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Strong long-range hoppings up to third-nearest neighbors may induce a topological phase transition in one-
dimensional chains. Unlike the Su-Schrieffer-Heeger model, this transition from trivial to topological phase
occurs with the emergence of a pseudospin valley structure and a twofold nontrivial topological phase. Within
a tight-binding approach, these topological phases are analyzed in detail and it is shown that the low-energy
excitations follow a modified Dirac equation, in which the dynamics of particles with positive and negative mass
occur differently. An experimental realization in a one-dimensional elastic chain, where it is feasible to tune
directly the third-nearest-neighbor hoppings, is proposed.
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I. INTRODUCTION

Topological phase transitions are one of the most inves-
tigated topics in condensed-matter physics nowadays [1–7].
With the increasing interest in topological insulators, the dis-
covery of novel and exotic states of matter continues [8–14].
In many cases, the experimental realization of outstanding
phenomena predicted by some models has been inaccessible
to date in condensed-matter laboratories. In this regard, ar-
tificial systems have been used as ancillary tools to test the
predictions that emerge from those models [11,15–23]. In
addition, they also allow one to explore regimes almost im-
possible to reach in synthesized materials; a concrete example
is the long-range interaction [5,9,22,24]. Usually, the hop-
ping parameter among atomic sites decreases with its relative
separation [23,25–27]. In artificial systems, however, those
hopping parameters may be engineered ad hoc [28]. This
versatility opens the door to tackle abundant novel physics
hardly reachable in to-date condensed-matter experiments. In
artificial elastic systems, furthermore, high-order couplings
can be engineered as well as nearest-neighbor couplings, a
difficult task to reach in optical and acoustic systems.

The most successful description of topological insula-
tors is provided by the Su-Schrieffer-Heeger (SSH) model
[29–32]. This model predicts outstanding phenomena such
as the creation of solitons [29], the conductivity in poly-
mers [31], and the simplest explanation of a topological
phase transition in trans-polyacetylene [33]. Up to now, there
have been multiple experimental realizations of the SSH
model in artificial systems [7,13,34–38], as well as exten-
sions of the SSH model that depict unusual effects such
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as robust edge states [36], non-Hermitian skin effect due
to spin-orbit interactions [39], Dirac states [40], anomalous
diffusion in disordered and nonlinear chains [41], and gap
solitons [11]. The coupling between two SSH chains has
also been explored recently using the generalized Rice-Mele
model [42].

In this work, an effective tight-binding model depicts a
chain with first- and third-nearest-neighbor hoppings, which
resembles the cis-polyacetylene molecule of organic chem-
istry. A twofold topological phase transition is induced by
modulating the third-nearest-neighbor hoppings in regimes
outside the typical values of the hopping scaling rule of
carbon bonds in molecular systems. Our starting point is a
tight-binding model of four atoms in the unit cell. From the
continuum approximation, we found that the reduced effec-
tive Hamiltonian for two-level systems differs from the SSH
model since it describes two topological phases and not only
one. The chain considered here is identical to two coupled
SSH chains, or else a ribbon of a two-dimensional (2D) SSH
model [43,44]. Effects due to the folding of the first Brillouin
zone and band structure are expected using a four-band for-
malism. The emergence of a pseudospin valley structure leads
to the possibility of realizing valleytronics in one-dimensional
systems. This model also includes a mass conjugation sym-
metry breaking, where negative and positive mass particles
possess different dynamics. The edge states in a finite version
of the chain are also studied. An experimental realization that
captures the twofold topological phase is proposed for the
corresponding chain in an elastic structure.

II. TIGHT-BINDING MODEL OF A ONE-DIMENSIONAL
CHAIN WITH THIRD-NEAREST-NEIGHBOR HOPPINGS

In Fig. 1, a one-dimensional chain with hoppings to first-
and third-nearest neighbors, excluding the second ones, is
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FIG. 1. (a) The one-dimensional lattice with first- and third-nearest-neighbors. The rectangle indicates the unit cell with sites A and B
for the sublattices, which are discriminated by the σ j Pauli matrices. The dimers A′ and B′ can also be seen as the sites of other sublattices,
associated with the τ j Pauli matrices. The parameters t and t ′ correspond to the hoppings to first- and third-nearest-neighbors, respectively.
The lattice constant is a. The red (blue) bands in (b)–(e) correspond to upper (lower) energy. The insets show the pseudospin trajectory in
the Bloch plane with a topological charge (which is represented by a red disk) and winding number as a function of t ′ with t = 1. (b) Band
structure of the armchair edge of graphene with first-neighbor hoppings only. The pseudospin trajectory passes just on the topological charge
and the winding number is undefined. (c) Turning on the third-nearest neighbors (t ′ = 0.5), a band gap is opened and the winding number is
w = −1. The topological charge is found inside the loop. (d) When t ′ = t , a closing of the gap is observed and the winding number becomes
undefined. (e) For t ′ > t , the band gap is reopened and the direction of the loop is inverted. The winding number is w = 1.

proposed. In contradistinction with the SSH model, two hop-
ping parameters t and t ′, which correspond to couplings to
first- and third-nearest neighbors, respectively, will be used.
Using a tight-binding model on a Fourier basis, the Bloch
Hamiltonian is given by

H (k) =

⎛
⎜⎜⎝

E0 g∗(k) 0 h∗(k)
g(k) E0 h(k) 0

0 h∗(k) E0 g∗(k)
h(k) 0 g(k) E0

⎞
⎟⎟⎠, (1)

where E0 is the site energy, g(k) = t exp(ika/6), h(k) =
hx(k) + ihy(k) = t exp(−ika/3) + t ′ exp(2ika/3), k is the
wave vector, and a is the lattice constant. Here, it is as-
sumed that the sites possess identical orbitals and therefore
the site energies E0(= 0) are the same. In order to define the
pseudospin structure of the chain in Fig. 1(a), the Hamiltonian
in Eq. (1) can be expressed as

H (k) = τ0 ⊗ σ · g(k) + τx ⊗ σ · h(k), (2)

where σ = (σx, σy) are the Pauli matrices that discriminate
the sublattices A and B, and τ0 and τx are also Pauli ma-
trices acting on the pairs A′ and B′; see Fig. 1(a). The
pseudospin vectors are defined as g(k) = [gx(k), gy(k)] and
h(k) = [hx(k), hy(k)]. From the Hamiltonian in Eq. (2), the
energy bands and spinors are

Es,ν (k) = s|g(k) + νh(k)| and
∣∣ψν

s

〉 = 1
2 (1, seiφν , ν, sνeiφν ),

(3)

respectively, where the pseudospin angle is

φν = arctan

(
Im[g(k) + νh(k)]

Re[g(k) + νh(k)]

)
, (4)

and the band index s = 1 (= −1) for the conduction
(valence) band, while the index ν = −1 (= 1) indicates the
lower (upper) band.

Notice that the model in Eqs. (2) and (3) describes a
different topological phase transition than that of the SSH
model [33]. In fact, this model establishes different regimes
depending on the third-nearest-neighbor hopping t ′ by fix-
ing the first one to t = 1. When t ′ = 0, the band structure
of the chain is obtained, which is the typical case of en-
ergy bands for the edge of an armchair graphene nanoribbon
(cis-polyacetylene) to first-nearest neighbors. This is observed
in Fig. 1(b) by blue and red curves which correspond to the
indices ν = −1 and 1, respectively [see Eq. (3)]. In the regime
t ′ < 1 [see Fig. 1(c)], the semimetallic phase is destroyed
by inducing a gap, and two minima in the conduction band
appear. Such a feature shows the formation of a new valley
pseudospin structure, which is linked to the time-reversal
symmetry operation. In the case t ′ = 1, as shown in Fig. 1(d),
one-dimensional Dirac cones in each valley emerge. It is
worth noting that the Fermi velocity for excitations traveling
from left to right differs from that for excitations traveling
from right to left. A reopening of the band gap is observed in
the range t ′ > 1. This process of closing and reopening of the
band gap is indicative of a topological phase transition. The
phases shown in Figs. 1(b)–1(e) offer the possibility to study
valley-dependent transport properties in one-dimensional
chains.
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In what follows, the topological phase transition is inves-
tigated by proposing a more simplified model than the one
given in Eq. (2). The simplification consists in reducing the
4 × 4 Hamiltonian to a 2 × 2 one. For the dispersion relation
in Eq. (3), one can identify that ν = −1 is the dispersion
relation for the lower bands, which is the reminiscence of
bonding in the molecular orbital theory.

Any symmetric two-level system has a Hamiltonian
given by

H2level(k) =
(

0 g̃∗(k)
g̃(k) 0

)
, (5)

whose eigenenergies and eigenfunctions are

Es(k) = s|g̃(k)| and |ψs〉 = 1√
2

(1, seiφ− ). (6)

It is straightforward to link the function g̃(k) with g(k) and
h(k) as g̃(k) = g(k) − h(k). The pseudospin angle φ− has an
identical expression as in Eq. (4) setting ν = −1. In order to
describe the topological phase transition in Fig. 1, the function
g̃(k) is expanded around the center of the first Brillouin zone
up to second order in k. That is,

g̃(k) ≈ −t ′ +
(

2t ′ − 3

2
t

)
ika +

(
2t ′ + 3

8
t

)
(ka)2. (7)

This allows us to build an effective model in the continuum
approximation given by

Heff(k) =
(

−� + k2

2μ

)
σx + vkσy, (8)

where the effective parameters are related to the hoppings
t and t ′ as � = t ′, 1/(2μ) = (2t ′ + 3t/8)a2, and v = (2t ′ −
3t/2)a. The effective Hamiltonian in Eq. (8) is identical to the
one-dimensional version of the modified Dirac Hamiltonian
[45,46] and describes the topological phase transition shown
in Fig. 1. The squared term of the wave vector in Eq. (8)
breaks the positive and negative mass symmetry of the con-
ventional Dirac equation. It is important to mention that the
Hamiltonian in Eq. (8) differs from the SSH one because the
latter describes, in an identical way, the dynamics of particles
with positive and negative mass.

Another remarkable feature with respect to the SSH model
is the pseudospin valley structure observed in Figs. 1(b)–1(e).
Since the unit cell of the chain possesses four sites, this causes
an energy band folding, where two valleys inside the first
Brillouin zone emerge, as shown in Fig. 1. This pseudospin
valley structure is absent in conventional SSH chains. The
third-nearest-neighbor cis-polyacetylene lattice can be viewed
as two coupled SSH chains instead of a single one, where a
twofold topological phase transition appears. To recognize
the type of low-energy excitation in Fig. 1, it is necessary to
obtain the effective Hamiltonian around the valleys. We
find that at the valleys K+ and K−, which are located at
the points K± = ±

√
2μ(� + μv2), the effective Dirac-like

Hamiltonian is

H±
D (q) = (±v′σx + vσy)q + μv(vσx ± v′σy), (9)

where q = k − K± is the wave vector near the valley K± and
the velocity v′ =

√
2(� + μv2)/μ. This feature is similar to

the pseudospin valley structure of graphene and the complete

4 × 4 Hamiltonian that depicts both valleys is given by
H = diag[H+

D (q), H−
D (q)]. The dispersion relation around the

K± points is E±
s = s

√
(μv2 ± qv′)2 + (qv ± μvv′)2, which

is anisotropic because the group velocities for particles from
K± are given by

v±
g (q) = s

q(v2 + v′2) ± 2μv2v′√
(μv2 ± qv′)2 + (qv ± μvv′)2

. (10)

This indicates that the propagation wave for one of the valleys
is slower than the other valley. Setting q = 0, we have the
simple expression v±

g (0) = ±2svv′/
√

v2 + v′2, which are
the velocities at the minimum (maximum) of the conduction
(valence) band. Therefore, such a third-nearest-neighbor
chain offers the possibility to manipulate the valley degree of
freedom in the quantum transport of one-dimensional chains.

III. TOPOLOGICAL CHARACTERIZATION
OF THE 1D CHAIN

To identify the topological phases described above, we
resort to the bulk-boundary correspondence with the calcu-
lation of the winding number w, which is related to the Berry
phase βs = sπw, where s is the band index. We look for
regimes of t and t ′ where βs is invariant. This can be illus-
trated by taking into account the trajectory of the pseudospin
vector in the Bloch plane and identifying the loops which
enclose the origin, where the topological charge is located.
The Berry curvature for any symmetric band two-level system
is Bs = s ˆ̃g(k)/[2|g̃(k)|2] [33,47,48]. Therefore, a divergence
always exists when the conduction and valence bands touch
each other [33,47,48]. When the pseudospin vector loop en-
closes a topological charge, the winding number is different
from zero. The insets in Figs. 1(b)–1(e) help to recognize the
different topological phases. When t ′ = 0, which is the case
of cis-polyacetylene without third-nearest-neighbor hoppings,
a semimetallic phase is obtained. Turning on the hopping
parameter t ′ is sufficient for obtaining topological phases.
As in the SSH model, the transition also has a closing and
reopening band gap. However, the model in Eq. (1) shows
two topological phases at this transition with opposite winding
numbers w = −1 and w = 1 for the regimes t ′ < t and t ′ > t ,
respectively. These phases can be understood by the change of
orientation of the loop.

In order to observe whether the topological phases pre-
dicted by the model in Figs. 1(b)–1(e) also appear in finite
cis-polyacetylene, we consider the tight-binding approach
applied to a finite chain. This Hamiltonian consists of a sub-
matrix hcp repeated N times in a block-diagonal form, which
is given by

hcp(t, t ′) =

⎛
⎜⎜⎝

E0 t 0 t ′
t E0 t 0
0 t E0 t
t ′ 0 t E0

⎞
⎟⎟⎠. (11)

Each block-diagonal matrix is coupled with the nondiagonal
submatrix C,

C(t, t ′) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 t ′ 0 0
t 0 0 0

⎞
⎟⎟⎠. (12)
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t'/t = 0.5

E = 0.0

t'/t = 2
E = 0.95t t'/t = 2

E = 0.0

FIG. 2. (a) Energy bands of a finite third-nearest-neighbor cis-polyacetylene as a function of the hopping parameters ratio t ′/t . The
turquoise curves correspond to bands for bulk states, while red ones at the center for edge states. (b)–(d) Wave function as a function of
the site j. Depending on the energy and hopping ratio t ′/t , we can obtain edge or bulk states. In (b), we set E = 0 and t ′/t = 0.5 and the wave
is localized at the edges, which is unaffected by changing the value of t ′/t . A similar behavior is obtained in (d) with t ′/t = 2. In contrast, if
we set E = 0.95t and t ′/t = 2, bulk states are observed in (c).

Therefore, the Hamiltonian for the finite chain has a Toeplitz matrix form,

Hfc(t, t ′) =

⎛
⎜⎜⎜⎜⎝

hcp(t, t ′) C(t, t ′) 0 · · · 0
C†(t, t ′) hcp(t, t ′) C(t, t ′) 0 ·

0 C†(t, t ′) · · ·
...

...
...

... C(t, t ′)
0 0 0 C†(t, t ′) hcp(t, t ′)

⎞
⎟⎟⎟⎟⎠. (13)

In total, 30 unit cells are taken into account to obtain the
energy bands in Fig. 2(a), which corresponds to N = 30 rep-
etitions of the block matrix hcp. This band structure is shown
as a function of the hopping parameters ratio t ′/t . Also, in
Fig. 2(a), we highlighted the energy bands in red (around
the Fermi level) to indicate that the bands of edge states are
twofold topologically. The eigenstates of the Hamiltonian, as
shown in Figs. 2(b) and 2(d), evidence that the wave func-
tion is localized in the edges of the chain with an amplitude
decaying exponentially to the advance across the sites. This
localization is unaffected by the variation of the ratio t ′/t ,
which has a robustness characteristic of topological insula-
tors. If we set some energy value for the turquoise bands in
Fig. 2(a), the bulk state will appear distributed along the chain,
as shown in Fig. 2(c).

IV. ARTIFICIAL ELASTIC 1D CHAIN WITH FIRST-
AND THIRD-NEAREST-NEIGHBOR HOPPINGS

The tight-binding model given in Eq. (1) can be imple-
mented with the so-called coupled-resonator elastic waveg-
uides. Opposite to other artificial realizations of the tight-
binding model with dielectric resonators [49–53], optical
waveguides [54–58] and defects inside photonic [49] and
phononic crystals [28,59–63], the coupled-resonator elastic
realization offers a high control over the first- and the third-
nearest-neighbor hoppings. The latter is a very convenient fact
for the purpose of the present model.

The elastic tight-binding implementation is in line with
the development of artificial elastic ethylene, butadiene,
hexatriene [27], benzene [26], and borazine [64], which
also satisfy the tight-binding model. As shown in Fig. 3,
the structure consists of resonators coupled through fi-
nite phononic crystals (FPhCs). When the normal-mode

frequencies of the resonators fall within the local band gap
[65] of the FPhCs, the wave amplitudes localize in the
resonators and decay evanescently through the FPhCs; the

FIG. 3. (a) Atomic site composed of a hexagonal-shaped res-
onator of length Lh. The bond is a finite phononic crystal (FPhC)
whose unit cell, given in (b), is composed of a square-shaped
aluminum plate of length bi and two smaller plates with length
ci × (Li − bi ), one on each side of the square with i = 1, 3 for first-
and third-nearest neighbors, respectively. The number of cells in
the FPhC and the width of the smaller plates ci control the cou-
plings to first- and third-nearest neighbors. (c) Elastic artificial 1D
chain composed of an aluminum plate with thickness e and length
a coupled through first- and third-nearest neighbors by two bonds
at an angle of 60◦ between them. The geometrical parameters are
e = 6.35 mm, Lh = 27 mm, L1 = 22 mm, b1 = 17 mm, c1 = 2 mm,
L3 = 22.4608 mm, b3 = 17 mm, and c3 = 5, 7, 9, 10 mm.
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FIG. 4. Band structure of the artificial 1D chain. The red curves correspond to finite-element calculations. The blue curves are obtained
from Eq. (1). For the cases considered (in Hz): (a) and (b) f0 = 67128.5, t = 7.0, and t ′ = 0.1; (c) f0 = 67196.0, t = 7.2, and t ′ = 3.0;
(d) f0 = 67417.4, t = 5.0, and t ′ = 5.0; and (e) f0 = 67262.3, t = 7.5, and t ′ = 5.0.

coupling between localized waves in neighboring resonators
is due to evanescent Bloch waves. It is assumed that the FPhCs
are large enough that the resonators are weakly coupled to
each other. In this regime, the modes in the resonators present
a high-Q value. The coupling is taken into account to model
the transmission of elastic waves and it is the elastic analog of
the tight-binding approximation in condensed-matter physics
[28]. The Hamiltonian that rules the artificial elastic 1D chain
in Fig. 3 is the same as that given in Eq. (1) replacing the site
energy E0 by the site frequency f0. The couplings t and t ′ are
taken as the evanescent Bragg overlap of the localized modes
in different resonators [28].

V. TOPOLOGICAL PHASE TRANSITION IN ARTIFICIAL
1D ELASTIC CHAINS

The topological phase transition, described by the tight-
binding model of Eq. (1), can be verified in the corresponding
analogous artificial system by using the engineered elastic
2D structure shown in Fig. 3. The band structure of the
artificial chain is shown in Fig. 4, in red curves, for differ-
ent parameters of the third-nearest-neighbor coupling. These
band structures are obtained by taking the Floquet boundary
conditions on the unit cell with the geometrical parameters
given in the caption in Fig. 3 with (a) and (b) c3 = 5 mm,
(c) 7 mm, (d) 9 mm, and (e) 10 mm. For the calculations of
the finite-element simulations, the software COMSOL MULTI-
PHYSICS for aluminum 1145 with Young’s modulus of 70 GPa,
density of 2700 Kg/m3, and Poisson ratio of 0.33, is used.
The blue curves correspond to the band structure obtained
from the tight-binding Hamiltonian in Eq. (1), where the
site energy E0 and hopping parameters to first- and third-
nearest neighbors are replaced by the site frequency f0 and
hopping frequencies to first- and third-nearest neighbors,
respectively.

In Figs. 4(b) and 4(c), an excellent agreement between
the band structures from the artificial chain and from the
tight-binding Hamiltonian in Eq. (1) is observed. This is not
the case for the corresponding ones in Figs. 4(d) and 4(e),
where only good agreement is found. Deviations from the
tight-binding model appear: the bands are not symmetric with

respect to the frequency axis and the values of k in which
the Dirac points appear in Fig. 4(d) are different from those
of the tight-binding model. Two possible reasons are (1) the
emergent band is not symmetrically centered in the gap of
the FPhCs [see Fig. 4(a)] and (2) the nonorthogonality of
the meta-atom orbitals. In any case, the topological phases
predicted by the model of Eq. (1) are fully captured by the
elastic chain.

The topological phase transition predicted by Eq. (1) can
be tested with the help of the analogous elastic model.
This elastic chain can be constructed on an aluminum plate
with a large number of unit cells. The measurements can
be performed by exciting on one point of a free end of
the chain and detecting on the other end using a vector
network analyzer (VNA) and the experimental setup used
elsewhere [26].

In summary, the present effective model is not a simple ex-
tension of the SSH model, since it offers the possibility to get
two topological phases with opposite winding numbers. Also,
a valley-pseudospin structure is observed. Finite-element
simulations of elastic chains indicate that one-dimensional
phononic crystals are ideal platforms to test the topological
phase transitions (see Figs. 1 and 4). Although the modified
Dirac Hamiltonian in Eq. (8) was developed at the nanoscale
for electrons in cis-polyacetylene with first- and third-nearest
neighbors only, the twofold topological phase was compared
at the macroscopic scale for vibrations in elastic chains based
on aluminium. This fact shows the universality phenomena
of this topological phase transition regardless of the scale.
The latter is a consequence of the omnipresence of the Bloch
theorem, both at the microscopic and macroscopic levels, for
periodic arrangements.
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