain and
single-domain ordering. In the absence of the external elec-
tric field, domains develop nonmonotonically keeping π̄ = 0,
while the dispersion D first decreases and then increases to
finally generate a quasiperiodic structure with equal volumes
of domains of different signs (curve 1). When the electric field
is imposed on the sample, the fraction of domains of the cor-
responding direction is increased both during the relaxation
and at its completion (curve 2).

The most drastic deviations are clearly visible when fields
close to the coercive value are applied to the sample (curves
3 and 4 in Fig. 9). When εa 
 εcr, many domains appear
directed along the field, which is manifested by a weaker
increase of the variance D compared with the average polar-
ization π̄ . A pronounced asymmetry of the domains along and
opposite to the field is observed in the bifurcation region, and
the system exhibits slowing down for some time which can be
evaluated as the length of the plateau on the time dependences
π̄ (τ ) and D(τ ) in Fig. 10.

The closer the applied field εa to the coercive field εcr , the
more extended in time the indefinite state of the system, de-
ciding between the single-domain and multidomain final state
(the so-called kinetic slowing down). After this interim phase,
the system tends to balance the ratio of oppositely directed
domains when εa � εcr (curve 3 in Fig. 9) or to polarize the
entire sample in one direction when εa � εcr (curve 4). The
average polarization of the formed polydomain structure is
π̄ (τ ) > 0, which still indicates some imbalance of domain
fractions (curve 3). A further increase in the magnitude of the
applied field leads to the fast formation of a single-domain
state (curve 6).

The nonmonotonic behavior of the evolution curves is also
manifested by a decrease in the variance D at the beginning of
the relaxation when the electric field is imposed on the sample.
It might indicate both the presence of an incubation period for
the nuclei of the ferroelectric domain (curves 2–5) and the
suppression of the initial inhomogeneity by the large external
electric field (curve 6). Starting from the state with D(0) =
0.1, all the curves go through an incubation stage with the
same lower magnitude of D, as is seen in Figs. 9 and 10(b),
and then develop differently depending on the applied field. It
is important to note that the existence of such an incubation
period is determined solely by the prehistory of the sample
and is observed even in the absence of an external electric
field [Fig. 10(b)].

The magnitude of the initial disorder D(0), which can
be experimentally controlled, for example, by the cooling
rate, plays a significant role in the system evolution. Since
the current model, assuming the dominance of the quenched
disorder over the thermal one, applies for the substantial dis-
order only [21], we consider here the values D(0) > 0.1. The
phase diagram on the plane (π̄ , D) in Fig. 11 demonstrates the
evolution of the system starting from different magnitudes of
the initial disorder within the range 0.1 < D(0) < 0.9 when
the applied field εa = 0.09 is fixed. It is seen that the level of
disorder D in the incubation stage, to which the system falls
after the start, increases monotonically with D(0).

The coercive field εcr appears to be rather sensitive to the
initial parameters of the ferroelectric state after quenching
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FIG. 10. (a) The time development of the mean polarization for different magnitudes of the electric field. (b) The time development of the
polarization variance for different magnitudes of the electric field. All other parameters are the same as used in Fig. 9 for the initial correlation
function, Eq. (18).

FIG. 11. Phase trajectories of the system starting from the initial
value π̄ (0) = 0 under the applied field of εa = 0.09 for the initial
correlation function, Eq. (18) and the parameter values rc = 1, η =
10, αz = 0.625. Curves 1–6 correspond to the values of the initial
disorder D(0) = 0.1; 0.3; 0.4; 0.9, respectively.

FIG. 12. The dependence of the coercive field on the initial value
of the polarization variance D(0) for the initial correlation function,
Eq. (18) and different values of the initial characteristic length rc.

from the paraelectric one. Its dependence on the initial mag-
nitude of the spatial polarization variations, characterized by
the dispersion D(0), and on the initial spatial scale of the
polarization variations, characterized by the Gauss parameter
rc, is presented in Fig. 12. It is seen that the coercive field rises
monotonically with the increase of both D(0) and rc.

B. Development from the initial correlation function of an
exponential shape

We consider now the solution of the equation system in
Eq. (12) for the variables π̄ (τ ) and D(τ ) using the initial
correlation function K (s, 0) of an exponential shape from
Eq. (23) reflected in the correlation length L(τ ) given by
Eq. (27). The initial conditions for Eq. (12) are again π̄ (0) =
0 and D(0) = 0.1, while the other involved parameters are
ξ = 1, η = 10, αz = 0.625. The evolution of the system with

FIG. 13. Phase trajectories of the system starting from the initial
values π̄ (0) = 0 and D(0) = 0.1 and the initial correlation func-
tion, Eq. (23) for the parameter values ξ = 1, η = 10, αz = 0.625.
Curves 1–6 correspond to the values of the dimensionless exter-
nal electric field in the sample εa = 0; 0.03; 0.061; 0.062; 0.07; 0.1,
respectively.
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FIG. 14. (a) The time development of the mean polarization for different magnitudes of the electric field. (b) The time development of the
polarization variance for different magnitudes of the electric field. All other parameters are the same as used in Fig. 13 for the initial correlation
function, Eq. (23).

time τ as a parameter is presented on the phase diagram
in coordinates (π̄ , D) for different values of the field εa, as
indicated in Fig. 13.

The pattern of trajectories in Fig. 13 reminds us of that
in Fig. 9 for the initial Gaussian correlation function and
demonstrates the same bifurcation physical behavior deciding
between the single-domain and the multidomain final state.
The coercive field is somewhat smaller than in Fig. 9 and
amounts to εcr = 0.0615.

The explicit time dependences of π̄ (τ ) and D(τ ) are pre-
sented for different values of the applied field in Figs. 14(a)
and 14(b), respectively. The kinetics of the polarization struc-
ture formation represented by π̄ (τ ) and D(τ ) demonstrates,
in principle, the same features as in the case of the initial
Gaussian correlation function in Fig. 10.

The magnitude of the initial disorder D(0) plays again a
significant role in the system evolution, as is shown in Fig. 15.
The phase diagram on the (π̄ , D) plane demonstrates the

FIG. 15. Phase trajectories of the system starting from the initial
value π̄ (0) = 0 under the applied field of εa = 0.08 for the initial
correlation function, Eq. (23) and the parameter values rc = 1, η =
10, αz = 0.625. Curves 1–6 correspond to the values of the initial
disorder D(0) = 0.1; 0.3; 0.4; 0.9, respectively.

system development starting from different magnitudes of the
initial disorder within the range 0.1 < D(0) < 0.9 when the
applied field εa = 0.08 is fixed. It is seen again that variance
D in the incubation stage, to which the system falls after the
start, increases monotonically with D(0).

The coercive field εcr dependence on the initial parameters
of the ferroelectric state after quenching from the paraelectric
one exhibits the same trends as for the Gaussian initial state in
Fig. 12. Its dependence on the initial magnitude of the spatial
polarization variations D(0) and on the initial spatial scale of
the polarization variations, characterized by the parameter ξ ,
is presented in Fig. 16. Like Fig. 12, the coercive field rises
monotonically with the increase of both D(0) and ξ .

C. Development from the initial correlation function of an error
function type

Let us now consider the solution of the equation system
in Eq. (12) for the variables π̄ (τ ) and D(τ ) using the initial
correlation function K (s, 0) of an error function type from

FIG. 16. The dependence of the coercive field on the initial value
of the polarization variance D(0) for the initial correlation function,
Eq. (23) and different values of the characteristic length ξ .
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FIG. 17. Phase trajectories of the system starting from the initial
values π̄ (0) = 0 and D(0) = 0.1 and the initial correlation func-
tion, Eq. (29) for the parameter values ξ = 1, η = 10, αz = 0.625.
Curves 1–6 correspond to the values of the dimensionless exter-
nal electric field in the sample εa = 0; 0.02; 0.038; 0.039; 0.05; 0.08,
respectively.

Eq. (29) reflected in the correlation length L(τ ) given by
Eq. (33). The initial conditions for Eq. (12) are again π̄ (0) = 0
and D(0) = 0.1, while the other involved parameters are ξ =
1, η = 10, αz = 0.625. The phase diagram in coordinates
(π̄ , D) of the system evolution for different values of the field
εa is presented in Fig. 17.

The phase diagram in Fig. 17 reminds us of that in Figs. 9
and 13 and demonstrates the same bifurcation physical behav-
ior deciding between the single-domain and the multidomain
final state. The coercive field is further reduced and amounts
to εcr = 0.0385.

The explicit time dependences of π̄ (τ ) and D(τ ) for dif-
ferent values of the applied field are shown in surface plots
in Figs. 18(a) and 18(b), respectively. The development of the
polarization structure represented by π̄ (τ ) and D(τ ) exhibits,
in principle, the same trends as in the cases of the initial Gaus-
sian correlation function (Fig. 10) and exponential correlation

FIG. 19. Phase trajectories of the system starting from the initial
value π̄ (0) = 0 under the applied field of εa = 0.05 for the parameter
values rc = 1, η = 10, αz = 0.625. Curves 1–6 correspond to the
values of the initial disorder D(0) = 0.1; 0.3; 0.4; 0.9, respectively.

function (Fig. 14); however, there are distinct quantitative
features. Thus, starting from the initial value of D(0) = 0.1,
the system falls very fast to low values of D � 1.

The magnitude of the initial disorder D(0) strongly affects
the system evolution, as is shown in Fig. 19. The phase
diagram on the (π̄ , D) plane discloses the system develop-
ment starting from different magnitudes of the initial disorder
within the range 0.1 < D(0) < 0.9 when the applied field
εa = 0.05 is fixed. It is seen that a very low variance D in
the incubation stage, to which the system falls after the start,
increases monotonically with D(0).

As well as in the previous cases of the initial correla-
tion functions treated in Secs. V A and V B, the coercive
field εcr for the initial correlations of the error function type
demonstrates strong dependence on the initial parameters of
the ferroelectric state after quenching from the paraelectric
one. The dependence on the initial magnitude of the spatial
polarization variations D(0) and on their initial spatial scale
characterized by the length parameter ξ is presented in Fig. 20.

FIG. 18. (a) The time development of the mean polarization for different magnitudes of the electric field. (b) The time development of the
polarization variance for different magnitudes of the electric field. All other parameters are the same as used in Fig. 17 for the initial correlation
function, Eq. (29).
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FIG. 20. The dependence of the coercive field on the initial value
of the polarization variance D(0) for the initial correlation function,
Eq. (29) and different values of the characteristic length ξ .

Like Figs. 12 and 16, the coercive field rises monotonically
with the increase of both D(0) and ξ but comes slower to the
saturation at higher values of D(0).

VI. CHARGE DENSITY CORRELATIONS

As was established in recent experiments combined with
phase-field simulations, the domain structures in uniaxial fer-
roelectrics PGO [3,33] and TGS [34] exhibit unexpected and
exotic properties. Particularly, the head-to-head and tail-to-tail
domain configurations, inevitable in these uniaxial systems,
do not demonstrate the expected high-polarization charges.
This paradoxical feature was explained by the formation of
opposing branched domains that reduce nominally charged
domain walls to saddle points [33,34]. The polarization

correlation functions evaluated above in Sec. IV do not di-
rectly reveal polarization configurations; however, the charge
density correlation function, which can be derived from them,
may indirectly characterize the charge state of the domain
walls, as will be shown in the following.

The charge correlation function M(s, τ ) =
〈ρb(r + s, τ )ρb(r, τ )〉 can be easily derived from the
polarization correlation function K (s, τ ) noting that the bound
charge density ρb = − ∇P. Particularly, the spatial charge
variance may be then evaluated as 〈 ρb(r, τ )2〉 = M(0, τ ).

For the general case of an anisotropic multiaxial ferroelec-
tric:

M(r1 − r2, τ ) =
〈
∂Pα (r1, τ )

∂r1,α

∂Pβ (r2, τ )

∂r2,β

〉

= − ∂2

∂r1,α∂r1,β

Kαβ (r1 − r2, τ ), (36)

where the correlation function Kαβ (r1 − r2, τ ) denotes cor-
relations between different polarization components. For the
uniaxial system considered here, the charge correlation func-
tion in terms of the above introduced dimensionless units
reads

M(s, τ ) = − ∂2

∂s2
z

K (s, τ ). (37)

Since the problem of the disappearing charges at the do-
main walls is hardly related to a specific initial shape of the
polarization correlation function, the latter, in this section,
will be taken in the Gauss form in Eq. (18), which allows
obtaining the results in a closed form. Thus, using the formula
derived for the longitudinal correlation coefficient along the
polarization axis C||(sz, τ ) = K (sz, τ )/D(τ ) [21], the charge
correlation function in the direction s = (0, sz ) results as

M‖(sz ) = − D(τ )
√

2ητ

erf (
√

2ητ )

{
2ητ

(Lζ )2

[
erf (

√
ζ )
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√
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z
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− 1

)
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√
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+ exp (−ζ )

3
√
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)
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z

9L4

(
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ζ
− 2
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)]}
, (38)

with the combined variables L = √
(r2

c + 4τ )/3 and ζ = 2ητ + s2
z /6L2, introduced for convenience.

In the plane transverse to the polarization direction s = (s⊥, 0), the charge correlation coefficient can be derived in the integral
form by substituting Eqs. (6) and (10) into Eq. (37):

M⊥(s⊥, τ ) = 3
√

6

π

√
2ητ

erf (
√

2ητ )

D(τ )

L2

∫ ∞

0
dk k4 exp

(
−3

2
k2

) ∫ 1

−1
du u4 exp(−2ητu2)J0

(
k
√

1 − u2

L
s⊥

)
. (39)

Spatial dependences of the longitudinal and transverse
charge correlation functions, Eqs. (38) and (39), are shown for
a range of time moments in Figs. 21(a) and 21(b), respectively.
Since the variance D(τ ) saturates fast with time (see Fig. 10),
its value is approximated for all chosen times by D(τ ) ∼= 0.3.

By determining the characteristic size of the domains from
Fig. 21 at half the height of the correlation functions, as is
usually done in the experiment [28–32], their longitudinal

size at time τ = 10 can be estimated as L|| ∼= 40 and their
transverse size at the same time as L⊥ ∼= 5. Let us imagine,
typical for TGS, stripe domains of an approximately rectan-
gle cross-section of the size L⊥ × L||. The head-to-head and
tail-to-tail domains generate at the domain wall the surface
charge density ∼= 2Ps. Using the dimensionless units of the
surface charge normalized to Ps, the density of the space
charge due to the charged domain walls can be estimated as
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FIG. 21. (a) The spatial dependence of the longitudinal correlation function, Eq. (38), for the time moments τ = 5, 8, and 10 represented
by the curves 1, 2, and 3, respectively. (b) The spatial dependence of the transverse correlation function, Eq. (39), for the time moments
τ = 5, 8, and 10 represented by the curves 1, 2, and 3, respectively.

2/L|| ∼= 5 × 10−2. In contrast, the maximum value of the
charge density variance observed in Fig. 21 at τ = 10 amounts
to M(0, τ ) ∼= 5 × 10−5, corresponding to the characteristic
charge density of

√
M(0, τ ) ∼= 7 × 10−3. Since our model

does not contain free charge carriers, this means that the
bound charges must be effectively reduced by one order of the
magnitude by some structural organization of domains, which
can be, for example, the saddle-point domains structures ob-
served in Refs. [33,34].

VII. DISCUSSION

Unlike the phase-field or molecular dynamics simulations,
the stochastic approach does not present explicit spatial maps
of random polarization and electric field. Instead, it allows
one to derive statistical characteristics of a stochastic system,
such as the polarization correlation function K (s, τ ) and the
correlation length L(τ ). The correlation function characterizes
the similarity of random local polarizations at a given distance
and direction and, thus, contains information about the polar-
ization domain structure. The correlation length characterizes
the average size of polarization domains. Both characteristics
are measurable and can be compared with experiments. The-
oretically, the knowledge of correlation functions of random
variables is required for description of thermodynamics of
macroscopic random systems and their response to external
fields.

In this paper, we have studied the effect of various initial
conditions, formed after quenching from the high-temperature
paraelectric to the low-temperature ferroelectric state, on the
temporal evolution of the system and its physical properties.
To this end, we used the exactly solvable stochastic model
of a uniaxial ferroelectric, which allows for calculation of
the time-dependent characteristic length and the two-point
polarization correlation function [21] as well as all the other
involved correlation functions between the polarization and

the electric field components [27], assuming that they are all
Gauss random variables. The model assumes domination of
the quenched disorder over the thermal fluctuations, which are
known to be quite relevant for the ferroelectric properties [35].
The thermal fluctuations, however, were shown to be negli-
gible if the magnitude and the spatial scale of the quenched
polarization disorder are high enough and temperature is not
too close to the ferroelectric phase transition temperature [21].
Thus, the model allows investigation of the polarization for-
mation kinetics on a long-time scale in a wide temperature and
the applied electric field range for different initial conditions
in the material after quenching.

Temporal dependences of the characteristic correlation
length L(τ ) and the polarization correlation coefficient C(s, τ )
of the domain structures developing after quenching were
carefully investigated experimentally in uniaxial TGS fer-
roelectrics over 30 years [28–32]. Particularly, the scaling
dependence at small distances s, C(s, τ ) ∼= 1−s/2L(τ ), was
established in Refs. [28–32]. Since the previously used Gaus-
sian form of the initial correlation function, Eq. (18), did not
allow us to describe the linear spatial behavior of C(s, τ )
near the origin [21], we considered in this paper alterna-
tive examples of the initial correlation function K (s, 0) of
the exponential and the complimentary error function forms,
which are linear at small s. For all considered shapes of
the initial correlation function, exact expressions for L(τ )
and C(s, τ ) were obtained in Secs. IV A–IV C. We note that
such analytical expressions can be obtained for an arbitrary
isotropic initial correlation function K (s, 0) using the relations
in Eqs. (10), (14), (15), and (17).

All the obtained temporal dependences of L(τ ) for dif-
ferent initial states satisfactorily described the experimental
observations by Tomita et al. [15], as is shown in Figs. 2 and 5,
with some advantage in favor of the exponential spatial depen-
dence of C(s, 0), as can be seen in Fig. 2. Such a dependence
was recently observed on a uniaxial PGO (see the support-
ing information to Ref. [3]). The time-dependent correlation
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coefficients C(s, τ ) derived for their different initial shapes in
Secs. IV B and IV C roughly described the experimental data
by Tomita et al. [15], including the properly located region of
negative values and the proper trend of variation with time, as
is seen in Figs. 4 and 7. However, contrary to the expectations,
the initial linear spatial dependence near the origin quickly
transformed with time to a form with a smooth maximum,
thus contradicting the experimental observations. Considering
the transformation of the theoretical correlation functions with
time in Figs. 3 and 6, this behavior seems to be a common
feature determined by the structure of the governing equations
in Eq. (8).

Furthermore, a comparison of the correlation functions for
the model stripe domain structures with zero and nonzero
domain wall thicknesses in Sec. IV D suggested that the ap-
parent linear spatial dependence of C(s, τ ) might result from
the way of experimental data treatment in Refs. [28–32]. In
all these works, the regions of opposite polarizations were
interpreted in the spirit of the Ising model by assigning the
values of the scalar order parameter +1 or −1, thus assuming
the zero thickness of the domain walls. In contrast, the do-
main wall thickness in our stochastic model always remains
nonzero, which might be a reason for the different behavior at
small s.

The open question of an appropriate choice of the polariza-
tion correlation function in the initial disordered ferroelectric
state after quenching from the high-temperature parent state
might possibly be resolved by statistical analysis of the Monte
Carlo or molecular dynamics simulations based on the atom-
istic models using an effective Hamiltonian approach [36–38].

Another task in this paper was to establish the role of
the initial conditions on the domain formation kinetics when
subjected to the external electric field. The solutions in
Eqs. (10) and (11) reduced the system of integrodifferen-
tial equations in Eq. (8) for the correlation function and
the mean polarization to the system of nonlinear differential
equations in Eq. (12) for the mean polarization π̄ (τ ) and
the polarization variance D(τ ). The latter system was then
studied numerically in Sec. V for different initial correlation
functions, different magnitudes of the initial disorder, charac-
terized by the parameter D(0), and its different initial spatial
scales. The numerical analysis has revealed the following
traits.

In all cases, starting from an initial value of D(0), the sys-
tem fell to a much smaller value of the polarization variance,
exhibiting a kind of homogenization, and then after some
incubation period developed toward a single-domain (with
D = 0) or a multidomain (with D = 0) state depending on the
magnitude of the applied electric field (Figs. 9 and 10, 13 and
14, and 17 and 18). The properties and the duration of the
incubation period depending on the D(0) value are observable
in Figs. 11, 15, and 19. The coercive field, deciding between
the single- and multidomain states, appeared to be dependent
on the initial shape of the correlation function K (s, 0) and
in all cases exhibited a monotonic increase with both the
disorder magnitude D(0) and its spatial scale determined by
the parameters rc or ξ (see Figs. 12, 16, and 20). Since the
properties of the initial disordered state can be controlled to a
certain extent experimentally by, say, cooling rate [1–5], this

presents a tool for achieving desired ferroelectric properties.
The typical values of the dimensionless coercive field εcr are
in the region 0.05–0.1, which makes up ∼ 0.02 − 0.04 of
the thermodynamic coercive field [39]. For a comparison, the
experimental coercive field in TGS at room temperature is
∼ 60 kV/m [40], making up ∼ 0.004 of the thermodynamic
coercive field of 15 MV/m for TGS [39]. Thus, the current
theory still overestimates the magnitude of the coercive field
by one order of the magnitude, which is not surprising since
it does not account for many possible realistic mechanisms
of domain nucleation, for example, at the sample surface, at
different defects, etc. The question of how the cooling rate
by quenching allows us to control the disorder magnitude
D(0) and its initial spatial scale, being the starting points of
the stochastic development, is beyond the scope of the model
itself. Unfortunately, the empirical knowledge on this issue
is also still contradictory. Thus, the average size of domains
in PMN-PT single crystals was found to strongly decrease as
the cooling rate increased by about one order of the magni-
tude [4], while the domain size in a PGO single crystal was
found to be monotonically increasing as the cooling rate was
increased [3].

Astoundingly, the temporal development of the correlation
length L(τ ), Eqs. (15), (22), (27), and (33), turned out to
be independent on both the applied electric field and the
polarizability of the material η. It depends only on the charac-
teristics of the initial state represented by the initial correlation
function K (s, 0) and its parameters rc or ξ . Particularly, it
remains the same for the applied electric fields below and
above the coercive field, meaning that the growing single-
and multidomain structures exhibit the same transient domain
size. Furthermore, the correlation length exhibits the same
asymptotic behavior L(τ ) ∼ √

4τ/3 at τ → ∞ indepen-
dently of the shape of the initial correlation function K (s, 0).
Apparently, this behavior is determined by the structure of
the equations in Eq. (8) but not by the initial conditions.
In contrast, the behavior of L(τ ) at small times τ � 1 is
dependent on the initial state. For K (s, 0) of the Gaussian
type, L(0) = rc/

√
3, which is finite. For the other two initial

correlation function shapes, the correlation length vanishes at
τ → 0 as L(τ ) ∼ (ξ 2τ )1/4 and is dependent on the parameter
ξ . The preferred choice of K (s, 0), however, cannot be unam-
biguously justified by a comparison with experiments because
the transient data were always reported after some time lag.

The correlation coefficient C(s, τ ) also exhibited universal
features independent of the applied electric field which may
seem strange. However, the correlation function K (s, τ ) =
C(s, τ )D(τ ) strongly depends on the electric field together
with the polarization variance D(τ ), as is seen in Figs. 10, 14,
and 18, and thus develops distinctly at electric fields above
and below the coercive field.

As a byproduct, the knowledge of the polarization corre-
lation function allowed insight into the enigmatic problem
of charged domain walls in uniaxial ferroelectrics. Namely,
the charge density correlations and fluctuations appeared to
be substantially reduced, indicating the charge on the domain
walls one order of the magnitude lower than expected for the
head-to-head and tail-to tail domain walls in uniaxial ferro-
electrics.
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VIII. CONCLUSIONS

Based on the exactly solvable stochastic model of the do-
main structure formation in uniaxial ferroelectrics dominated
by the quenched polarization disorder [21], we studied the
kinetics of the domain development from a few exam-
ples of the initial disordered states characterized by distinct
polarization correlation functions, polarization fluctuation
magnitudes, and characteristic spatial scales. For all cases,
analytical results were obtained for the time-dependent char-
acteristic length of the domain structure and the two-point
polarization correlation coefficient, which are in satisfactory
agreement with experiments. These two temporal character-
istics of the stochastic system appeared to be quite universal,
being independent of the applied electric field. On the other
hand, the polarization correlation function, proportional to the
polarization variance, is dependent on the electric field and
exhibits distinct behavior below and above the coercive field

deciding between the multidomain and the single-domain fi-
nal state of the system. The coercive field, in turn, can be
controlled by the parameters of the initial quenched state and
increases with the increasing polarization fluctuation magni-
tude and spatial scale of fluctuations.
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