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Shear-induced phase behavior and topological defects in two-dimensional crystals
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We investigate through numerical simulations how a two-dimensional crystal yields and flows under an applied
shear. We focus on a range that allows us to both address the response in the limit of an infinitesimal shear rate
and describe the phase behavior of the system at a finite shear rate. In doing so, we carefully discuss the role
of the topological defects and the finite-size effects. We map out the whole phase diagram of the flowing steady
state in the plane formed by temperature and shear rate. Shear-induced melting of the two-dimensional crystal
is found to proceed in two steps: first, the solid loses long-range bond-orientational order and flows, even for
an infinitesimal shear rate (in the thermodynamic limit). The resulting flowing hexatic phase then melts to a
flowing, rather isotropic, liquid at a finite shear rate that depends on temperature. Finally, at a high shear rate, a
third regime corresponding to a strongly anisotropic stringlike flowing phase appears.
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I. INTRODUCTION

How do crystals flow under an applied shear? This ques-
tion can be viewed from two different perspectives. One may
envisage the onset of flow as an instance of a yielding tran-
sition between an elastically responding rigid solid and a
plastically flowing phase [1]. This pertains to a broad field
of research within mechanics, soft-condensed matter and sta-
tistical physics which involves a very wide range of materials
from granular media, foams, and a whole variety of so-called
yield-stress fluids to all kinds of harder solids such as glasses
and to crystalline materials [2,3]. One is then concerned with
the mechanisms inducing plasticity, the properties of the flow,
the existence and the value of the yield stress, the nature
of the yielding transition, and all means to control the way
the solids yield without breaking too soon. Alternately, one
may consider the phenomenon in a more specific way as a
shear-induced melting transition associated with some sym-
metry restoration and enquire how this transition proceeds and
differs (or not) from the melting of the quiescent crystal in
equilibrium [4].

Plasticity in crystals is known to be due to the pres-
ence of defects in the structure, above all topological defects
in the form of dislocations. In many real systems, they

are present in a rather large quantity and, having been
trapped in the solid during its preparation, they are out of
equilibrium. Here instead we are interested in starting with
perfect equilibrium crystals, which, as a result, only contain
thermal topological defects compatible with the fixed nonzero
temperature. We focus on the steady state reached by impos-
ing a constant shear (strain) rate and do not address transient
effects that may give a different angle on the yielding tran-
sition. Furthermore, we consider a two-dimensional crystal,
as for instance experimentally studied in colloidal suspen-
sions [5,6], hexagonal columnar liquid crystals [7], complex
plasmas [8], and for which more analytical work is possible
in the context of the KTNHY theory of melting [9–13]. In
two dimensions the crystal has only quasi-long-range trans-
lational (crystalline) order but long-range bond-orientational
order. (Note that here and below we use for convenience the
terminology “crystal” even in two dimensions where there
is no long-range translational order; this is an abuse of lan-
guage but should not lead to any confusion.) Melting in
equilibrium may take place through two distinct transitions
that are associated with the unbinding of paired topologi-
cal defects and are separated by an intermediate “hexatic”
phase. The crystal-to-hexatic transition corresponds to the
appearance of free dislocations, and the resulting hexatic
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phase only has quasi-long-range bond-orientational order. The
hexatic-to-liquid transition corresponds to the unbinding of
the dislocations into free disclinations which therefore also
break the quasi-long-range order and fully restore transla-
tional and bond-orientational invariance.

Our goal is to investigate how a two-dimensional crys-
tal yields and flows under an applied shear over a range
of rates that allows us to both address the response in the
limit of an infinitesimal shear rate and describe the phase
behavior of the system at finite rate. It has been theoretically
established [14–16] that even a perfect crystal flows for an
infinitesimal shear so that the notion of yield stress is only
a time-dependent property which should vanish for a large,
yet finite, observation time (even in the thermodynamic limit).
A viscosity can then be defined but it diverges in a singular
manner for a vanishing shear rate. We give numerical evidence
for these predictions and discuss the mechanism by which this
takes place in two-dimensional crystals. For larger shear rates,
we provide a description of the shear-induced melting and of
the properties of the phases that are observed in a steady state.

II. MODEL, METHOD, AND PHASE DIAGRAM

We numerically study a model of dense monodisperse
colloidal crystals under simple shear in two dimensions. We
consider the situation where hydrodynamic interactions and
inertial effects can be neglected and we perform a Brownian
(overdamped Langevin) dynamics for the position ri = (xi, yi )
of each particle under a constant and uniform applied strain
rate γ̇ [17]:

ζ
dri

dt
= −

∑
j �=i

∂v(ri − r j )

∂ri
+ γ̇ exyi + fi, (1)

with v(r) = ε
2 (1 − |r|/d )2θ (d − |r|) a purely repulsive soft

potential, where d is the particle diameter and θ (x) is the step
function. The thermal bath is described through the stochas-
tic force fi = ( fx,i, fy,i ), which is a Gaussian white noise
with zero mean and correlations given by 〈 fα,i(t ) fβ, j (t ′)〉 =
2kBT ζ δ(t − t ′)δi jδαβ , where 〈· · · 〉 is a statistical average, T
is the temperature of the bath, kB is the Boltzmann constant,
and α, β = x, y. We measure lengths in units of the diameter
d , times in units of τ0 = ζd2/ε, and temperature in units of
ε/kB.

We study N harmonic soft disks in a rectangular box with
area A = LxLy, where Lx is the box length along the x di-

rection and Ly =
√

3
2 Lx is the length along the y direction.

The ratio is chosen to accommodate the perfect hexagonal
structure. The packing fraction φ of the system is set to φ =
(N/A)πd2/4 = 1.0, for which the system has been shown to
have a first-order hexatic-to-liquid transition [18] at Tm,hex �
0.0062 ± 0.0002 in thermal equilibrium without applied de-
formation (γ̇ = 0) [19]. Although the full equilibrium phase
diagram of the model for γ̇ = 0 is not available, we note
that the hexatic phase in soft-core potential models always
appears in a narrow range of temperature (or density, but
for power-law potentials the latter can easily be converted to

temperature) which is a few percents of the transition temper-
ature of the hexatic phase to the liquid [19,20]: we therefore
estimate the melting temperature of the solid to the hexatic
phase to be Tm,sol � 0.0055.

To implement the uniform simple shear, Lees-Edwards
periodic boundary conditions are applied [21], and the
equations of motion are integrated through the Euler scheme.
We measure the shear stress component of the system, σ =
σxy, by using the Irving-Kirkwood formula [21]: see Ap-
pendix A. In the initial condition, particles are arranged in a
hexagonal close-packed structure, which is then subjected to
an applied shear at the chosen temperature based on Eq. (1).
All the quantities presented in this paper are measured in
the steady state (after a long enough simulation time, when
the system has reached a shear strain γ = 100), except oth-
erwise stated. We investigate a wide range of shear rate
γ̇ and temperature T , which covers most of the relevant
physics of two-dimensional (2d) crystal flows and we study
N = 900, 3600, 14 400, and 57 600 to check the finite-size
effects [22].

Note that we consider a Brownian (overdamped Langevin)
dynamics which is appropriate for colloidal suspensions and is
different from the previous simulation studies of sheared two-
dimensional crystals that used a nonequilibrium molecular
dynamics algorithm (SLLOD) [24,25]. In the latter case, there
is an issue concerning the way the system is thermostated
(kinetic or a configurational thermostat), which may influence
some of the results [25]. In this respect, our Brownian dynam-
ics with a white noise is conceptually similar to SLLOD with
a kinetic thermostat [26,27]. As a complement, we have also
carried out SLLOD dynamics simulations using a configura-
tional thermostat: the results are discussed in Appendix B.

The phase diagram of the simulated model in the nonequi-
librium steady state is summarized in Fig. 1(a). As the
temperature T and the shear rate γ̇ are varied, the system can
be found in three different regimes.

Regime I. At small γ̇ > 0 and small T , we observe a plas-
tic flow with the nucleation of free dislocations. Crystalline
positional quasi-long-range order is then broken but hexatic
quasi-long-range order persists. This is a flowing hexatic
phase. A representative snapshot is shown in Fig. 1(b). Theo-
ries of 2d crystals under shear [28,29] can be applied in this
regime, especially in the limit of infinitesimal γ̇ where they
help discussing if and how a perfect crystal flows [14–16].

Regime II. As γ̇ or T is increased, there is a transition
to a regime where the dislocations are unbound and free
disclinations are nucleated. Thus both positional and bond-
orientational correlations have a short-ranged spatial decay
[see a snapshot in Fig. 1(c)]. This regime is a flowing liquid
which appears rather isotropic.

Regime III. When γ̇ is further increased, the imposed shear
rate dominates the dynamics and we find a cross-over to a
stringlike flow, in which the particle motion mostly follows
lanes in the direction of the imposed shear. This can be seen
in the snapshot shown in Fig. 1(d) and in the associated inset,
where some representative particle trajectories are displayed.
In this regime, the system is strongly anisotropic.

In the subsequent sections, we provide a detailed charac-
terization of the three regimes.
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FIG. 1. (a) Phase diagram of a sheared two-dimensional crystal in its flowing steady state in the plane of the shear rate γ̇ and the temperature
T . Red dots indicate the phase points corresponding to the snapshots displayed in (b)–(d). In regime I, we observe a plastic flow with nucleated
free dislocations and hexatic quasi-long-range order (QLRO). A representative snapshot is shown in (b) for T = 0.003 and γ̇ = 2 × 10−4.
Blue, white, and red particles have 5, 6, and 7 neighbors, respectively, and a pair of red and blue particles form a dislocation. In regime II,
the dislocations are unbound and free disclinations, shown as isolated red and blue particles, are nucleated. Concomitantly, bond-orientational
order has a short-ranged, exponential, spatial decay and the system is in a flowing liquid phase. A representative snapshot is given in (c) for
T = 0.003 and γ̇ = 1 × 10−2. One can see an isolated disclination with 7 neighbors, as indicated by a circle. In regime III, we observe a
stringlike flow in which particles mostly move along lanes following the direction of shear. The system is then strongly anisotropic. The
corresponding snapshot is shown in (d) for T = 0.003 and γ̇ = 4 × 10−1 and an inset illustrates representative particle trajectories in the bulk
of the system over a strain change �γ = 1.2.

III. DO TWO-DIMENSIONAL CRYSTALS FLOW UNDER
AN INFINITESIMAL SHEAR RATE?

A. Theoretical arguments

The fact that an infinitesimal shear stress destroys a solid
phase by making it flow was theoretically established in full
generality in Ref. [14]. The main idea is that a shear stress
deforms a solid, thus inducing an extensive increase of the
energy of the system. Such an excess energy can be relaxed
at any finite temperature by nucleating droplets of the unde-
formed solid within the deformed solid state. Applying this
metastability-nucleation argument one can conclude that an
infinitesimal shear stress always destabilizes a solid state.
The drawback of this treatment is that it provides a possible
mechanism for flow but not necessarily the most efficient one.
Sengupta, Sollich, and coworkers [15,16] have recently built
on this approach. They have used thermodynamic arguments
and predicted the presence of a nearby first-order transition
between two crystals with the same symmetry but different
mechanical response to evaluate the effective stress at which
a perfect crystal typically yields, i.e., has its first plastic event,

as a function of the shear rate. They have focused on the
transient behavior in the limit γ̇ → 0. Here, we are more
interested in the steady-state regime and in the specific mech-
anisms at play in 2d crystalline solids.

In the case of a 2d crystal, the arguments can be made
more explicit by pinpointing the underlying mechanism that
gives rise to the instability of the solid state [28,29]. The
starting point is provided by the study of dislocations—
the defects destroying quasi-long-range positional order—in
the presence of shear stress. We here focus on the physics
along the glide direction (shear direction) which is a more
dominant (faster) process than the physics along the climb
direction (perpendicular to the shear direction). In a 2d crystal
without shear, there are no free dislocations. The reason is
that a pair formed by a dislocation and an antidislocation
(i.e., a dislocation of opposite Burgers vector) at a distance
r is subjected to an effective attraction through a potential
U0(r) (without shear). This potential increases logarithmically

at large r as U0(r) = Ka2
0

4π
ln(r/a0), where a0 is the interpar-

ticle distance (or lattice constant) and K an effective elastic
constant. In the presence of a shear stress σ , the pair of
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dislocations is submitted to an additional force in the glide
direction so that the effective potential becomes:

U (r) = U0(r) − a0(r − a0)σ. (2)

Even for a very small stress σ , the potential now favors
unbinding of the dislocations as the linear term prevails on
the logarithmic attraction: U (r) diverges to minus infinity
for r → ∞. The competition between logarithmic attraction
and linear repulsion leads to a finite energy barrier �U =
U (rc) − U (a0) with rc = Ka0/(4πσ ), thus making unbind-
ing at nonzero temperature a thermally activated process. By
computing the barrier and assuming an Arrhenius-type law,
one can obtain at leading order the rate R per unit time and
unit area for the dissociation of a pair of dislocations and the
ensuing formation of free dislocations [28,29],

R ∼ D||
a4

0

(
σa2

0

kBT

) Ka2
0

4πkBT

e−2Ec/kBT , (3)

where D|| is the diffusion constant in the glide direction and Ec

a microscopic energy scale. The important (and leading) term
in this expression is associated to the power-law dependence
in σ .

Due to this mechanism, at any nonzero temperature and
for an arbitrary small shear stress, a finite (albeit very small)
density of free dislocations ρdisl is produced, thus destroying
the quasi-long-range positional order. The rate equation for
ρdisl is written by

∂ρdisl

∂t
= R − 〈v〉rcρ

2
disl, (4)

where 〈v〉 is the mean velocity of free dislocations in the glide
direction when driven by shear stress σ . The second term in
Eq. (4) treats the recombination process approximatly [28]. In
the steady state, ρdisl is obtained as

ρdisl =
√

R

〈v〉rc
. (5)

Free dislocations are expected to show a Brownian motion un-
der an external forcing by shear, and hence, using the Einstein
relation, 〈v〉 is given by

〈v〉 = a0σD||/(kBT ). (6)

A moving dislocation also leads to deformation of the solid.
The associated strain rate is proportional to the density of
dislocations [30],

γ̇ ∼ ρdisl〈v〉. (7)

One thus combines Eqs. (3), (5)–(7) and arrives at a relation
between the strain rate γ̇ and shear stress σ ,

γ̇ ∼ D||

(
σa2

0

kBT

) Ka2
0

8πkBT +1

. (8)

The viscosity is defined as η = σ/γ̇ , and one thus finds

η ∼ η0

(
σa2

0

kBT

)− Ka2
0

8πkBT

, (9)

FIG. 2. Flow curves for a crystal of N = 14 400 particles under
uniform simple shear. (a) Log-log plot of the averaged shear stress σ

vs the shear rate γ̇ for several temperatures. (b) Zoom-in plot of (a).

where η0 is a constant with dimension of viscosity. The two
expressions in Eqs. (8) and (9) can be combined to give

ln

(
η

η0

)
∼ − 1

1 + (8πkBT )/
(
Ka2

0

) ln γ̇ + O(1). (10)

The natural logarithm is used unless otherwise stated.
These equations show that an infinitesimal shear stress indeed
leads to plastic flow of a crystal and to a very large but finite
viscosity. The behavior of the viscosity is however singular.
It diverges when σ → 0 or γ̇ → 0, contrary to what happens
for a liquid in which a finite value of the viscosity is reached
when σ → 0.

B. Numerical results

We first measure the averaged shear stress σ , where the
overline denotes an average over time (or strain γ ) and over
independent trajectories in the steady state, as a function of the
imposed shear rate γ̇ . The outcome is displayed on a log-log
plot in Fig. 2(a) for more than three orders of magnitude of γ̇

and a wide range of temperature from T = 0.0001 to 0.0080
that covers from the solid to the liquid phases found at γ̇ = 0
(see above).

The flow curves at the lowest temperatures, T = 0.0001
and 0.0010, show a plateau at the smallest values of γ̇

which indicates an apparent nonzero yield stress within our
simulation time window. However, for the intermediate tem-
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FIG. 3. (a) Log-log plot of the effective viscosity η = σ/γ̇ as a
function of the shear rate γ̇ for the same data as in Fig. 2(a). The
dashed straight line shows the dependence η ∼ γ̇ −1. (b) Log-log plot
of the effective viscosity as a function of the density of dislocations
ρdisl. The dashed line corresponds to η ∼ ρ−1

disl.

peratures, T = 0.0030 and 0.0050, which are still below the
estimated Tm,sol and thus correspond to a solid phase when
γ̇ = 0, one clearly observes a steady decay of σ with decreas-
ing γ̇ , as better seen in the zoomed-in plot of Fig. 2(b). Below
some crossover shear-rate value, this decay is roughly linear
on the log-log plot with a slope that decreases as T decreases.
This is compatible with the theoretical prediction in Eq. (8),
which implies that ln σ ∼ [1 + Ka2

0/(8πkBT )]−1 ln γ̇ (but the
data are not good enough to provide a meaningful extraction
of the parameters), and supports the absence of a nonzero
yield stress in the limit γ̇ → 0. As T is increased further,
σ decreases rapidly with decreasing γ̇ : one then enters the
Newtonian fluid regime with no yield stress, as shown for
instance in Fig. 2(a) for T = 0.0080.

To obtain a complementary picture we also plot the effec-
tive viscosity η = σ/γ̇ in Fig. 3(a). At low and intermediate
temperatures, T = 0.0001–0.0050, the data are well described
by a power-law divergence at small γ̇ , η ∼ γ̇ −α . As a con-
sequence of the behavior of σ just described, we find that
α = 1 for the two lowest temperatures because of the apparent
nonzero plateau found in σ within the simulation range, but it
slightly deviates from 1 for the two intermediate temperatures
in agreement with a vanishing yield stress, and as expected
from Eq. (10). At the highest temperatures (T = 0.0080), η

saturates toward a finite value, as expected for a Newtonian
fluid. (At high shear rates, the system displays shear thinning
with a viscosity that decreases with increasing γ̇ at all temper-
atures.) All the above results are illustrated for N = 14 400 but
they weakly depend on system size: see Appendix C. We also
confirmed the absence of the yield stress and divergence of the
viscosity in the SLLOD dynamics (see Appendix B).

According to the theoretical arguments recalled in the
previous subsection, the plastic flow of a 2d crystal is
driven by the nucleation of free dislocations induced by the
stress (or the shear rate) and corresponding to the unbinding
of dislocation/antidislocation pairs. The motion of the free
dislocations relaxes the shear stress, and it is more specifically
predicted that the effective viscosity is inversely proportional
to the density of free dislocations, η = σ/γ̇ ∼ ρ−1

disl by using
Eqs. (7) and (6). This is what leads to Eqs. (9) and (10). To
more directly test the relation between the viscosity η and
the density of free dislocations ρdisl, we have determined the
latter numerically, as explained in Appendix D. We show
in Fig. 3(b) a log-log plot of η as a function of ρdisl. We
find that data at different temperatures roughly collapse, and,
although not perfect, a behavior compatible with η ∼ ρ−1

disl at
high η (or low γ̇ ) is observed. This provides evidence that the
mechanism for the divergence of the viscosity when γ̇ → 0 is
indeed the rarefaction of nucleated free dislocations. At lower
η or higher γ̇ , the data show a nonmonotonic dependence and
the theoretical arguments no longer apply, as expected.

IV. REGIME I: FLOWING HEXATIC PHASE

A. Evidence for a hexatic phase and a shear-induced
transition to a liquid phase

We have seen that the crystaline solid when γ̇ → 0 yields
and flows as soon as an infinitesimal shear rate is imposed due
to the nucleation of free dislocations. These free dislocations
also disrupt the positional quasi-long-range order. Shear-
induced melting of the crystal therefore takes place as soon as
γ̇ �= 0. The question that remains is whether the flowing phase
is a liquid with exponentially decaying translational and bond-
orientational spatial correlations or an intermediate hexatic
phase retaining quasi-long-range bond-orientational order.

We characterize the structural properties of the flowing
phase by using the local sixfold bond-orientational local order
parameter,

φ6, j = 1

n j

n j∑
k=1

e6iθ jk , (11)

where the sum is over the nj neighbors of particle j that
are determined through a Voronoi tessellation and θ jk is the
angle between the vector joining particle j with particle k and
the (arbitrarily chosen) x axis. From φ6, j , we compute the
volume-averaged bond-orientational order parameter ψ6 =
(1/N )

∑N
j=1 φ6, j and the sixfold bond-orientational spatial

correlation function g6(r): see Appendix F for more details.
We display in Fig. 4(a) the averaged square modulus of the

bond-orientational order parameter |ψ6|2 versus γ̇ for various
temperatures and system sizes. For all temperatures corre-
sponding to solid and hexatic phases for the quiescent system
(γ̇ = 0), i.e., for T < Tm,hex ≈ 0.0062, one finds that |ψ6|2
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FIG. 4. (a) Averaged square modulus of the bond-orientational
order parameter, |ψ6|2, as a function of shear rate for various tem-
peratures and system sizes. Triangles (with dotted line), diamonds
(dashed line), and circles (solid line) correspond to data for N =
900, 3600, and 14 400, respectively. (b) Spatial decay of the bond-
orientational correlation function g6(r) for T = 0.0030, N = 14 400,
and a wide range of γ̇ . The grey dashed line represents the bound
imposed on a power-law decay by the KTHNY theory, g6(r) ∼ r−1/4.

decreases, first slowly and then in a quite rapid manner, as
the shear rate increases and reaches a minimum before rising
up again. However, one has to be careful about finite-size
effects. Except for T < Tm,sol when with γ̇ = 0 one indeed
expects that |ψ6|2 = 0 in the thermodynamic limit when the
solid flows and free dislocations appear. As in the equilibrium
hexatic phase, we expect that only quasi-long-range bond
orientational order can be present. One then anticipates a de-
pendence on the linear system size of the form |ψ6|2 ∼ L−η6 .
Assuming that this flowing hexatic phase shares the same
properties of its equilibrium counterpart one would then ex-
pect η6 to be a temperature dependent anomalous dimension
such that η6 � 0.25 [31]. (Here, we make no difference be-
tween Lx and Ly because we have chosen them proportional
to each other.) On the other hand in an isotropic liquid phase
with only short-range order, |ψ6|2 should decrease much more
rapidly with system size, possibly as L−1 because the bound-
aries break the isotropy of space.

We indeed observe that at the smallest γ̇ , below some value
that appears to decrease as temperature increases (but still
stays below Tm,sol), very little change of |ψ6|2 takes place for

FIG. 5. Probability to find at least one free disclination in the
system, pdisc, as a function of γ̇ and T for N = 14 400 particles.

the system sizes under study whereas at and around the mini-
mum of |ψ6|2 a visible decrease is found. As shown in Fig. 13
of Appendix C, the minimum, minγ̇ {|ψ6|2}, always decreases
more rapidly than L−1/4 (and more so as T increases because
the system sizes as probably too small to reach the asymptotic
regime at the lowest temperatures). For T = 0.0062, which is
around Tm,hex, the finite-size effects is strong even at low γ̇

and for the highest temperature that always corresponds to a
liquid phase |ψ6|2 is always zero, at least up to a shear rate
γ̇ ∼ 10−1–100. The data therefore indicate that a transition
from a flowing hexatic phase to a liquid phase occurs at a shear
rate that decreases as the temperature increases: This is the
transition line between regimes I and II shown in Fig. 1(a).

The above results are also confirmed by looking at the
bond-orientational correlation function g6(r). In Fig. 4(b), we
illustrate the outcome for T = 0.003 and a wide range of
shear rates, but the results for all temperatures are given in
Appendix F. For the lowest rates, g6(r) decays very slowly,
as a power law: g6(r) ∼ r−η6 . The slope of the power law
increases with γ̇ and reaches the upper bound predicted by
the KTHNY theory of the hexatic phase, i.e., η6 = 0.25, for
some value slightly above 2 × 103. This suggests that the
nonequilibirum transition at which the hexatic order is lost is
in the same universality class of its equilibrium counterpart.
For larger values, above γ̇ = 4 × 103, g6(r) decays quickly
with an exponential rather than a power-law form. The pas-
sage from a power-law decay to an exponential decay is
characteristic of a transition from quasi-long-range order to
no order. This locates the transition between regimes I and
II. Note that when γ̇ increases further, typically above 10−1,
g6(r) reaches a nonzero plateau at large distances suggesting
the appearance of long-range bond-orientational order, but
this will be discussed in the next section concerning regime
III.

The disappearance of quasi-long-range bond-orientational
order is due to the unbinding of dislocations and to the re-
sulting appearance of free disclinations. This can be tested by
identifying and characterizing the latter: see Appendix D. In
Fig. 5, we report for various temperatures and values of the
shear rate the probability pdisc of finding at least one disclina-
tion in the sample during the plastic flow. It is zero when the
system is in Regime I, which corresponds to a flowing hexatic
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FIG. 6. Real part of the bond-orientational order parameter
�{ψ6} obtained in a single trajectory as a function of the shear strain
γ for a fixed shear rate γ̇ = 1 × 10−3 and temperature T = 0.0030
(corresponding to regime I). Different system sizes N are shown.

phase with no free disclinations. At a rather well defined γ̇ , the
probability jumps to a value of 1 (or nearly 1 for the lowest
temperatures) and the system is now in a (flowing) liquid
phase. The onset of the jump corresponds to the boundary
between regimes I and II shown in Fig. 1(a).

By studying the sixfold bond-orientational order and the
emergence of free disclinations (which are defects in this
order) we have identified a transition between regime I, which
can be described as a flowing hexatic phase, and Regime II,
which corresponds to a flowing liquid phase. This is in line
with the findings of previous numerical simulations [24,25]
and experiments [5,7] on 2d sheared crystals. However, we
are not able to determine if the transition is continuous or
first-order-like (as argued by Ref. [25]). This aspect requires
further investigations with huge computational efforts.

B. Rotating crystals

In regime I where quasi-long-range bond orientational or-
der is present, we have also studied the dynamics of the system
in the steady state at fixed shear rate γ̇ . We have monitored the
evolution with strain γ (which parametrizes time) of several
quantities. As previously observed in a simulation [24] and
an experimental [5] study of a sheared 2d crystal, we find
evidence for a coherent rotation of hexagonal crystalline do-
mains. Their size scales like the system size and, as argued
above and further below, the phenomenon should therefore be
taken as a finite-size effect that would likely not persist in this
form in the thermodynamic limit.

We first consider the (instantaneous, i.e., not time aver-
aged) sixfold bond-orientational order parameter, whose real
part �{ψ6} as a function of γ , as shown in Fig. 6. One can
see a clear oscillating behavior between a positive maximum
value and a negative minimum one. The period γ ∗ of the os-
cillations can be estimated from a simple argument. Consider
a hexagonal lattice that coherently rotates in a periodic box
when the box is sheared at a rate γ̇ . The corresponding bond-
orientational order parameter ψ6 then periodically oscillates
with a period τ ∗ which is such that τ ∗γ̇ /2 = π/3. As by

definition γ ∗ = γ̇ τ ∗, this immediately gives

γ ∗ = 2π

3
≈ 2, (12)

which indeed captures well the oscillation period shown in
Fig. 6.

The rotation can also be directly seen by looking at the evo-
lution of a given sample: real-space snapshots are displayed
in the top panels of Fig. 7. Particles are colored according to
the value of the real part of the local bond-orientational order
parameter φ6, j . When �{φ6, j} = 1, the local environment of
a particle is that of a perfect hexagonal triangular lattice with
direction parallel to the x axis, while when �{φ6, j} = −1, the
orientation of the surrounding environment is rotated by an
angle of π/2. The periodic appearance of red (large positive
�{φ6, j}) and blue (large negative �{φ6, j}) regions indicates
that the solid flows with a coherent rotation.

Another signature of coherently rotating crystalline do-
mains is obtained by considering the instantaneous static
structure factor Sγ (k) measured from each snapshot [5,24].
It is defined as

Sγ (k) = 1

N

N∑
j,k=1

eik·(r j−rk ), (13)

where k = (kx, ky) = (2πnx/Lx, 2πny/Ly), with nx, ny in-
tegers, consistently with the imposed periodic boundary
condition. In the solid phase in thermal equilibrium, this
function shows six peaks in the (kx, ky) plane that are lo-
cated on the vertices of a regular hexagon. In the bottom
panels of Fig. 7 one can see that the sixfold pattern rotates
while the deformation proceeds, indicating that the local en-
vironment of each particle is coherently rotated during the
flow. As already mentioned such a crystal rotation has been
observed in two-dimensional colloid experiments [5] and a
SLLOD molecular-dynamics simulation [24]. It was also re-
cently predicted as a consequence of dislocation nucleation in
a mesoscopic athermal model [32].

Several comments are in order. First, the oscillations are
not quite symmetric between the vicinity of the maxima of
�{ψ6} and that of the minima (see Fig. 6). The rotation is
faster and the absolute value is smaller near the minima, which
corresponds to the situation where the crystal-like domains are
oriented perpendicularly to the shear direction (see also the
experimental result in Ref. [5]). Second, the overall coherence
of crystal rotation does not mean that the particles themselves
rotate coherently as they can escape the crystalline struc-
ture and be replaced by other ones. Finally, we recall once
again that a rotating crystal, characterized by a nonzero bond-
orientational order parameter, even an instantaneous one, is
likely a finite-size effect.

Interestingly, we observe an oscillating behavior also in
the instantaneous value of the bond-orientational correlation
function, g6,γ (r), as shown in Fig. 8. This correlation func-
tion passes from an increasingly steep power-law decay to
an exponential one, coming back to the power-law decay at
the end of one period. This suggests that the flow of the
rotating solid proceeds through a transient melting of the
sample. This is similar to what was found experimentally
on sheared colloids [5]. The average value of the correlation
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FIG. 7. Crystal-like rotation as seen from real-space snapshots (top) and the associated instantaneous static structure factor Sγ (k) (bottom)
for strain values γ = 9.0, 9.7, 10.1, and 10.5 (from left to right) which correspond to the maximum, the decreasing section, the minimum
and the increasing section of the oscillation shown in Fig. 6. The snapshots are colored according to the value of the real part of the local
bond-orientational order parameter, �{φ6, j}. The system size is N = 3600, the temperature T = 0.0030, and the shear rate γ̇ = 1 × 10−3

(regime I).

function across one oscillation period nevertheless displays a
power-law decay (see the dashed line in Fig. 8), suggesting
that only quasi-long-range bond-orientational order is present
in instantaneous configurations in the thermodynamic limit.

V. CROSSOVER TO STRINGLIKE FLOW

The isotropic flowing liquid phase (regime II) appears
rather narrow at low temperature and widens as T is increased,
as seen from Figs. 1(a) and 4(a). Indeed, upon further in-
crease of γ̇ , the imposed shear dominates the dynamics of
the system and one finds a crossover to a situation in which
particles in the steady state flow along bands parallel to the
shear direction. This leads to a stringlike flow (regime III),
as seen in the real-space snapshot of Fig. 1(d). The effect of
an increased shear rate on the ability of particles to diffuse in
the direction perpendicular to the shear is presented in Fig. 9,
where we plot the mean square displacement in the y direction

FIG. 8. Instantaneous value of the bond-orientational correlation
function g6,γ (r) for several values of the strain γ (solid colored lines)
and its value averaged over a period (black dashed line) for a system
of N = 14 400 particles at T = 0.0030 and γ̇ = 10−3 (regime I).

as a function of strain for a fixed temperature T = 0.0030 and
two different shear rates. While the mean square displacement
grows linearly for the small shear rate (which corresponds
to the flowing hexatic phase of regime I) as expected for a
diffusive motion, it is virtually constant for the large shear rate
corresponding to the stringlike flow of Regime III.

Several signatures of the new regime are found in the
structure. One can see from Fig. 4(a) that the averaged square
modulus of the bond-orientational order parameter starts to in-
crease again to nonzero values (with virtually no system-size
dependence). Accordingly, the bond-orientational correlation
function reaches a nonzero plateau at large distances: see
Fig. 4(b). One can also look at the radial distribution function
(averaged over all directions) g(r). It is plotted for T = 0.0030
for several γ̇ covering all three regimes in Fig. 10. For the

FIG. 9. Mean square displacement �y2(γ ) along the direction
perpendicular to the shear for one trajectory in the steady state as
a function of the strain γ for two different shear rates, γ̇ = 10−3

(a) and 0.8 (b), at a temperature T = 0.0030. γ is measured from a
configuration in the steady state. The top panel corresponds to regime
I and the bottom one to regime III.

104114-8



SHEAR-INDUCED PHASE BEHAVIOR AND TOPOLOGICAL … PHYSICAL REVIEW B 109, 104114 (2024)

FIG. 10. Radial distribution function g(r) for a system of N =
14 400 particles at a temperature T = 0.0030 and for several shear
rates γ̇ covering the three regimes of flow. The data for different γ̇

are shifted along the y axis for clarity.

smallest γ̇ , g(r) quickly decays to one, as expected from the
lack of positional order in regimes I and II. However, for γ̇ �
8 × 10−2, a series of ripples appear, which persist up to the
system size. More data are presented in Appendix E, which
allows us to estimate the crossover line between regimes II
and III as a function of temperature. The obtained phase
boundary is shown in Fig. 1(a).

Note that the ripples in g(r) do not imply positional order
characteristic of a crystal. It instead signals that the flow is
organized in parallel bands along the shear direction. Beyond
the real-space snapshots, this is supported by the study of
the transverse static structure factor that probes the ordering
of the particles in the direction orthogonal to the flow. As
illustrated in Fig. 20 of Appendix G, this clearly shows an
organization of the particles in bands of width roughly equal to
the particle size, in agreement with the visualization provided
by Fig. 1(d).

The regime of stringlike flow is highly anisotropic. This
is what explains the nonzero value of the sixfold bond-
orientational order parameter presented in Fig. 4(a). This is
confirmed by the study of another bond-orientational order pa-
rameter, e.g., that associated with cubic (fourfold) symmetry,

ψ4 = 1

N

N∑
j=1

1

n j

n j∑
k=1

e4iθ jk . (14)

We plot in Fig. 11 the averaged square modulus of ψ4 as a
function of the shear rate γ̇ for several system sizes and a
temperature T = 0.0030. One can clearly see that the flow-
ing system ceases to be isotropic (even if there might be a
shear-induced small distortion of the structure [33,34] possi-
bly associated with the boundaries and leading to the small
finite-size effect seen in the figure) around γ̇ ∼ 10−1, which
corresponds to the beginning of regime III [see Fig. 1(a)].

The existence of a stringlike regime of flow has also been
reported in a 2d colloid experiment at higher shear rate [5].
Previous molecular simulation studies have instead found
that a stringlike flow may appear but that this depends on
the implementation of the thermostat [24,25,35] (see also

FIG. 11. Averaged square modulus of the fourfold bond-
orientational order parameter, |ψ4|2, as a function of shear rate
for a temperature T = 0.0030 and several system sizes. Triangles,
diamonds, and circles correspond to data for N = 900, 3600, and
14 400, respectively.

Refs. [26,27] and references therein). Indeed, we have not
observed a stringlike flow in the SLLOD simulation with
the configurational thermostat (not shown), in agreement with
previous studies [26,27].

VI. CONCLUSION

We have given a unified description of a two-dimensional
crystal under a constant shear rate, starting from the detailed
account of how a perfect equilibrium solid yields and flows
when an infinitesimal shear rate is imposed and then mapping
out the whole phase diagram of the flowing steady state in
the plane formed by temperature and shear rate. In doing so,
we have carefully discussed the role of the topological defects
(dislocations and disclinations) and of the finite-size effects.

Shear-induced melting of the 2d crystal proceeds in two
steps: the solid loses long-range bond-orientational order and
flows for an infinitesimal shear rate (in the thermodynamic
limit) and the resulting flowing hexatic phase then melts
to a flowing (rather isotropic) liquid at a finite shear rate
that depends on temperature. Finally, at high shear rate, a
third regime corresponding to a strongly anisotropic stringlike
flowing phase appears. We note that contrary to what has been
suggested [5] the phase diagram does not seem to be con-
trolled by a single dimensionless parameter such as the Péclet
number, which for Brownian dynamics is simply proportional
to γ̇ /T . Indeed, one can see from Fig. 1(a) that a large γ̇ and a
small T do not have the same effect so that for the same ratio
the system can be found in any of the three regimes.

What remains to be done in two dimensions is a pre-
cise characterization of the nature of the transition from the
flowing hexatic to the flowing liquid. Considering the huge
computational effort that was already needed to settle the
equilibrium case [18,20], this would require using much larger
system sizes to check whether the transition is first-order-like
with a coexistence between the two different flowing phases
or continuous. If it is continuous, it would then be important
to determine whether the universality class is the same as in
the equilibrium case. Beyond this, an obvious extension is to

104114-9



GHIMENTI, OZAWA, BIROLI, AND TARJUS PHYSICAL REVIEW B 109, 104114 (2024)

investigate yielding and shear melting of three-dimensional
crystals (for a review, see Ref. [34]) which have been the-
oretically shown to flow at infinitesimal shear rate in the
thermodynamic limit [14–16] but for which no intermedi-
ate hexatic-like phase exists in equilibrium. Finally, it would
be interesting to study how the flow properties of crystals
identified in this paper change and converge to the rheology
of amorphous materials [36] when introducing size polydis-
persity systematically [37] or whether the connection made
between the mechanical properties of dense active matter
and sheared amorphous solids [38] carries over to crystalline
phases.
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APPENDIX A: SHEAR STRESS MEASUREMENT

We measure the xy component of the stress tensor denoted
as σ by using the Irving-Kirkwood formula [39] for the over-
damped Brownian dynamics,

σ = − 1

A

∑
i, j

xi j

(
∂v(ri j )

∂ri j

)
y

, (A1)

where A = LxLy is the area of the system, xi j = xi − x j , with
xi the position of particle i along the x axis (according to
the minimum image convention), and −(∂v/∂ri j )y is the y
component of the force exerted by particle j onto particle
i. Note that when evaluating the distance ri j we take into
account the periodic boundary condition and the minimum
image convention. We recall that x is the direction of the
imposed shear.

When we use the SLLOD dynamics (see Appendix B for
details), the shear stress σSLLOD contains an extra term due to
momentum flow:

σSLLOD = σ + 1

A

∑
i

px,i py,i

m
, (A2)

where pi = (px,i, py,i ) is the peculiar momentum of particle
i [see Eq. (B2)]. Note that the x component of pi does not
contain the contribution from the applied external shear.

APPENDIX B: RESULTS FROM NONEQUILIBRIUM
SLLOD MOLECULAR DYNAMICS SIMULATIONS

In order to confirm the genericness of the conclusions in
the main text, in particular, the absence of a yield stress and
the divergence of the effective viscosity when γ̇ → 0, we have
also used the SLLOD dynamics as an alternative to the Brow-
nian dynamics. We follow the implementation developed in
Ref. [40].

We first explain the implementation of the thermostat in
the nonequilibrium simulations. The imposed shear field leads
the system to overheat and, therefore, a thermostat mechanism
is needed. A general prescription for the development of a
thermostat is as follows [41]. One defines a “heat bath” co-
ordinate, say ζ , which is coupled to the equations of motion.
Such a dynamics must sample the system in a chosen state or

ensemble. This condition determines the form of the coupling
between the thermostat and the particles. The choice of the
coupling is not unique. In particular, when the thermostat is
applied out of equilibrium, some choices can introduce a bias
toward certain regimes with respect to others (for a discus-
sion relevant to the present problem, see Ref. [25]). In this
paper, we use for simplicity a configurational thermostat [42].
The configurational temperature, labeled Tconf , is measured
from the configuration of the particles in real space and their
interactions:

kBTconf =
∑

i

(
∂U
∂ri

)2

∑
i

∂2U
∂r2

i

, (B1)

where U is the total potential energy of the system. The
equation of motion for the SLLOD dynamics coupled with
the configurational thermostat are as follows [40]:

ṙi = pi

m
+ γ̇

(
yi − Ly

2

)
ex − ζ

∂U

∂ri
,

ṗi = −∂U

∂ri
− γ̇ py,iex,

ζ̇ = Fζ

Mζ

,

Fζ =
N∑

i=1

(
∂U

∂ri

)2

− kBT
N∑

i=1

∂2U

∂r2
i

. (B2)

Here, ζ is the coordinate of the thermostat, Fζ the force gov-
erning its evolution, and Mζ its “mass.” A velocity Verlet-like
integration scheme [40] has been implemented:

ri(t + �t ) = ri(t ) + �t

(
pi(t )

m
+ γ̇

(
yi − Ly

2

)
ex

)

+ �t

(
ζ (t ) + �t

2m

)
Fi(t ),

pi(t + �t ) = pi(t ) + �t

2
(Fi(t ) + Fi(t + �t ))

+ �t γ̇

2
(py,i(t + �t ) + py,i(t ))ex,

ζ (t + �t ) = ζ (t ) + �t

2Mζ

(Fζ (t ) + Fζ (t + �t )),

where Fi = − ∂U
∂ri

is the force acting on particle i due to the
interaction with the other particles. Time is measured in units
of τ0 =

√
md2

ε
. We report results obtained through the SLLOD

dynamics for systems of N = 3600 and 10 000 particles at
T = 0.0001. Using a time step �t = 0.01 and a thermostat
mass Mζ = 0.1. We have chosen the units of mass m such that
τ0 = 1.

Figure 12(a) shows the flow curves, σ as a function of γ̇ .
We see no evidence of a yield stress as the average stress
appear to keep decreasing at the lowest shear rates. The de-
crease of σ with γ̇ is enhanced by the presence of inertia with
respect to Brownian dynamics. The corresponding viscosity
plot is shown in Fig. 12(b). We see a power-law divergence of
η approaching γ̇ → 0. These results are consistent with those
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FIG. 12. (a) Flow curve of the two-dimensional crystal undergo-
ing the SLLOD dynamics at T = 0.0001 for a wide range of the
strain rate for N = 3600 and 10 000. (b) Corresponding effective
viscosity. The black dashed line represents the divergence of the
viscosity as a power law, η ∼ γ̇ −1.

obtained with the Brownian dynamics and presented in the
main text.

APPENDIX C: SYSTEM SIZE DEPENDENCE

In this Appendix, we report results on the different system
sizes investigated by the Brownian dynamics.

FIG. 13. System-size dependence of minγ̇ {|ψ6|2}, the minimum
value over γ̇ reached by |ψ6|2 in Fig. 4(a), for various temperatures
below the putative Tm,sol. The dashed and dotted lines indicates a
L−1/4 and a L−1 dependence, respectively.

FIG. 14. Flow curves obtained from the Brownian dynamics
for the averaged shear stress σ (a) and the effective viscosity η

(b) for several system sizes N . Triangles (with dotted line), diamonds
(dashed line), and circles (solid line) correspond to data for N = 900,
3600, and 14 400, respectively.

Figure 13 displays the variation with the system size N of
the minimum over γ̇ of |ψ6|2 [shown in Fig. 4(a) of the main
text] for several temperatures. As discussed in the main text,
the decrease with N , shown here on a log-log plot, is always
more rapid than L−1/4, which is the limiting behavior for a
hexatic phase. One can observe that the slope associated with
the apparent power law is steeper as the temperature increases.

We also plot the flow curves and the corresponding vis-
cosity for different system sizes, N = 900, 3600, and 14 400,
in Fig. 14. We do not find any significant system-size depen-
dence in these quantities.

APPENDIX D: IDENTIFICATION OF DISLOCATIONS
AND DISCLINATIONS

Disclinations and dislocations are point topological defects
in two dimensions: disclinations are defects in the bond-
orientational order and dislocations in the positional order.

The starting point to identify disclinations is to perform
a Voronoi tessalation of the given configuration of particles
(snapshot). From the construction, we count the number of
neighbors of each particle. At low temperatures most par-
ticles have 6 neighbors (the average number of neighbors
is constrained to be 6 in 2d Euclidean space) and some
have 5 or 7 neighbors. Particles with a number of neighbors
different than 6 correspond to disclination defects. The de-
fect organization is illustrated in Figs. 1(b)–1(d) of the main
text. We have checked that the concentration of disclinations
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FIG. 15. Density of free dislocations, ρdisl, as a function of the
shear rate γ̇ for N = 14 400. The dashed straight line corresponds to
ρdisl ∼ γ̇ .

FIG. 16. Viscosity η of the system as a function of the dislocation
density ρdisl for various system sizes. Triangles (with dotted line),
diamonds (dashed line), and circles (solid line) correspond to data
for N = 900, 3600, and 14 400, respectively.

corresponding to particles with more than 7 neighbors and
less than 5 neighbors are negligible in the conditions that we
study.

Dislocations are dipoles formed by two disclinations of
opposite topological charge. They can be identified with a
pair of adjacent fivefold and sevenfold coordinated particles.
In practice, however, dislocations can be condensed, forming
clusters, e.g., grain boundaries, and five- and sevenfold parti-
cles can also appear close to each other at vacancies [43]. In
order to detect truly isolated dislocations and disclinations,
we introduce a cutoff radius rcut. If no five- or sevenfold
coordinated particle is found within a distance rcut from a pu-
tative dislocation (respectively disclination), this dislocation
(respectively disclination) is considered as isolated or free.
The cutoff distance rcut is separately chosen for dislocations
and disclinations, as described below.

For the identification of free disclinations, a natural cutoff
rcut is the first minimum of the radial distribution function (see
below for its definition), which can be taken as a character-
izing the notion of adjacency for two particles. We thus set
rcut = 1.5. We have checked that the results do not change
significantly when varying rcut from 1.0 to 2.0. In Fig. 5 of
the main text, we show the probability pdisc of finding at least
one free disclination in a given configuration. At lower and
intermediate temperatures (T = 0.0001–0.0050) and low γ̇ ,
pdisc is zero since all disclinations are bound in dislocations,
while pdisc very rapidly increase at some larger γ̇ to reach a
value close to 1. We limit the display of data to γ̇ � 2 × 10−2

since, at higher shear rates, the concentration of defects is
large and the identification of the isolated disclinations be-
comes meaningless.

For defining free dislocations, we choose a cutoff distance
rcut = 2.5, close to the second minimum of the radial distri-
bution function (i.e., beyond the second coordination shell
around a given particle). Figure 15 shows the resulting density
of free dislocations, ρdisl, for various values of γ̇ and T . At
lower and intermediate temperatures (T = 0.0001–0.0050),
ρdisl roughly linearly increases with γ̇ for low γ̇ , as argued

FIG. 17. Radial distribution function g(r) for systems with N = 3600 (dashed curve) and 14 400 (solid curve) particles for various values
of T and γ̇ . g(r)’s are shifted vertically by hand for clarity.
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FIG. 18. Sixfold bond-orientational correlation function, g6(r), for a system of N = 3600 (dashed curves) and 14 400 (solid curves)
particles. The gray dashed straight lines in the background represent the upper bound imposed on the exponent η6 of the power-law decay
for a hexatic phase by the KTHNY theory, g6(r) ∼ r−1/4.

in Eq. (7) [30]. We limit the display of data to γ̇ � 10−2

because for higher γ̇ , the concentration of the defects is so
large that identifying isolated dislocations becomes difficult
and meaningless. As T is increased, ρdisl increases, and the
dependence on the shear rate saturates. The measured ρdisl is
used in Fig. 3(b) of the main text. We have also varied rcut

from 1.0 to 2.5 and confirmed that ρdisl is insensitive to rcut

in regime I, thereby showing that the relation between the
viscosity and the density of free dislocations in Fig. 3(b) is
robust.

We also report the system size dependence of the viscosity
η versus dislocation density ρdisl curve in Fig. 16. We see that
finite size effects suppress the dislocation density at N = 900.
Yet, these effects do not appear when comparing data for
N = 3600 and N = 14 400, consolidating our conclusions in
the main text.

APPENDIX E: RADIAL DISTRIBUTION FUNCTION

The radial distribution function g(r) is computed
according to

g(r) = A

2πr�rN (N − 1)

N∑
i, j,(i �= j)

∫ r+�r

r
δ(r′ − |ri j |)dr′,

(E1)
where δ(x) is the Dirac delta function, A = LxLy is the area of
the system, and �r is the width of the bin used in the numeri-
cal evaluation. We take �r ≈ 0.16 for N = 3600, �r ≈ 0.25
for N = 14 400, and �r ≈ 0.28 for N = 57 600. The overline
denotes the average over time and trajectories in the steady
state.

In Fig. 17, we show g(r) for all the temperatures investi-
gated and some representative values of the shear rate γ̇ . The
onset γ̇ corresponding to the appearance of system-spanning
ripples is used for the phase boundary between regimes II and
III in Fig. 1(a).

APPENDIX F: BOND-ORIENTATIONAL ORDER
PARAMETER AND ITS SPATIAL CORRELATIONS

We study the local sixfold bond-orientational order param-
eter for each particle j,

φ6, j = 1

n j

n j∑
k=1

e6iθ jk , (F1)

where the sum is over the n j neighbors of particle j that are
determined through a Voronoi tessellation and θ jk is the angle
characterizing the vector (the “bond”) joining particles j and
k, which is determined through the relation cos θ jk = r̂ jk · ex,
with r̂ jk = rk−r j

|rk−r j | a vector of unit norm joining particle j with
particle k and the x axis is arbitrarily chosen.

FIG. 19. Orientational correlation function g6(r) for a system
size of N = 14 400 (solid-lines) and N = 57 600 (dash-dotted lines)
in the vicinity of the transition between regimes I and II for several
temperatures.
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FIG. 20. Structure factor for the direction transverse to the flow, ST(ky ), for a system of N = 14 400 particles and various temperatures and
shear rates. As γ̇ increases at low enough temperature, sharp primary and secondary peaks appear near ky ≈ 7.7 and ky ≈ 15.4.

From this local order parameter, one can define the volume-
averaged bond-orientational order parameter,

ψ6 = 1

N

N∑
j=1

φ6, j . (F2)

When the system has a perfect hexagonal structure, |ψ6| =
1, while in a disordered liquid, |ψ6| is nearly zero. We
also define the sixfold bond-orientational spatial correlation
function,

g6(r) = A

2πr�rN (N − 1)g(r)

×
N∑

i, j,(i �= j)

∫ r+�r

r
φ6,iφ

∗
6, jδ(r′ − |ri j |)dr′, (F3)

where �r is defined as in the previous section and the cor-
relation function is conventionally normalized by the radial
(isotropic) distribution function g(r) to remove some of the
effects coming from local positional ordering. · · · denotes an
average over time (or strain) and independent trajectories once
the steady state has been reached.

In Fig. 18, we show the log-log plots of g6(r) for two
system sizes and all values of T and γ̇ considered in this
study. At low temperatures, below the melting temperature
Tm,sol ≈ 0.0055–0.0060, and small shear rates, g6(r) has a
power law decay, g6(r) ∼ r−η6 with η6 � 0.25, establishing
the presence of hexatic quasi-long-range order (Regime I).
For higher values of γ̇ , g6(r) decays faster than the KTHNY
bound (Regime II). Upon raising γ̇ even further but still at
low temperatures, g6(r) displays small plateau, with some
ripples, signaling a new flow regime. Figure 18 also shows the
absence of significant finite-size effects as the curves for the
two system sizes essentially coincide, except for the lowest
values of γ̇ : then, the power-law decay of g6(r) seems to

saturate for the smaller system size; this effect disappears
when the system size increases, suggesting that it is a finite-
size effect.

Additionally, we have performed simulations for a larger
system of N = 57 600 particles in the vicinity of the regime I-
II transition to see the orientational correlation function g6(r)
at a longer distance. The resulting plots are compared with the
ones obtained for N = 14 400 particles in Fig. 19.

The results show little deviation between the two system
sizes, except the trend that the smaller systems reach the
plateau earlier at the hexatic quasi-long-range order regime
(regime I), as expected in generic spatial correlation functions.
We note that the final plateau is also observed in the liquid
regime without showing the system size dependence. This
observation suggests that the plateau in the liquid regime is
a genuine consequence of the anisotropy of the system, even
in the thermodynamic limit.

APPENDIX G: TRANSVERSE STRUCTURE FACTOR
AND STRINGLIKE REGIME

In this Appendix, we present more supporting evidence
for the description of regime III as a stringlike flow in which
particle motion is organized in parallel bands.

We show in Fig. 20 the transverse structure factor com-
puted for modes perpendicular to the direction x of the shear
flow,

ST(ky) = 1

N

N∑
j,k=1

eiky(y j−yk ), (G1)

with ky = 2πny/Ly, ny being an integer.
As the shear rate increase (at low enough temperature),

ST(ky) develops sharp primary and secondary peaks whose
magnitude grows until it becomes of order N . This signals
the appearance of stringlike ordering induced by the flow
[see the snapshot in Fig. 1(d)]. The position of the first and
second peak correspond respectively to 2π

c0,y
and 4π

c0,y
, with
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c0,y the distance along the y direction between the centers
of the particles located in two adjacent rows on a triangular

lattice. c0,y is related to the lattice constant c0 by the relation

c0,y =
√

3
2 c0.

[1] J. P. Sethna, M. K. Bierbaum, K. A. Dahmen, C. P. Goodrich,
J. R. Greer, L. X. Hayden, J. P. Kent-Dobias, E. D. Lee,
D. B. Liarte, X. Ni et al., Deformation of crystals: Connec-
tions with statistical physics, Annu. Rev. Mater. Res. 47, 217
(2017).

[2] D. Bonn, M. M. Denn, L. Berthier, T. Divoux, and S.
Manneville, Yield stress materials in soft condensed matter,
Rev. Mod. Phys. 89, 035005 (2017).

[3] M. J. Alava, P. K. Nukala, and S. Zapperi, Statistical models of
fracture, Adv. Phys. 55, 349 (2006).

[4] P. M. Chaikin, T. C. Lubensky, and T. A. Witten, Principles of
Condensed Matter Physics (Cambridge university press, Cam-
bridge, 1995), Vol. 10

[5] E. J. Stancik, A. L. Hawkinson, J. Vermant, and G. G.
Fuller, Dynamic transitions and oscillatory melting of a two-
dimensional crystal subjected to shear flow, J. Rheol. 48, 159
(2004).

[6] U. Gasser, C. Eisenmann, G. Maret, and P. Keim, Melting
of crystals in two dimensions, Chem Phys Chem 11, 963
(2010).

[7] L. Ramos and F. Molino, Shear melting of a hexagonal colum-
nar crystal by proliferation of dislocations, Phys. Rev. Lett. 92,
018301 (2004).

[8] A. Ivlev, G. Morfill, H. Lowen, and C. P. Royall, Complex Plas-
mas and Colloidal Dispersions (World Scientific Publishing
Company, 2012), Vol. 5.

[9] J. M. Kosterlitz and D. Thouless, Long range order
and metastability in two dimensional solids and superflu-
ids.(application of dislocation theory), J. Phys. C 5, L124
(1972).

[10] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability
and phase transitions in two-dimensional systems, in Basic
Notions Of Condensed Matter Physics (CRC Press, 2018),
pp. 493–515.

[11] B. I. Halperin and D. R. Nelson, Theory of two-dimensional
melting, Phys. Rev. Lett. 41, 121 (1978).

[12] D. R. Nelson and B. I. Halperin, Dislocation-mediated melting
in two dimensions, Phys. Rev. B 19, 2457 (1979).

[13] A. Young, Melting and the vector coulomb gas in two dimen-
sions, Phys. Rev. B 19, 1855 (1979).

[14] F. Sausset, G. Biroli, and J. Kurchan, Do solids flow? J. Stat.
Phys. 140, 718 (2010).

[15] P. Nath, S. Ganguly, J. Horbach, P. Sollich, S. Karmakar,
and S. Sengupta, On the existence of thermodynamically sta-
ble rigid solids, Proc. Natl. Acad. Sci. USA 115, E4322
(2018).

[16] V. S. Reddy, P. Nath, J. Horbach, P. Sollich, and S. Sengupta,
Nucleation theory for yielding of nearly defect-free crystals:
Understanding rate dependent yield points, Phys. Rev. Lett.
124, 025503 (2020).

[17] A. Ikeda, L. Berthier, and P. Sollich, Unified study of glass and
jamming rheology in soft particle systems, Phys. Rev. Lett. 109,
018301 (2012).

[18] M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P.
Bernard, and W. Krauth, Hard-disk equation of state: First-order
liquid-hexatic transition in two dimensions with three simula-
tion methods, Phys. Rev. E 87, 042134 (2013).

[19] M. Zu, J. Liu, H. Tong, and N. Xu, Density affects the nature
of the hexatic-liquid transition in two-dimensional melting of
soft-core systems, Phys. Rev. Lett. 117, 085702 (2016).

[20] S. C. Kapfer and W. Krauth, Two-dimensional melting: From
liquid-hexatic coexistence to continuous transitions, Phys. Rev.
Lett. 114, 035702 (2015).

[21] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids
(Oxford University Press, 2017).

[22] Note that we have also carried out Brownian dynamics simula-
tions with a constant stress protocol as in [23]. We have found
that reaching the steady state is then much harder at low tem-
perature because the time evolution of the strain remains stuck
most of the time except for rare small jumps. When relaxation
is achieved, the constant stress and constant γ̇ results coincide,
but the latter allows us to cover a wider range of temperature
and shear rate.

[23] P. Olsson and S. Teitel, Phys. Rev. Lett. 99, 178001 (2007).
[24] T. Weider, M. A. Glaser, H. J. M. Hanley, and N. A. Clark,

Shear-induced melting of two-dimensional solids, Phys. Rev. B
47, 5622 (1993).

[25] J. Delhommelle, Simulations of shear-induced melting in two
dimensions, Phys. Rev. B 69, 144117 (2004).

[26] J. Delhommelle, J. Petravic, and D. J. Evans, Reexamination of
string phase and shear thickening in simple fluids, Phys. Rev. E
68, 031201 (2003).

[27] J. Delhommelle, Should “lane formation” occur systematically
in driven liquids and colloids? Phys. Rev. E 71, 016705 (2005).

[28] R. Bruinsma, B. I. Halperin, and A. Zippelius, Motion of defects
and stress relaxation in two-dimensional crystals, Phys. Rev. B
25, 579 (1982).

[29] A. J. C. Ladd and W. G. Hoover, Plastic flow in close-packed
crystals via nonequilibrium molecular dynamics, Phys. Rev. B
28, 1756 (1983).

[30] A. J. Dahm, M. A. Stan, and R. G. Petschek, Dynamics of
dislocation-mediated melting in a two-dimensional lattice in the
presence of an oscillatory applied strain, Phys. Rev. B 40, 9006
(1989).

[31] D. Nelson, Defect-mediated phase transitions, in phase transi-
tions and critical phenomena, in Phase Transitions and Critical
Phenomena, edited by C. Domb and J. L. Lebowitz (Academic
Press, London, 1983).

[32] R. Baggio, O. U. Salman, and L. Truskinovsky, Inelastic rota-
tions and pseudoturbulent plastic avalanches in crystals, Phys.
Rev. E 107, 025004 (2023).

[33] F. Westermeier, D. Pennicard, H. Hirsemann, U. H. Wagner,
C. Rau, H. Graafsma, P. Schall, M. P. Lettinga, and B. Struth,
Connecting structure, dynamics and viscosity in sheared soft
colloidal liquids: A medley of anisotropic fluctuations, Soft
Matter 12, 171 (2016).

104114-15

https://doi.org/10.1146/annurev-matsci-070115-032036
https://doi.org/10.1103/RevModPhys.89.035005
https://doi.org/10.1080/00018730300741518
https://doi.org/10.1122/1.1631425
https://doi.org/10.1002/cphc.200900755
https://doi.org/10.1103/PhysRevLett.92.018301
https://doi.org/10.1088/0022-3719/5/11/002
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevB.19.2457
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1007/s10955-010-0006-9
https://doi.org/10.1073/pnas.1800837115
https://doi.org/10.1103/PhysRevLett.124.025503
https://doi.org/10.1103/PhysRevLett.109.018301
https://doi.org/10.1103/PhysRevE.87.042134
https://doi.org/10.1103/PhysRevLett.117.085702
https://doi.org/10.1103/PhysRevLett.114.035702
https://doi.org/10.1103/PhysRevLett.99.178001
https://doi.org/10.1103/PhysRevB.47.5622
https://doi.org/10.1103/PhysRevB.69.144117
https://doi.org/10.1103/PhysRevE.68.031201
https://doi.org/10.1103/PhysRevE.71.016705
https://doi.org/10.1103/PhysRevB.25.579
https://doi.org/10.1103/PhysRevB.28.1756
https://doi.org/10.1103/PhysRevB.40.9006
https://doi.org/10.1103/PhysRevE.107.025004
https://doi.org/10.1039/C5SM01707F


GHIMENTI, OZAWA, BIROLI, AND TARJUS PHYSICAL REVIEW B 109, 104114 (2024)

[34] J. Vermant and M. J. Solomon, Flow-induced structure in col-
loidal suspensions, J. Phys.: Condens. Matter 17, R187 (2005).

[35] J. J. Erpenbeck, Shear viscosity of the hard-sphere fluid via
nonequilibrium molecular dynamics, Phys. Rev. Lett. 52, 1333
(1984).

[36] A. Nicolas, E. E. Ferrero, K. Martens, and J.-L. Barrat,
Deformation and flow of amorphous solids: Insights from
elastoplastic models, Rev. Mod. Phys. 90, 045006 (2018).

[37] H. Shiba and A. Onuki, Plastic deformations in crystal, poly-
crystal, and glass in binary mixtures under shear: Collective
yielding, Phys. Rev. E 81, 051501 (2010).

[38] P. K. Morse, S. Roy, E. Agoritsas, E. Stanifer, E. I. Corwin,
and M. L. Manning, A direct link between active matter and
sheared granular systems, Proc. Natl. Acad. Sci. USA 118,
e2019909118 (2021).

[39] J. Irving and J. G. Kirkwood, The statistical mechanical theory
of transport processes. IV. the equations of hydrodynamics,
J. Chem. Phys. 18, 817 (1950).

[40] D. Costa, A. Sergi, and M. Ferrario, Transient behavior of a
model fluid under applied shear, J. Chem. Phys. 138, 184501
(2013).

[41] D. Frenkel and B. Smit, Understanding Molecular Simulation
(Elsevier, 2023).

[42] C. Braga and K. P. Travis, A configurational tempera-
ture nosé-hoover thermostat, J. Chem. Phys. 123, 134101
(2005).

[43] P. Digregorio, D. Levis, L. F. Cugliandolo, G. Gonnella, and
I. Pagonabarraga, Unified analysis of topological defects in
2D systems of active and passive disks, Soft Matter 18, 566
(2022).

104114-16

https://doi.org/10.1088/0953-8984/17/4/R02
https://doi.org/10.1103/PhysRevLett.52.1333
https://doi.org/10.1103/RevModPhys.90.045006
https://doi.org/10.1103/PhysRevE.81.051501
https://doi.org/10.1073/pnas.2019909118
https://doi.org/10.1063/1.1747782
https://doi.org/10.1063/1.4803147
https://doi.org/10.1063/1.2013227
https://doi.org/10.1039/D1SM01411K

