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Silicon carbide, a semiconducting material, has gained importance in the fields of ceramics, electronics, and
renewable energy due to its remarkable hardness and resistance. In this study, we delve into the impact of
nuclear quantum motion, or vibrational mode quantization, on the structural and elastic properties of 3C-SiC.
This aspect, elusive in conventional ab initio calculations, is explored through path-integral molecular dynamics
(PIMD) simulations using an efficient tight-binding (TB) Hamiltonian. This investigation spans a wide range
of temperatures and pressures, including tensile stress, adeptly addressing the quantization and anharmonicity
inherent in solid-state vibrational modes. The accuracy of the TB model has been checked by comparison with
density-functional-theory calculations at zero temperature. The magnitude of quantum effects is assessed by
comparing PIMD outcomes with results obtained from classical molecular dynamics simulations. Our investi-
gation uncovers notable reductions of 5%, 10%, and 4% in the elastic constants C11, C12, and C44, respectively,
attributed to atomic zero-point oscillations. Consequently, the bulk modulus and Poisson’s ratio of 3C-SiC exhibit
reduced values by 7% and 5% at low temperatures. The persistence of these quantum effects in the material’s
structural and elastic attributes beyond room temperature underscores the necessity of incorporating nuclear
quantum motion for an accurate description of these fundamental properties of SiC.
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I. INTRODUCTION

Bulk silicon carbide is recognized as a semiconducting
material with outstanding physical properties, such as low
thermal expansion, high strength, thermal conductivity, and
refractive index [1]. It exists in more than 250 different
polytypes, many of which have hexagonal or rhombohedral
crystalline structures. Moreover, there has been an increasing
interest in other materials consisting of carbon and silicon,
such as nanotubes, fullerenes, and two-dimensional structures
[1–5].

Mechanical properties of bulk SiC have been intensively
studied over the years using experimental techniques [6–9]
and theoretical approaches [10–16], due to their significance
in both basic research and various technological applications,
including heat shielding, nuclear fuel particles, filament py-
rometry, telescope mirrors, electric systems, and electronic
devices. In general, the behavior of semiconducting solids
under high pressure conditions has recently received renewed
attention as potential constituents of carbon-rich exoplanets,
as extreme planetary interior conditions can significantly in-
fluence their physical properties [17,18].

One of the most prevalent forms of silicon carbide, stable
under ambient conditions, is cubic 3C-SiC. Extensive research
has been conducted on this polytype, employing various
computational techniques, with a notable focus on density-
functional theory (DFT) calculations at T = 0 [11,14,19,20].
Since accounting for finite temperatures requires the es-
timation of vibrational modes within a quasi-harmonic
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approximation [12,21–23], these methods are reliable at low
temperatures where anharmonic effects are relatively small,
but their accuracy can diminish due to increasing anharmonic-
ity as the temperature rises.

Numerous studies investigating the finite-temperature
characteristics of SiC have relied on classical atomistic simu-
lations [13,24–28]. However, it is noteworthy that the Debye
temperature �D of silicon carbide greatly exceeds room tem-
perature (�D ≈ 1100 K for cubic SiC [29]). As a result, the
interplay of nuclear quantum effects (or phonon quantization)
and anharmonicities in the interatomic potential is expected
to impact the material’s physical properties at temperatures
relatively high, potentially on the order of, or even surpassing,
room temperature. The constraints posed by classical atom-
istic simulations can be surmounted by methods explicitly
accounting for nuclear quantum motion. Such is the case for
computational techniques grounded in Feynman path inte-
grals [30–33]. These techniques have gained prominence in
recent years for exploring diverse material properties, includ-
ing silicon [34], boron nitride [35,36], diamond [37,38], and
graphene [32,33,39].

In this paper, we employ the path-integral molecular dy-
namics (PIMD) technique to investigate the structural and
elastic properties of 3C-SiC across temperatures ranging from
T = 50 to 1500 K, and hydrostatic pressures spanning from
P = −30 GPa (tension) to 60 GPa (compression). The in-
teratomic interactions in our simulations are described by
an effective tight-binding (TB) Hamiltonian. To assess the
precision of the TB outcomes, we have also carried out DFT
calculations at T = 0. Nuclear quantum effects are assessed
by contrasting the findings from PIMD simulations with those
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derived from classical molecular dynamics (MD) simulations
using the same TB Hamiltonian. Furthermore, we scrutinize
the impact of anharmonicity on the physical properties of
cubic SiC by comparing our results against those attained
through a harmonic approximation. Our findings reveal that
quantum corrections induce a significant reduction in the elas-
tic constants, bulk modulus, and Poisson’s ratio at low tem-
peratures. These quantum effects demonstrate their notable
presence in the structural and elastic properties of 3C-SiC,
remaining appreciable at temperatures surpassing 300 K.

Similar path-integral simulations, akin to those pre-
sented in this paper, have been previously employed to
examine nuclear quantum effects in carbon-based materi-
als [32,33,37,38,40], silicon [34], and boron nitride [36,41].
These effects exhibit significance in electronic gaps [42] and
in the isotope dependence of the lattice parameter in cubic SiC
[43]. Here, we advance the understanding of nuclear quantum
effects in various properties of materials with cubic symmetry,
such as 3C-SiC. In particular, we expand the region of studied
pressures to include tensile stress, allowing us to investigate
this material in a metastable region of the P-T phase diagram.
This exploration yields information on the attractive region of
the interatomic potential. In contrast to earlier simulations of
this kind, we present a detailed comparison of TB results with
those obtained from DFT calculations at T = 0, providing a
more solid foundation for the data derived from PIMD simula-
tions. Moreover, the consideration of SiC permits us to study
anharmonicities in the quantum vibrational motion of carbon
and silicon atoms within a binary compound, extending be-
yond those corresponding to monoatomic materials such as
diamond and crystalline silicon. This is particularly observ-
able in the kinetic energy and mean-square displacement of C
and Si atoms in 3C-SiC.

The paper is structured as follows. In Sec. II, we present
the computational methods used in the calculations, including
the tight-binding procedure, path-integral molecular dynam-
ics, and the DFT method. In Sec. III, we outline a harmonic
approximation for elastic constants and vibrational density of
states, employed to analyze anharmonicities in our results.
The internal energy and crystal volume of 3C-SiC, derived
from PIMD simulations, are discussed in Secs. IV and V,
respectively. Section VI provides results for atomic mean-
square displacements. Data on the elastic constants and bulk
modulus at finite temperatures are presented in Secs. VII and
VIII. Finally, the main outcomes are summarized in Sec. IX.

II. METHOD OF CALCULATION

A. Tight-binding method

We investigate nuclear quantum effects on the structural
and elastic properties of 3C-SiC, focusing on the quantum
delocalization of atomic nuclei and its impact on various
physical properties of the solid. For this purpose, two main
components are required. Firstly, a suitable potential is nec-
essary to define interatomic interactions within the material.
Such potentials are typically derived from ab initio tech-
niques, tight-binding Hamiltonians, or empirical models. This
establishes a Born-Oppenheimer surface for nuclear motion.
Secondly, a method is needed to account for quantum dy-

namics in the configuration space of nuclear coordinates,
using the chosen interatomic potential. This necessitates
finite-temperature simulations grounded in quantum statistical
physics, as opposed to the classical statistics often used in
atomistic simulations (such as molecular dynamics or Monte
Carlo). In this paper, we achieve this through PIMD simula-
tions, described in Sec. II B.

Our simulations are conducted under the adiabatic (Born-
Oppenheimer) approximation. The potential energy surface
for nuclear dynamics is derived from an effective tight-
binding Hamiltonian [44]. While it is possible in principle
to employ ab initio methods for finite-temperature simula-
tions, such an approach would significantly limit the duration
of simulation trajectories or the feasible system size due to
computational constraints. The approach we utilize takes into
account both the quantum nature of electrons (via the TB
Hamiltonian) and atomic nuclei (through the use of path inte-
grals). This allows for the direct inclusion of electron-phonon
and phonon-phonon interactions in our PIMD simulations.

We compute interatomic forces and total energies using
the nonorthogonal TB Hamiltonian developed by Porezag
et al. [44], which is grounded in DFT calculations within
the local density approximation (LDA). The specific TB
parametrization for structures containing both C and Si
atoms is detailed in Ref. [45]. In this parametrization,
atomic orbitals are obtained as eigenfunctions of appropri-
ately constructed pseudoatoms, with the valence electron
charge density situated near the nucleus. The overlap matrices
between atomic orbitals and Hamiltonian matrix elements are
tabulated as functions of internuclear distance. Additionally,
the short-range repulsive portion of the potential is fitted
to self-consistent LDA data from relevant reference systems
[46]. The nonorthogonality of the atomic basis plays a pivotal
role in ensuring the transferability of the TB parametrization
to complex systems [44].

This tight-binding model has previously been applied to
investigate bulk SiC [47,48], reconstructions of its surfaces
[45], as well as isotopic and quantum effects in the cubic phase
[42,43]. It has also been employed to study various properties
of recently synthesized silicon carbide monolayers [5,49]. A
comprehensive review of the capabilities of TB procedures in
accurately describing a range of properties in both molecules
and condensed matter was provided by Goringe et al. [46].

To sample the electronic degrees of freedom in reciprocal
space, we consider only the � point (k = 0) in this paper.
Including larger k sets in the calculations leads to a slight
shift in total energy, but with negligible impact on the energy
differences presented below. This shift results in a minor
adjustment of the minimum energy E0, which becomes less
pronounced as the cell size increases. Figure 1 illustrates
this behavior, displaying the internal energy of unstressed
3C-SiC across various cell sizes. In the figure, solid circles
represent the energy attained with the TB model (� point)
for the minimum-energy configuration (T = 0, classical). Ad-
ditionally, we have plotted outcomes for energy obtained
from classical MD simulations (solid squares) and PIMD
simulations (open squares) at T = 300 K. In both classical
and quantum cases, we observe a consistent upward shift of
the energy relative to classical results at T = 0. Something
similar happens for the quantum zero-point energy (open
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FIG. 1. Energy as a function of system size for 3C-SiC, cal-
culated with the TB Hamiltonian used in this work. Solid circles:
T = 0; solid squares: classical MD simulations for T = 300 K; open
circles: quantum results for T → 0; open squares: PIMD for T =
300 K. Labels “cl” and “q” refer to classical and quantum results,
respectively. Lines are guides to the eye.

squares) derived from extrapolation of finite-temperature re-
sults of PIMD simulations for different cell sizes (see below).

B. Path-integral molecular dynamics

We investigate the equilibrium properties of 3C-SiC as
functions of both temperature and pressure by means of PIMD
simulations. This technique is rooted in Feynman’s path-
integral formulation of statistical mechanics [50], a valuable
nonperturbative approach for exploring quantum systems at
finite temperatures. In practical implementations of this com-
putational method, each quantum particle (in our context,
an atomic nucleus) is represented as a group of NTr (Trot-
ter number) beads. These beads emulate classical particles,
collectively forming a ring polymer [30,31]. This represen-
tation establishes a classical isomorph, which effectively
samples the configuration space, providing accurate values
for quantum system properties. For a more comprehensive
understanding of this simulation method, additional details
can be found elsewhere [30,31,51,52].

We carried out PIMD simulations in the isothermal-
isobaric (NPT ) ensemble, employing established algorithms
outlined in the literature [53–55]. Specifically, we made use of
staging coordinates to define the positions of the beads within
the classical isomorph. Furthermore, each staging coordinate
was coupled to a chain of four Nosé-Hoover thermostats,
maintaining a constant temperature throughout the simula-
tions. Additionally, a chain of four thermostats was linked
to the barostat, enabling the necessary volume fluctuations to
match the targeted pressure [51,56].

The equations of motion were integrated using the re-
versible reference system propagator algorithm (RESPA),

which allows to use different time steps for the integration
of fast and slow degrees of freedom [57]. For the dynamics
related to interatomic forces, a time step of �t = 1 fs was em-
ployed. Meanwhile, the evolution of fast dynamical variables,
including harmonic bead interactions and thermostats, was
computed with a time step of δt = 0.25 fs. To calculate the
kinetic energy Ekin, we used the virial estimator. This choice
is particularly advantageous as it exhibits a statistical uncer-
tainty smaller than that of the potential energy, especially at
high temperatures [56,58]. Further insights into this type of
PIMD simulations can be found in various literature sources
[33,54,59].

We conducted simulations using 2×2×2 and 3×3×3 su-
percells of the face-centered cubic unit cell of 3C-SiC, under
periodic boundary conditions. These supercells comprised
N = 64 and 216 atoms, respectively. We sampled the config-
uration space for temperatures ranging from 50 to 1500 K
and pressures spanning from −30 to 60 GPa. For typical
simulation runs, we performed 2×105 PIMD steps for system
equilibration, followed by 8×106 steps to compute average
properties. The Trotter number NTr was set to vary with
temperature according to the relation NTrT = 6000 K, ap-
proximately ensuring constant precision for PIMD results
across different temperatures [33,59]. We have checked that
this election of NTr provides adequate convergence for our
quantum model of 3C-SiC. In particular, we have checked this
convergence for T = 300 K, considering values of the Trotter
number up to NTr = 60, and found results for the variables
considered here which coincide within statistical error bars
with those found for NTr = 20. Thus, for the energy we ob-
tained differences smaller than 1 meV/atom.

As the system size N increases, the simulations effec-
tively sample vibrational modes with longer wavelengths λ.
In practical terms, there exists an effective wavelength cutoff
at λmax ≈ L, where L = na (with a being the lattice param-
eter and n equal to 2 or 3 in our case). This corresponds
to a wave-number cutoff of kmin ≈ 2π/L, where k = |k|.
Given that N ∼ L3, we observe that kmin ∼ N−1/3. This wave-
number cutoff, coupled with employing a single k point, could
cause a lack of convergence in calculated magnitudes versus
system size N . We have verified the agreement of results
obtained for N = 64 and 216 atoms, specifically for the en-
ergy difference E − E0 and the volume V , within statistical
error bars.

In order to gauge the magnitude of quantum effects calcu-
lated from our PIMD simulations, we also performed classical
MD simulations using the same TB Hamiltonian. This corre-
sponds to setting the Trotter number to one, which results in
the merging of ring polymers into single beads.

An alternative approach for studying anharmonic effects in
condensed matter involves the use of self-consistent phonon
or quasiharmonic approximations, where vibrational mode
frequencies are assumed to be volume-dependent [22,60–62].
This approach enables the incorporation of temperature ef-
fects and reveals anharmonicities at T = 0 without the need
for extrapolation, as required by path-integral methods. The
quasiharmonic approximation has been effectively applied to
analyze phenomena such as thermal expansion and isotopic
effects in solids [12,21–23], as well as the properties of small
clusters [61] and molecules [60].
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C. DFT calculations

To assess the accuracy of the employed TB procedure in
describing the properties of 3C-SiC, we carried out state-of-
the-art DFT calculations for this material. For this purpose,
we utilized the Quantum-ESPRESSO package for electronic
structure calculations [63,64].

In particular, we adopted the Perdew-Burke-Ernzerhof
exchange-correlation functional in its solid-state version
(PBEsol) [65], along with a plane-wave basis set featuring cut-
offs of 45 Ry for the kinetic energy and 400 Ry for the charge
density. For both C and Si atoms, projector-augmented-wave
(PAW) pseudopotentials were employed [66].

We considered a cubic zinc-blende structure cell of SiC
containing 8 atoms subject to periodic boundary conditions.
For Brillouin zone integration, we employed a 10×10×10
Monkhorst-Pack grid [67].

Ab initio electronic-structure calculations have been previ-
ously carried out to explore various properties of cubic silicon
carbide. These investigations encompass lattice-dynamical,
structural, mechanical, electronic, and thermodynamic prop-
erties [68–72]. Such calculations have proven highly valuable
for investigating the phase diagram of silicon carbide, par-
ticularly regarding phase transitions under high pressure
[11,14,19,20,73].

III. HARMONIC APPROXIMATION

To asses the relevance of anharmonicity in the results
of our PIMD simulations for 3C-SiC, we consider a har-
monic approximation (HA) for the atomic vibrational modes.
While this approximation is generally reliable at low T in
solids, anharmonicity typically becomes more pronounced
as T increases. This leads to a progressive deviation of the
harmonic approach from the more accurate atomistic simula-
tions. Within the HA, frequencies are treated as independent
of temperature, thereby excluding considerations of volume
changes (thermal expansion).

To establish a reference for the subsequent analysis of
thermal and nuclear quantum effects, we assess the elastic
stiffness constants, Ci j , in the classical low-temperature limit.
These elastic constants for 3C-SiC at T = 0 have been derived
from the harmonic dispersion relation of acoustic phonons.
This calculation involved diagonalization of the dynamical
matrix obtained from the TB Hamiltonian [16].

Sound velocities in a solid can be derived by assess-
ing the slope of acoustic phonon branches close to the �

point. Specifically, we obtain these velocities by evaluating
the derivative ∂ω/∂k along high symmetry directions of the
Brillouin zone. In the context of cubic crystals, this relation is
established as [74,75]

C11 = ρ

(
∂ωLA

∂kx

)2

�

, (1)

for the longitudinal acoustic (LA) band along the [100] direc-
tion, and

C12 = C11 − 2ρ

(
∂ωTA2

∂k

)2

�

, (2)

C44 = ρ

(
∂ωTA1

∂k

)2

�

, (3)
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FIG. 2. Vibrational density of states of 3C silicon carbide, calcu-
lated in the HA for the TB Hamiltonian used in this work. Dashed
and dashed-dotted curves depict the VDOS corresponding to carbon,
gC(ω), and silicon, gSi(ω), respectively. The solid line represents the
total density of states, g(ω).

for the transverse acoustic bands, TA1 and TA2, along the
[110] direction. In these equations, ρ denotes the solid’s den-
sity. For the HA, our calculations yield the following elastic
constants: C11 = 452.9 GPa, C12 = 141.1 GPa, and C44 =
246.7 GPa. We have confirmed that these values align with
those obtained for the different phonon bands along other
symmetry directions in k-space.

The isothermal bulk modulus of cubic crystals can be deter-
mined from the elastic constants through the expression [74]:

B = 1
3 (C11 + 2C12). (4)

From this formula, we find a bulk modulus B0 = 245.0 GPa
for the minimum-energy configuration (classical minimum).

To directly assess the anharmonicity of atomic vibrations,
we have calculated the vibrational density of states (VDOS)
for the entire Brillouin zone within the HA. This computation
was executed via numerical integration, following the method
outlined in Ref. [76]. In Fig. 2, we present the resultant VDOS
for 3C-SiC, with dashed and dashed-dotted lines denoting the
respective contributions from carbon and silicon. The solid
line represents the cumulative VDOS encompassing both con-
stituents. We will use the notations gC(ω) and gSi(ω) to call
the VDOS contributions from C and Si atoms, while the
overall VDOS is expressed as g(ω) = gC(ω) + gSi(ω).

The quantum-mechanical vibrational energy per atom at
temperature T within the HA is given by

Evib = 1

2N

∑
r,k

h̄ ωr (k) coth

(
1

2
β h̄ ωr (k)

)
, (5)

where β = 1/kBT (with kB being Boltzmann’s constant). The
index r (r = 1, . . . , 6) designates the phonon branches, and
the summation over wave vectors k traverses the Brillouin
zone. Alternatively, based on the continuous approximation
of the VDOS g(ω), the energy Evib can be calculated as

Evib = 1

4

∫ ωmax

0
h̄ ω coth

(
1

2
β h̄ ω

)
g(ω)dω, (6)
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FIG. 3. Energy per atom vs hydrostatic pressure. The solid
and dashed lines represent results obtained from DFT and TB
calculations, respectively, at T = 0. Symbols depict results from
classical MD (solid circles) and PIMD simulations (open squares) at
T = 300 K. The dashed-dotted line represents the quantum limit for
T → 0. Labels “cl” and “q” refer to classical and quantum results,
respectively. Dotted lines are guides to the eye.

where ωmax stands for the maximum frequency in the phonon
spectrum. Note that we use the normalization condition∫ ωmax

0
g(ω)dω = 6, (7)

to account for the six degrees of freedom present in a crystal-
lographic unit cell (comprising one C and one Si atom).

IV. ENERGY

In this section, we present and analyze the internal en-
ergy of 3C-SiC, extracted from PIMD simulations conducted
within the NPT ensemble at various pressures and tempera-
tures. This simulation approach provides distinct evaluations
of the potential and kinetic energy of the system [49,51,77].
This enables the exploration of lattice vibration anharmonici-
ties by scrutinizing differences between both energies, which
coincide for harmonic systems.

For a specified combination of pressure and temperature,
the internal energy can be expressed as E = E0 + Epot + Ekin,
where Epot and Ekin correspond to the potential and kinetic
energy, respectively. E0 denotes the energy of the classical
model at zero temperature (minimum-energy configuration).
Figure 3 displays the energy difference E − E0 as a function
of hydrostatic pressure. The solid and dashed curves portray
the energy outcomes derived at T = 0 via DFT and TB calcu-
lations, respectively. The energy reference is established at the
unstressed material state (P = 0). The energy curves closely
align in the pressure range spanning from a tensile pressure
of P = −30 GPa to a compressive pressure of approximately
40 GPa. Beyond this interval of compressive stress, a diver-
gence becomes apparent between the TB and DFT energy

curves, the former exhibiting a slower growth rate compared
to the latter.

In Fig. 3, symbols are employed to represent the outcomes
of simulations performed at T = 300 K. Solid circles corre-
spond to classical MD results, while open squares represent
PIMD simulations. The classical results exhibit a nearly uni-
form increase of 3kBT relative to the TB results at T = 0.
This signifies the contribution of thermal energy per atom at
the given temperature. In the case of PIMD simulations, we
observe that at a pressure of P = 0, there is an enhancement
of 51 meV/atom compared to the classical data. This differ-
ence in energy grows from 40 to 57 meV/atom within the
pressure range spanning from −30 to 60 GPa. The average
phonon frequency ω escalates with increasing pressure, lead-
ing to an amplification of the energy difference δE between
quantum and classical models, especially at relatively low
temperatures, including 300 K. The dashed-dotted line in this
figure represents the quantum limit of the energy for T → 0,
extrapolated from our finite-temperature PIMD simulations
in the plotted pressure range. In the low-T limit, the rate of
change ∂ (δE )/∂P is given by 3

2 h̄ ∂ω/∂P > 0.
In Fig. 4(a), we present the temperature dependence of

the internal energy, E − E0, which was obtained from PIMD
simulations of cubic SiC at zero pressure, indicated by solid
squares. Additionally, we display the internal energy values
obtained from classical MD simulations, represented by solid
circles. As temperature decreases, the quantum results con-
verge to an energy E = E0 + EZP, where EZP is the zero-point
energy, which results to be 112 meV/atom. At low temper-
atures, classical simulations exhibit a dependence described
by E − E0 ∝ T , in line with predictions derived from the
equipartition principle in classical statistical mechanics for
harmonic vibrations: E − E0 = 3kBT . At high temperature,
classical MD simulations show slight deviations from this
linear dependence due to the anharmonicity of lattice vibra-
tions. Notably, the zero-point energy obtained from PIMD
simulations is on the order of the classical thermal energy
at 450 K, which corresponds to approximately one third of
the material’s Debye temperature [29]. As the temperature
increases, the results of both PIMD and classical MD simu-
lations gradually converge. However, even at T = 1000 K, a
difference of 17 meV/atom remains between both sets of data.

In Fig. 4(b), the kinetic energy as a function of tem-
perature is presented. The symbols represent data from our
PIMD simulations: circles indicate C atoms, while squares
denote Si atoms. The solid and dashed lines on the graph
represent the results obtained from the HA for C and Si,
respectively. It is noticeable that in both cases, the symbols
lie below their corresponding lines. This observation indicates
that anharmonicity leads to a reduction in kinetic energy.
According to the outcomes of quantum simulations at low
temperatures, the kinetic energy for carbon and silicon atoms
is 68.3 and 42.0 meV, respectively. This yields a ratio of
EC

kin/ESi
kin = 1.63 as the temperature approaches absolute zero.

Comparing these low-temperature results to those provided
by the HA, it becomes apparent that, due to anharmonicity,
there is a reduction of 4% in each case. The dashed-dotted line
featured in Fig. 4(b) represents the classical kinetic energy per
atom, which remains constant regardless of the atomic mass:
Ekin = 3kBT/2.
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FIG. 4. (a) Energy per atom vs temperature. Symbols display
results of classical MD (circles) and PIMD simulations (squares.)
The dashed line represents the HA obtained from the VDOS using
Eq. (6). The dashed-dotted line depicts the classical thermal energy
per atom: E cl = 3kBT . Labels “q” and “cl” refer to quantum and
classical results, respectively. (b) Temperature dependence of the
kinetic energy of C (solid circles) and Si atoms (solid squares),
obtained from PIMD simulations. Solid and dashed lines represent
the kinetic energy found from the corresponding VDOS, gC(ω) and
gSi(ω), respectively. The dashed-dotted line illustrates the classical
kinetic energy E cl

kin = 3kBT/2.

An evaluation of lattice-vibration anharmonicity can be
achieved by comparing the potential and kinetic energy de-
rived from PIMD simulations. In the context of harmonic
vibrations, the expectation is that Epot = Ekin (as derived from
the virial theorem), so that any deviation of the ratio Ekin/Epot

from unity is an indication of anharmonicity. In Fig. 5, we
present the temperature-dependent behavior of both overall
kinetic and potential energy. As before, the symbols on the
graph correspond to data obtained from PIMD simulations,
while the solid line represents the outcome for the harmonic
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FIG. 5. Mean kinetic (Ekin, squares) and potential energy (Epot,
circles) per atom vs temperature, as derived from PIMD simulations.
The solid line represents the harmonic expectancy obtained from
the VDOS as Ekin = Epot = Evib/2, using Eq. (6). Dashed lines are
guides to the eye.

approximation. At low temperatures, a ratio of Epot/Ekin =
1.04 is obtained. This ratio displays an increase as the tem-
perature rises, reaching a value of 1.08 at 1000 K.

At low temperature, an apparent difference emerges be-
tween the potential and kinetic energy. The potential energy
tends to closely align with the harmonic expectation, in
contrast to the behavior observed for the kinetic energy, as dis-
cussed earlier for C and Si atoms. This fact has also been noted
in quantum simulations of various other materials and for
impurities in crystalline solids [33,78]. The reason behind this
can be comprehended by examining energy shifts obtained
through time-independent perturbation methods. To illustrate,
in the case of a one-dimensional perturbed harmonic oscilla-
tor, where the potential energy is given by V (x) = mω2x2/2
and a perturbation W (x) = Ax3 + Bx4 is introduced, the first-
order variation in the ground-state energy is attributed to a
change in kinetic energy, while the potential energy remains
unaffected, as in the unperturbed oscillator [78,79]. For a more
detailed explanation, we refer to Appendix A.

V. VOLUME

In the case of unstressed 3C-SiC, the volume of the
crystal obtained from classical MD simulations displays an
almost linear dependence on temperature. The slope ∂V/∂T
of this relationship increases gradually as the temperature
rises. At low T , the volume converges toward a value of
V0 = 10.277 Å3/atom, corresponding to the minimum-energy
volume (lattice parameter a0 = 4.348 Å). For the purpose
of comparison, our DFT calculations yield a minimum-
energy volume of V0 = 10.346 Å3/atom (lattice parameter
a0 = 4.358 Å). This value is close to the results obtained from
previous ab initio studies [14].
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For each given temperature T , the volume obtained
through quantum PIMD simulations consistently exceeds the
corresponding classical value. This trend converges toward
a volume of Vmin = 10.355 Å3/atom as the temperature ap-
proaches absolute zero (amin = 4.359 Å). Consequently, a
zero-point volume expansion of 0.8% in comparison to the
classical minimum is observed, translating to a lattice parame-
ter increase of δa = 1.1×10−2 Å. The simulation results from
both the quantum and classical approaches gradually align as
the temperature increases. At 300 K, the difference between
the two sets of data is approximately half of its value at the
low-temperature limit. Remarkably, the outcomes of PIMD
simulations employing the TB Hamiltonian closely approxi-
mate the experimental data derived from x-ray diffraction of
cubic SiC under ambient conditions. Specifically, at 297 K,
the experimental lattice parameter was found to be a = 4.36 Å
[42,80].

The quantum zero-point dilation in a solid is governed by
the presence of anharmonicities in its vibrational modes. This
has predominantly been explored within a quasiharmonic ap-
proximation. In this approach, each individual phonon mode
contributes to the T = 0 dilation by the product of its zero-
point energy and the associated Grüneisen parameter γω

[21,22,81]. An alternative approach consists in defining an
overall parameter, denoted as γ , derived from the average
frequency ω as follows:

γ = − ∂ (ln ω)

∂ (ln V )
. (8)

This formulation proves valuable in investigating the influ-
ence of anharmonicity on the thermodynamic properties of
solids [82].

At T = 0, the energy E for a specific volume V can be
written as the sum of two components: E = Ecl + EZP. Here,
Ecl corresponds to the classical energy as depicted in Fig. 3,
and EZP = 3h̄ω/2 represents the zero-point energy per atom.
By employing the equilibrium condition under zero pressure,
∂E/∂V = 0, and referring to Appendix B for more details, we
derive the equation:(

∂Ecl

∂V

)
Vmin

≈ γ EZP

V0
. (9)

In this context, Vmin signifies the volume corresponding to the
quantum ground state. Considering the volume dependence of
Ecl, as given by the TB Hamiltonian, we determine the left-
hand side of Eq. (9) to be 1.82 GPa. This computation leads
to a value of γ equal to 1.05, consistent with the Grüneisen
parameter values available in the literature for 3C-SiC [10,73].
As a result, the quantum zero-point dilation can be expressed
using Eq. (B8) as follows:

Vmin − V0 = γ EZP

B0
. (10)

Given a value of γ equal to 1.05, Eq. (10) yields a vol-
ume of Vmin = 10.354 Å3/atom, which is consistent with the
low-temperature volume directly obtained from PIMD simu-
lations.

We will now analyze the influence of hydrostatic pressure
on the crystal volume V . In Fig. 6, we display the pressure-
induced changes in volume per atom at T = 0, as determined
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FIG. 6. Volume vs pressure, as obtained from DFT (dashed
curve) and tight-binding calculations (solid curve) at T = 0. Circles
represent results of classical TB MD simulations at 1500 K. Error
bars are in the order of the symbol size. The dashed-dotted line is a
guide to the eye.

through DFT calculations (depicted by the dashed curve) and
TB calculations (represented by the solid curve). These two
curves closely align within the pressure range up to approxi-
mately 30 GPa, although the DFT result is slightly higher than
the TB data. As pressure increases further, the disparity be-
tween both datasets gradually becomes more pronounced. The
solid circles featured in Fig. 6 denote data points derived from
classical MD simulations at T = 1500 K. A comparison be-
tween these results and the TB calculations at T = 0 reveals a
notable thermal expansion under tensile pressure. Specifically,
this expansion amounts to δV = 0.277 and 0.604 Å3/atom for
pressures of P = 0 and −20 GPa, respectively. In contrast,
the volume exhibits a lesser dilation under compression. For
instance, at a pressure of P = 40 GPa and a temperature of
1500 K, the volume expansion is δV = 0.067 Å3/atom.

Results of our PIMD simulations at low temperatures
indicate that the volume expansion associated to quantum
zero-point motion is also significantly affected by hydrostatic
pressure. In fact, for increasing compressive stress, the zero-
point volume increase is drastically reduced in comparison
to unstressed 3C-SiC. Specifically, for P = 50 GPa, the vol-
ume change δV as T approaches zero is calculated to be
7×10−3 Å3/atom. This is in contrast to the low-temperature
expansion of 8×10−2 Å3/atom observed for cubic SiC at
P = 0.

The change in volume caused by an applied hydrostatic
pressure is linked to the material’s bulk modulus B, as
discussed in Sec. VIII. According to our classical data at
T = 0, the rate of volume change, ∂V/∂P, turns out to
be −4.19×10−2 Å3/(atom GPa) at P → 0. In contrast, at
a temperature of T = 1000 K, this derivative amounts to
−5.32×10−2 Å3/(atom GPa).

For a cubic crystal subjected to uniaxial pressure (say τxx),
the alteration in volume can be determined using the elastic
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FIG. 7. Atomic mean-square displacement, (�r)2, in 3C-SiC as
a function of temperature. Solid symbols represent results of PIMD
simulations for carbon (circles) and silicon (squares). Error bars are
in the order of the symbol size. Dashed lines correspond to MSDs
for C and Si obtained from the respective VDOS using Eq. (13).
The dashed-dotted line represents the carbon MSD obtained in the
classical approximation by means of Eq. (14).

compliance constants [74,75,83]:

δV

V
= exx + eyy + ezz = (S11 + 2S12)τxx. (11)

Furthermore, we can derive the stress derivative of volume as
follows:

∂V

∂τxx
= (S11 + 2S12)V = V

3B
, (12)

which provides an alternative formula for computing the bulk
modulus through classical MD and PIMD simulations. This
approach serves as a method of crossvalidation, thereby en-
hancing the reliability assessment of our methodology.

VI. ATOMIC MEAN-SQUARE DISPLACEMENTS

In this section, we present an analysis of the atomic mean-
square displacement (MSD) in 3C-SiC, spanning a broad
temperature region. The interplay between quantum motion
and the anharmonicity of vibrational modes gives rise to
discernible effects on the structural and mechanical charac-
teristics of solids, particularly at low temperatures. PIMD
simulations offer a means to compute atomic MSDs across
varying temperatures. These MSDs encompass both a classi-
cal (thermal) part and an intrinsic quantum contribution. The
former corresponds to the motion of the center of gravity
(centroid) of the quantum paths associated with the atomic
nuclei. In contrast, the latter is linked to the average size of the
ring polymers that depict the quantum behavior of the nuclei.

In Fig. 7, we display the temperature-dependent behavior
of the atomic MSD for C, represented by circles, and Si,
represented by squares. These MSD values are derived from
PIMD simulations. For T → 0, we determine the squared dis-

placements (�r)2 to be 6.3×10−3 Å2 for C and 4.4×10−3 Å2

for Si atoms, which correspond to zero-point motion. The
quotient between these values is close to the inverse square
root of the mass ratio, i.e., (�r)2

C/(�r)2
Si ≈ (MSi/MC)1/2. In

the presence of identical effective (harmonic) potentials for
both species, these two ratios should strictly coincide. The
differing environments of C and Si atoms lead to a difference
in these ratios.

The dashed lines depicted in Fig. 7 were generated using
the VDOS for C and Si presented in Fig. 2, using the HA. For
carbon atoms, this MSD is obtained from the expression:

(�r)2
C =

∫ ωmax

ω0

h̄

2ωMC
coth

(
1

2
β h̄ ω

)
gC(ω)dω. (13)

A similar expression is utilized for Si, taking into account the
atomic mass MSi and the function gSi. At low T , the outcomes
of quantum simulations closely align with those yielded by
the HA. As the temperature increases, the simulation data
progressively surpass the HA predictions. Notably, at approx-
imately T = 1000 K, both the simulation results (represented
by symbols) and the HA (shown by dashed lines) indicate that
(�r)2

Si exceeds (�r)2
C.

The dashed-dotted line in Fig. 7 indicates the MSD of C
atoms obtained through a classical HA. In this approximation,
one has

(�r)2
C =

∫ ωmax

ω0

kBT

ω2MC
gC(ω)dω. (14)

MSDs obtained from classical calculations are not contingent
on atomic mass, but rather they vary in accordance with the ef-
fective potential experienced by atomic nuclei. In this specific
instance, the interatomic potential experienced by C atoms is
relatively “stiffer” compared to that associated with Si atoms.
As a result, the classical MSD for silicon becomes larger than
that of carbon due to the inherent differences in their effective
potentials. This distinction is the reason for the observation
that (�r)2

Si > (�r)2
C in the quantum calculations at elevated

temperatures, as illustrated in Fig. 7.
One way to evaluate the consistency of results from our

PIMD simulations, both in position and momentum domains,
consists in examining the MSDs (�r)2 and kinetic energy.
In accordance with Heisenberg’s uncertainty principle, the
root-mean-square deviations for the coordinate x and the cor-
responding momentum px of a quantum particle must satisfy
the inequality �x �px � h̄/2 (as discussed in, for instance,
Ref. [84]). This relationship can also be expressed as

(�px )2 � h̄2

4(�x)2
. (15)

Similar relations hold for the coordinates y and z.
In our specific case, the average momentum is zero (〈p〉 =

0), as usually happens in solids. Thus, for an atomic nucleus
with mass M, the kinetic energy can be expressed as

Ekin = 〈p2〉
2M

= (�p)2

2M
. (16)
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For cubic crystal structures, where (�x)2 = (�y)2 = (�z)2,
combining Eqs. (15) and (16) yields

Ekin � � ≡ 9h̄2

8M(�r)2
, (17)

where � is a function of the atomic MSD. This inequality
establishes a lower limit for the kinetic energy, rooted in the
particle’s spatial extent. In other words, we have Ekin/� � 1.
From the above results for Ekin and (�r)2 at low tempera-
ture, it is discernible that both C and Si display a ratio of
Ekin/� = 1.1. This ratio slightly exceeds the minimum value
allowed by the uncertainty relations, and escalates as temper-
ature increases, reflecting a transition toward more classical
behavior in atomic motion.

For an isotropic 3D harmonic oscillator characterized by
a frequency ω, the MSD for the ground state equates to
3h̄/(2Mω). Correspondingly, the kinetic energy of the oscilla-
tor’s ground state is (Ekin )0 = 3h̄ ω/4 [84]. This yields a con-
vergence of Ekin/� to unity as T → 0, reaching the minimum
attainable value. In the context of atomic motion in solids,
the dispersion of frequencies can be approximated using an
isotropic 3D Debye model (as referenced in Refs. [82,85]),
characterized by a vibrational density of states ρ(ω) ∝ ω2

and a high-frequency cutoff ωD. In this case, for T → 0 and
assuming harmonic vibrations, the ratio Ekin/� converges
to 1.125 (which remains independent of ωD) [86], near the
findings for C and Si atoms from our quantum simulations.

VII. ELASTIC CONSTANTS

In this section, we delve into the influence of nuclear
quantum effects on the elastic stiffness constants of 3C-SiC.
These effects, akin to other physical observables, become
pronounced for various elastic constants, manifesting at tem-
peratures lower than the Debye temperature, �D. The elastic
compliance constants, Si j , are evaluated in this study at var-
ious temperatures by focusing on specific components of the
stress tensor τi j during isothermal-isobaric simulations. For
instance, when τxx 	= 0 and τi j = 0 for other components,
the relationships S11 = exx/τxx and S12 = eyy/τxx hold true.
Here, ei j are the components of the strain tensor determined
in the simulations [74,75,82]. Similarly, the evaluation of S44

entails the application of a shear stress τxy, and S44 = exy/τxy.
From these compliance constants, we derive the stiffness con-
stants C11 and C12 using the cubic crystal relations [74,82]:
C11 = (S11 + S12)/Z and C12 = −S12/Z , where Z = (S11 −
S12)(S11 + 2S12). Additionally, C44 = 1/S44. We note that in
the context of elasticity, a hydrostatic pressure P corresponds
to τxx = τyy = τzz = −P.

In Fig. 8, we present the elastic stiffness constants obtained
from our simulations of cubic SiC. The graph portrays the
temperature dependence of C11, C12, and C44 from top to
bottom. The results found from classical MD simulations are
depicted using solid circles, designated as “cl,” while those
from PIMD simulations are indicated by squares and shown
as “q.” The elastic constants derived from classical simula-
tions exhibit a consistent decrease with increasing temperature
throughout the range illustrated in Fig. 8. Notably, the ex-
trapolation of these findings to T = 0 agrees with the data
for Ci j derived from the slopes of acoustic phonon bands, as
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FIG. 8. Temperature dependence of the elastic stiffness constants
of cubic silicon carbide: (a) C11, (b) C12, and (c) C44, as derived from
classical MD (circles, labeled “cl”) and PIMD simulations (squares,
labeled “q”). Error bars are in the order of the symbol size. Solid
diamonds represent in each case the classical value at T = 0, calcu-
lated from the phonon dispersion bands. Dashed lines are guides to
the eye.

discussed in Sec. III. These T = 0 values are represented by
solid diamonds on the left vertical axis of Fig. 8.

In Table I, we present a compilation of stiffness constants
derived from classical and PIMD simulations at temperatures
T = 300 and 750 K. Alongside these values, we provide
the corresponding classical limits for T = 0, computed using
the phonon bands methodology (Sec. III). Quantum values
for the limit T → 0 are determined by extrapolating finite-
temperature PIMD results. A comparison between classical
and quantum data reveals that the introduction of zero-point
motion yields reductions of approximately 5%, 10%, and 4%
for C11, C12, and C44, respectively.

TABLE I. Elastic stiffness constants, bulk modulus, and Pois-
son’s ratio of 3C-SiC, as derived from classical MD and quantum
PIMD simulations at T = 0, 300 and 750 K. Data for Ci j and B are
in GPa. Statistical error bars in the last digit are given in parenthesis.

T = 0 T = 300 K T = 750 K

class. quantum class. quantum class. quantum

C11 452.9(5) 428(1) 435(1) 425(2) 413(2) 409(2)
C12 141.1(5) 126(1) 129(1) 123(2) 116(1) 114(2)
C44 246.7(5) 236(1) 238(1) 235(1) 230(2) 228(3)
B 245(1) 227(1) 231(1) 224(1) 215(1) 212(1)
ν 0.238 0.227 0.230 0.224 0.219 0.218
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TABLE II. Elastic stiffness constants, bulk modulus B, and
Poisson’s ratio ν of 3C-SiC derived from results of experimental
techniques by different authors at ambient conditions. In each case,
the bulk modulus is obtained from the elastic constants by means of
Eq. (4). Ci j and B are expressed in GPa. Error bars in the last digit,
when available, are given in parenthesis.

Zhuravlev [6] Lee [7] Lambrecht [8,9]

C11 391(11) 363 390
C12 122(6) 154 142
C44 253(6) 149 256
B 218(1) 224 225
ν 0.238 0.298 0.267

Brito et al. [38] conducted an investigation into nuclear
quantum effects in diamond utilizing path-integral Monte
Carlo simulations with the Tersoff potential. In their analysis,
these authors observed a reduction in the elastic constants C11

and C44 due to quantum nuclear motion, akin to the find-
ings for 3C-SiC. However, their observations regarding C12

demonstrated results that were nearly invariant with tempera-
ture, coupled with a discernible increase attributed to quantum
motion at low T (approximately 5%). This stands in stark
contrast to the results depicted in Fig. 8(b). At present, the
underlying cause of this disparity remains uncertain. It may
stem from the differing characteristics of the cubic materials
studied (diatomic versus monoatomic), or to the interatomic
potential employed in the simulations.

It is also interesting to compare our results for the elastic
constants of cubic SiC with those obtained earlier for graphite
using a similar procedure [40]. For graphite, a layered mate-
rial, a small change was found in C11 due to quantum nuclear
motion (about 1%) versus 5% obtained here for 3C-SiC,
which turns out to be similar to that resulting for diamond
[38]. On the contrary, C12 undergoes a decrease in cubic SiC
(10%), clearly smaller than in graphite (approximately 20%).
These differences between cubic and layered materials shed
light on anharmonicities associated with lattice vibrations in
these types of solids, which manifest themselves in the effect
of nuclear motion on magnitudes such as the elastic constants.

It is worth highlighting the correlation between the
temperature-dependent behavior of the elastic constants and
the atomic MSD. In the case of our classical results for the
three stiffness constants, there is a noticeable nearly linear
decrease as temperature rises. This behavior is linked to the
classical thermal motion of atoms, which in turn leads to a
linear growth in the MSD (�r)2 as temperature is raised (as
depicted in Fig. 7). Conversely, when examining data obtained
from PIMD simulations, a pronounced reduction is observed
in the low-temperature elastic constants. This reduction is
attributed to the effects of zero-point delocalization, evident
in the finite MSD at T = 0. As T is elevated, a convergence
between classical and quantum data for Ci j takes place, much
like the convergence observed in the MSD. A similar pattern
is also observed in the classical and quantum data for the bulk
modulus, as illustrated in Sec. VIII.

In Table II, we give a compilation of Ci j values extracted
from experimental data as reported by various authors [6–9].

TABLE III. Elastic stiffness constants, bulk modulus, and Pois-
son’s ratio of 3C-SiC found from several calculations based on
density-functional theory with LDA and GGA (PBEsol and PBE), as
well as lattice dynamics (LD), an effective potential (EP), and MD
simulations. Data for Ci j and B are given in GPa. The bulk modulus
is calculated in each case from the elastic constants using Eq. (4).

LD [7] EP [10] MD [13] PBEsol [14] PBE [11] LDA [15]

C11 371 371.1 390 390.0 382.9 384
C12 169 223.4 144 137.6 126.9 132
C44 176 279.3 179 246.3 240.9 241
B 225 273 225 224.2 212.2 216
ν 0.313 0.376 0.270 0.261 0.249 0.256

A certain degree of variation is evident in the experimental
results obtained under ambient conditions, especially for C44.
In particular, the value given in Ref. [7] is notably lower than
the other reported values for this stiffness constant. Moving on
to Table III, we present a comprehensive overview of elastic
constants for cubic silicon carbide calculated by using dif-
ferent computational methodologies. Some calculations were
conducted within the framework of DFT, incorporating both
LDA [15] and generalized-gradient approximation (GGA)
[11,14]. Other results were obtained through lattice-dynamics
calculations [7], the utilization of effective interatomic poten-
tials [10], and MD simulations [13].

The Poisson’s ratio, ν, is a parameter that characterizes
the relationship between transverse and longitudinal strains
under an applied stress. For cubic SiC, we calculate it as
ν = −S12/S11 [9]. In Table I, we furnish values of Poisson’s
ratio derived from the elastic constants obtained through our
classical and quantum simulations. It is noteworthy that as
temperature increases, ν shows a reduction. For T → 0, the
influence of zero-point motion causes a decline in ν from
0.238 to 0.227, signifying a reduction of 5%. At T = 300 K,
the classical and quantum values of ν stand at 0.230 and 0.224,
respectively, indicating a decrease of about 3% attributed to
quantum motion.

Table II provides the Poisson’s ratio values acquired from
experimental investigations. Notably, the value derived from
the data reported by Zhuravlev et al. [6] closely approximates
our results, whereas the other two values are relatively higher
[7,9]. Table III presents the Poisson’s ratio values attained
through various theoretical methods. While some dispersion
exists in these outcomes, the lowest values correspond to DFT
calculations, both within LDA and GGA. These DFT-based
results are somewhat higher than our classical result at T = 0
(ν = 0.238).

VIII. BULK MODULUS

In this section, we focus on the calculation of the
isothermal bulk modulus, B = −V (∂P/∂V )T , within our com-
putational approach. As depicted in Fig. 9, we showcase the
temperature-dependent behavior of B computed through the
elastic constants, using Eq. (4). Solid circles and squares
denote the outcomes obtained from classical and PIMD simu-
lations, respectively. The diamond marker positioned at T = 0
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FIG. 9. Temperature dependence of the bulk modulus of 3C-SiC,
obtained from the elastic constants derived from classical MD (solid
circles) and PIMD simulations (solid squares). Error bars of these
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classical value for T = 0. Open symbols represent data for the bulk
modulus found using the fluctuation formula in Eq. (18): diamonds,
classical simulations; triangles, PIMD simulations.

signifies the classical value, derived from the phonon bands
using the harmonic approximation, as detailed in Sec. III.

The classical results exhibit a nearly linear decrease at
low temperatures, accompanied by a substantial slope ∂B/∂T ,
which becomes less negative as temperature escalates. No-
tably, at temperatures of 300 and 1200 K, there is a respective
reduction in B by 6% and 17% when compared to the
low-temperature limit. For decreasing temperature, the extrap-
olation to T = 0 yields values of B = 245(1) GPa and 227(1)
GPa for classical and quantum simulations, respectively. This
signifies a 7% decline in the bulk modulus due to the influence
of atomic zero-point motion. The two sets of results converge
as temperature increases, with a difference between them of
roughly 0.6% at 1000 K. A salient aspect is that the quantum
outcomes fulfill the requirement of the third law of Thermo-
dynamics [87,88], namely, that ∂B/∂T = 0 as temperature
approaches zero. Conversely, this law is not upheld by the
classical data, where ∂B/∂T < 0 remains evident down to
T = 0.

Table I provides a comprehensive overview of the bulk
modulus for 3C-SiC. These values are derived by means of
Eq. (4), using the stiffness constants obtained through clas-
sical and quantum simulations at temperatures of 300 and
750 K, as well as the zero-temperature limit. Additionally,
Tables II and III furnish bulk modulus values acquired through
experimental and theoretical procedures, respectively. The ex-
perimental data for the bulk modulus of cubic SiC obtained
by various authors under room temperature conditions closely
align with our PIMD simulation result of B = 224 GPa at
300 K. Our ab initio DFT calculations, carried out without
considering nuclear quantum effects at T = 0, yield a value

of B = 224 GPa, consistent with the findings of Lee and Yao
[14], who employed the PBEsol generalized-gradient approxi-
mation. Other DFT calculations report values of 212 GPa [11]
and 216 GPa [15].

In the context of our classical and quantum atomistic
simulations, additional insight into the behavior of the bulk
modulus at low temperature can be garnered by means of the
fluctuation formula [89]:

B = kBTVc

(�Vc)2
= kBTV

N (�V )2
, (18)

where Vc = NV signifies the volume of the simulation cell
and �V represents the volume fluctuations. For a given N ,
it is observed that (�V )2 ∼ T at low temperatures, regardless
of the classical or quantum nature of the simulations. Conse-
quently, the dependence of B on temperature is predominantly
governed by the behavior of the function V (T ). In a clas-
sical model, the volume V increases linearly as temperature
rises: (V − V0) ∼ T . Conversely, the quantum behavior shows
∂V/∂T = 0 in the low-temperature limit. This distinction is
consistent with the observed tendencies at low T : B decreases
linearly for rising T in classical simulations, and ∂B/∂T → 0
for quantum simulations.

Upon analyzing Eq. (18) alongside the actual B values
obtained from our simulations, we observe that the change in
B attributed to nuclear quantum motion at low temperatures
primarily corresponds to an increase in �V compared to clas-
sical outcomes. Remarkably, our PIMD simulations yield an
approximately 7% increase in (�V )2 compared to its classical
counterpart, mirroring the shift observed in the bulk modulus
B. The variation in the mean volume, V , remains below 1%
(refer to Sec. V).

Equation (18) introduces an alternative approach for com-
puting the bulk modulus through simulations. We have
verified that this method produces results that align, within
error bars, with those obtained from elastic constants employ-
ing Eq. (4). Several data points obtained using the fluctuation
formula are illustrated in Fig. 9, denoted by open symbols:
diamonds represent classical outcomes, while triangles depict
quantum data. It is important to note that the error bars as-
sociated with this method are comparatively larger than those
arising from the determination through elastic constants.

In Fig. 10, we have depicted the relationship between the
bulk modulus and hydrostatic pressure. The symbols corre-
spond to results from classical (circles) and PIMD simulations
(squares) at T = 300 K. The solid line represents the results
obtained from DFT calculations at T = 0. The TB results
at T = 0 slightly surpass the classical data at T = 300 K,
and are omitted for the sake of clarity. As the compressive
pressure reaches large values, the DFT result becomes larger
that derived from the TB model. This disparity between the
two datasets escalates with increasing compressive pressure.
Specifically, at P = 40 GPa, the difference is approximately
6%.

The DFT results exhibit a pressure derivative of the bulk
modulus, B′ = ∂B/∂P, which amounts to 3.8 at P = 0. In
the case of TB data, we observe values of 4.1 and 4.0 for
classical and quantum simulations at T = 300 K, respectively.
Previous DFT calculations have consistently yielded B′ val-
ues ranging between 3.7 and 3.9 [11,14,15,70]. Moreover,
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FIG. 10. Bulk modulus of 3C-SiC, as derived from classical MD
(circles) and PIMD simulations (squares) at T = 300 K for several
hydrostatic pressures. Dashed lines are guides to the eye. The solid
line represents the results of DFT calculations at T = 0. Labels “cl”
and “q” refer to classical and quantum data, respectively.

various experimental studies have reported values of the pres-
sure derivative at room temperature spanning from 3.6 to 4
[6,90,91].

It is worth noting that the difference between classical and
quantum results for the bulk modulus, δB, diminishes as the
pressure increases. In terms of Eq. (18), this is due to a reduc-
tion in the difference between quantum and classical MSD
(�V )2 for rising hydrostatic pressure, which is associated to
an increase in the mean frequency ω.

IX. SUMMARY

PIMD simulations provide a robust framework to quan-
titatively assess nuclear quantum effects on the structural
and elastic properties of solids beyond harmonic or quasihar-
monic approximations. In the case of silicon carbide, quantum
corrections manifest significantly, especially at temperatures
below 400 K.

The employment of an effective tight-binding Hamilto-
nian has enabled precise exploration of the interplay between
nuclear quantum motion and anharmonicity, factors that ap-
preciably influence the material’s behavior at low temperature.
The quality of the TB model in describing the physical
properties of 3C-SiC has been established through a direct
comparison with DFT calculations at T = 0. The pressure-
volume equations of state derived from both methods are close
to one another in a wide range of pressures, including tensile
and compressive stress. For P � 30 GPa, the bulk modulus
derived from TB calculations is smaller than that found using
the DFT procedure.

The comparison between PIMD and classical MD simula-
tions emphasizes the importance of nuclear quantum effects
in understanding the behavior of SiC. Furthermore, our ex-
ploration of anharmonicity using a harmonic approximation

helps to deepen our comprehension of the material’s vibra-
tional properties.

The process of quantizing lattice vibrations engenders dis-
cernible alterations in the volume and elastic properties of
3C-SiC as compared to a classical model. The quantum zero-
point expansion of the volume amounts to about 1% respect
the classical prediction. In addition, low-temperature quantum
corrections in the elastic stiffness constants C11, C12, and
C44, amount to reductions of 5%, 10%, and 4%, respectively.
Similar decreases are found for the bulk modulus (7%) and
Poisson’s ratio (5%). Collectively, our findings underscore
the overarching trend: 3C-SiC exhibits a “softer” character
than predicted by classical simulations, in particular at low
temperature.

We highlight the congruence between our simulation out-
comes and the principles of thermodynamics, in particular
the third law, which applies for T → 0. Specifically, this
alignment implies in our case that the temperature derivatives
of the mechanical properties (i.e., elastic constants and bulk
modulus) must tend toward null values in the low-temperature
limit, contrary to the results of classical simulations.

In contrast to preceding works in this field, our study ex-
tends the pressure range to encompass tensile stress (P < 0),
thereby enabling an examination of SiC within a metastable
region of its phase diagram. Additionally, our investigation
benefits from a robust foundation for the PIMD simulations,
established from direct comparison between TB outcomes and
DFT calculations at T = 0. Consideration of silicon carbide
facilitates an evaluation of the collective impact of anhar-
monicity and quantum nuclear motion on silicon and carbon
atoms within a binary compound, surpassing previous exam-
inations of related monoatomic materials. This is particularly
noteworthy in our analysis of MSDs and kinetic energy per-
taining to Si and C atoms in 3C-SiC.

In summary, our study emphasizes the advantages of in-
cluding a quantum description of atomic nuclei into silicon
carbide research, significantly impacting our comprehension
of its thermal and mechanical attributes. As we broaden our
exploration of nuclear quantum effects, it opens the door to an
understanding of the involved interralation between phonon
quantization and anharmonicity in the physical properties of
diverse materials.
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APPENDIX A: PERTURBED HARMONIC OSCILLATOR

A qualitative understanding of the low-temperature de-
crease in kinetic energy with respect to the value expected
in a harmonic approximation can be obtained by analyz-
ing changes in kinetic and potential energy by standard
time-independent perturbation methods. We consider a one-
dimensional harmonic oscillator with potential energy V (x) =
1
2 mω2x2, and a perturbation

W (x) = Ax3 + Bx4. (A1)
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In static perturbation theory, the perturbed ground state is
given to first order by [79,92]

E1
0 = 〈

ψ0
0

∣∣V (x) + W (x)
∣∣ψ0

0

〉

= 1

2
h̄ω + 3

4

(
h̄

mω

)2

B + o(A2, B2). (A2)

The superscript in the wave function |ψ0
0 〉 indicates the unper-

turbed state. Note that, to first-order, the contribution of the
cubic term Ax3 vanishes.

By calculating separately changes in the kinetic and poten-
tial energy in the perturbed oscillator, one finds that the change
in ground-state energy, (δE )1

0 = E1
0 − E0

0 , is due to a variation
of the kinetic energy, and the potential energy keeps constant
for first-order perturbation. This can be seen by calculating
the expectation value of the corresponding operators in the
first-order-corrected ground state [79,92]:

∣∣ψ1
0

〉 = ∣∣ψ0
0

〉 − 3

2
√

2
C1A

∣∣ψ0
1

〉 − 3

2
√

2
C2B

∣∣ψ0
2

〉

− 1

2
√

3
C1A

∣∣ψ0
3

〉 −
√

3

4
√

2
C2B

∣∣ψ0
4

〉
, (A3)

where |ψ0
n 〉 refers to the n’th unperturbed wave function,

C1 = (h̄/m3ω5)1/2 and C2 = h̄/m2ω3.
Then, for the potential and kinetic energy in the perturbed

ground state, |ψ1
0 〉, we have

〈Epot〉1
0 = 〈

ψ1
0

∣∣V (x) + W (x)
∣∣ψ1

0

〉 = 1

4
h̄ω + o(A2, B2)

(A4)
and

〈Ekin〉1
0 = 〈

ψ1
0

∣∣ p2

2m

∣∣ψ1
0

〉

= 1

4
h̄ω + 3

4

(
h̄

mω

)2

B + o(A2, B2). (A5)

APPENDIX B: ZERO-TEMPERATURE VOLUME

For a given volume, the energy E at T = 0 may be writ-
ten as E = Ecl + EZP, where Ecl is the classical energy for
motionless atoms (given in Fig. 3) and EZP is the zero-point

energy per atom:

EZP = 1

2

∫ ωmax

0

1

2
h̄ω g(ω) dω = 3

2
h̄ ω, (B1)

where ω is the mean frequency:

ω = 1

6

∫ ωmax

0
ω g(ω) dω, (B2)

and the factor 1/6 in front of the integral comes from the
normalization condition in Eq. (7). The Grüneisen parameter
γ is defined as

γ = − ∂ (ln ω)

∂ (ln V )
= −V

ω

∂ω

∂V
, (B3)

and using Eqs. (B1) and (B3), we have

∂EZP

∂V
= 3h̄

2

∂ω

∂V
= −γ EZP

V
. (B4)

For equilibrium at P = 0, the volume derivative of the energy
E has to vanish, i.e.,(

∂Ecl

∂V

)
Vmin

= −
(

∂EZP

∂V

)
Vmin

≈ γ EZP

V0
, (B5)

which gives the volume Vmin corresponding to the quantum
ground state.

We finally evaluate the zero-point volume expansion due
to quantum motion, i.e., the difference Vmin − V0. Taking into
account that

Ecl = E0 + 1

2

B0

V0
(V − V0)2 + · · · , (B6)

a good estimation of the volume increase is given by the
expression (

∂Ecl

∂V

)
Vmin

= B0

V0
(Vmin − V0). (B7)

As a result of Eqs. (B5) and (B7), we have

Vmin = V0 + γ EZP

B0
. (B8)
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