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Quantum Monte Carlo study of correlation energy and pair correlation function at various
electron-positron density ratios: Accurate calculation of positron annihilation lifetimes in solids
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Positron annihilation lifetime spectroscopy is a unique technique to probe the defect structure of crystalline
solids. To distinguish different defect states, accurate calculation of the positron annihilation lifetimes is
demanded to compare with the experimental results. We perform quantum Monte Carlo calculations to compute
the electron-positron correlation energy and pair correlation function at several electron-positron density ratios.
This approach enables us to obtain new fitting parameters under the local density approximation to combine with
two-component density functional theory to calculate the positron lifetimes of defect-free bulk and monovacancy
defects in various materials. As compared with the experimental results, this method outperformed some previous
schemes and provided theoretical support for the previous deduction of certain vacancy defects.
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I. INTRODUCTION

Positron annihilation lifetime spectroscopy (PALS) is a
powerful technique to investigate the defect structures of
crystalline solids [1,2] and the porous structure of polymeric
and supermicroporous materials [3,4]. To distinguish differ-
ent defect types in crystalline solids, it is key to compare
different calculated positron annihilation lifetimes with the
analysis results of PALS experiments [5,6]. Therefore, accu-
rate calculation of the positron annihilation lifetimes is highly
meaningful and necessary for the defect study of materials.

Two-component density functional theory (TCDFT) has
been widely utilized to calculate positron parameters of
positron lifetime and Doppler broadening of annihilation ra-
diation in solids due to its computation efficiency and high
accuracy [5,7,8]. Among the physical quantities of TCDFT
calculation, the electron-positron correlation potential and
the pair correlation function (PCF) play key roles to affect
the correctness of the results. Several TCDFT calculation
schemes, including the conventional scheme (CONV, pro-
posed by Boronski et al. [8]), the GGGC scheme (proposed
by Gilgien, Galli, Gygi, and Car [9]), and the PSN scheme
(proposed by Puska, Seitsonen, and Nieminen [10]), have
been widely used and performed well [11]. These schemes,
which differ slightly in the fitting form of the correlation
energy and pair correlation function, are all based on data of
several decades ago by Arponen et al. [12] and Lantto et al.
[13].

In 2011, Drummond and his collaborators performed a
quantum Monte Carlo (QMC) study for a positron in elec-
tron gas and obtained a new form of correlation functional
with the local density approximation (LDA) [14]. The QMC
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results were further corrected by the generalized gradient
approximation (GGA) method [15] and then applied to DFT
study to compute positron lifetimes which are closer to the
experimental values [16,17]. In 2022, Simula et al. used QMC
directly to simulate an electron-positron wave function instead
of using DFT, and successfully computed the positron life-
times in crystalline C, Si, Li, and AlN [18]. These studies
demonstrate the potential of QMC to calculate positron life-
times more accurately. They were all very suitable to calculate
the positron lifetimes in defect-free materials. Most recently,
Deng et al. utilized QMC to simulate a full LDA correlation
functional to successfully calculate the contact magnetic fields
in muon spin relaxation (μ+SR) technology [19]. Inspired by
this, to calculate positron lifetimes more accurately, especially
for the vacancy-type defects, we attempted QMC simulations
to obtain a full LDA electron-positron correlation functional
including the electron-positron correlation potential and PCF.

In this work, a QMC study was carried out at different
positron densities in electron gas by using CASINO [20]. The
LDA was applied by assuming that all interaction energy
terms only depend on the local densities of positrons and
electrons. Then the electron-positron correlation energy and
PCF could be derived. Since the PSN scheme is also a com-
putational approach that utilizes a full LDA electron-positron
correlation functional, we adopted the form of the correlation
energy function of the PSN scheme and performed parameter
fitting using the data from the QMC study. The correlation
functional was then applied to the positron lifetime calcula-
tion by TCDFT. In brief, the QMC data in 2011 [14] were
limited to the zero-positron-density approximation and the
derived positron lifetimes of vacancy-type defects wait for the
improvement of accuracy, while the current TCDFT calcula-
tions relied on older raw data [12,13]. So, in this study, we
obtained new parameters of full LDA electron-positron corre-
lation energy and PCF using QMC, and combined them with
lattice relaxation to achieve improved computational results
for perfect lattices and vacancy-type defects.
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II. TCDFT SYSTEM

In 1930, Dirac proved that when the relative velocity v

between a positron and an electron is much smaller than the
speed of light c, the annihilation rate λ of 2γ annihilations per
unit time is given by

λ = πr2
e cne, (1)

where re is the classical electron radius and ne is the elec-
tron density at the positron annihilation site. This implies
that the annihilation rate is directly proportional to the den-
sity of positrons and electrons. Therefore, to calculate the
positron annihilation lifetime, it is necessary to obtain the
density distribution of the electron-positron system from
the wave function. Calculating the total wave function of the
system is challenging. For the practical applications, in the
independent particle model (IPM), positrons and electrons are
often treated as independent particles. Therefore, the wave
function of a two-particle system can be written as the product
of the positron wave function and the electron wave func-
tion. Subsequently, an enhancement factor γ (r, [ne, np]) (np

is positron density) is introduced for the correlation effects
between the particles at the annihilation site within the local
density approximation [8]. In this approximation method, the
annihilation rate can be expressed as

λ = πr2
e c

∫
drne(r)np(r)γ (r, [ne, np]). (2)

The enhancement factor can be deduced by the PCF, which
stands for the enhancement from one-body density to true
two-body density. One can use the following equations to
define the PCF:

ρpe(r, r′) = np(r)ne(r′)gpe(r, r′) (3)

or

ρpe(r, r′)

=
∫

�∗(r, r′, r3, . . . , rN)�(r, r′, r3, . . . , rN)dr3 . . . drN∫
�∗(r1, r2, . . . , rN)�(r1, r2, . . . , rN)dR

,

(4)

where ρpe is the diagonal element of the positron (p) and
electron (e) two-particle density matrix, � is the many-body
wave function, and gpe is the PCF. Here, within the LDA,
we are truly interested in the zero-distance enhancement of a
homogenous system with densities ne and np, which means the
contact density enhancement of the positrons and electrons,
gpe[re = rp, ne(re), np(rp)], namely, g[0; ne(r), np(r)] or g(0).
One can define that

γ (r, [ne, np]) = g[0; ne(re), np(rp)]. (5)

Within the framework of TCDFT, the total energy can be
written as

E [ne, np] = E [ne] + E [np] +
∫

drVext (r)[ne(r) − np(r)]

−
∫

dr
∫

dr′ ne(r)np(r′)
|r − r′| + Ee−p

corr [ne, np], (6)

where E [ne] and E [np] are the one-component functionals
of the electrons and positrons, Vext is an external potential,

and Ee−p
corr is an electron-positron correlation functional. The

fundamental equation to obtain the one-body wave function
for the electrons (the Kohn-Sham equation [21]) is[− 1

2∇2 − φ(r) + V −
xc + V −

c

]
ψ− = ε−ψ−, (7)

and for positrons, it is[− 1
2∇2 + φ(r) + V +

xc + V +
c

]
ψ+ = ε+ψ+, (8)

where φ(r) is the sum of the total Hartree potential and the
external due to nuclei, which can be written as

φ(r) =
∫

dr′ np(r′) − ne(r′)
|r − r′| − Vext (r). (9)

Vxc is the exchange correlation potential between the elec-
trons or positrons. Vc is the correlation potential between the
positrons and electrons, which can be expressed as

V ±
c = δEe−p

corr [np, ne]

δnp,e
. (10)

Except for the electron-positron correlation energy and
enhancement factor, all of the above-mentioned physical
quantities are relatively well established. Therefore, the key
issue is to obtain a sufficiently accurate correlation energy
and enhancement factor. To summarize, using TCDFT, the
positron and electron wave functions will be obtained by
solving Eqs. (7) and (8), and then the annihilation rate can
be calculated using Eq. (2). The electron-positron correlation
energy and enhancement factor used for the TCDFT calcula-
tion were obtained through the QMC method exhibited in the
following section.

III. QMC STUDY OF THE PCF
AND CORRELATION ENERGY

Within the LDA, the correlation energy and PCF are only
related to the local density of the electrons and the positrons.
Therefore, homogeneous gas systems for positrons and elec-
trons are simulated.

A Slater-Jastrow-backflow (SJB) [22,23] trial wave func-
tion is used with plane-wave orbits,

ψSJB
PW = eJ (R){φi[r−

↓ + ξ (R)]}{φ j[r−
↑ + ξ (R)]}

× {φI [r+
↑ + ξ (R)]}{φJ [r+

↓ + ξ (R)]}, (11)

where J (R) is the Jastrow exponent and ξ (R) is the back-
flow displacement (only the u term is used in the Jastrow
exponent), R are the positions of all the particles, φ is the
plane-wave basis, r−

↓ (r+
↓ ) and r−

↑ (r+
↑ ) are the positions of

up and down spin electrons (positrons), respectively, and {·}
denotes a Slater determinant; more details can be found in
Appendix A. In a real annihilation event, only one positron is
present. However, for simulation purposes involving different
ratios of positrons and electrons, it becomes necessary to use
multiple positrons. Therefore, we are employing a nonpolar-
ized particle model for the simulation, which means there
are equal spin-up and spin-down positrons in the system. We
would like to find out how much difference there is between
the results of QMC and the previous results. Furthermore, the
simulations in this study using a plane-wave basis are only tai-
lored for high-density scenarios. The simulation results may
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not be applicable to very low-density situations; further study
in this aspect is required.

The variational Monte Carlo (VMC) variance-minimum
scheme [24] is first used to optimize the Jastrow exponents.
After that, backflow optimization is applied and, finally, a
diffusion Monte Carlo (DMC) calculation is performed. The
DMC time step is set to 0.001, 0.002, and 0.003 a.u. The target
population of walkers of DMC is 1500. The final results for
the pair correlation function (PCF) are the mean value of three
time steps, while the final results of correlation energy are
obtained by performing a linear fit on the results from three
different time steps [14] and the final g(0) is calculated by
2gDMC(0) − gVMC(0) [25].

Within the PSN scheme (the form of the electron-positron
correlation functional assumes symmetry with respect to the
density of the positron and electron), the enhancement factor
can be expressed as [8]

g(0; ne, np) = a(ne)n3
p + b(ne)n2

p + c(ne)np + g0(ne)

for np � ne (swap ne and np if ne � np), (12)

where a(n), b(n), and c(n) can be described by the PCFs
g0, g1, and g2 with three particular positron-electron density
ratios (R = np/ne): R → 0, R = 1, and R = 1

2 , respectively:

a(n) = 1

n3
[2k(n) − 6g1(n) + 8g2(n) − 2g0(n)],

b(n) = 1

n2
[−3k(n) + 11g1(n) − 16g2(n) + 5g0(n)],

c(n) = 1

n
[k(n) − 4g1(n) + 8g2(n) − 4g0(n)], (13)

where

k(n) = 1

2
n

d

dn
g1(n). (14)

Meanwhile, the electron-positron correlation energy [10] can
be expressed as

1

Ee−p
c,v [np, ne]

= a
(
re

s

) + b
(
re

s

)
rp

s + c
(
re

s

)(
rp

s

)2

+ 4π

3

(
rp

s
)3

ε0
(
re

s

) + 4π

3

(
re

s

)3

ε0
(
rp

s
) , (15)

where re
s (rp

s ) is the electron (positron) density parameter
defined by ne = 3

4π (re
s )3 (np = 3

4π (rp
s )3 ). ε0 is the correlation

energy of one positron (electron) in a homogeneous electron
(positron) gas. The parameters a, b, and c can be expressed as

a
(
re

s

) = Aa + Bare
s + Ca

(
re

s

)2
,

b
(
re

s

) = Ba + Bbre
s + Cb

(
re

s

)2
,

c
(
re

s

) = Ca + Cbre
s + Cc

(
re

s

)2
. (16)

Based on the above information, three different density ratios
of positrons and electrons, R → 0, R = 1

2 , and R = 1, are
chosen to perform QMC simulations. The specific numbers
of positrons and electrons selected for the three density ratios
are as follows: (Np = 1, Ne = 64), (Np = 30, Ne = 60), and
(Np = 40, Ne = 40). The correlation energy data obtained at
R = 1 and R = 1

2 are used to fit the six parameters that appear

in the electron-positron correlation energy formula. Since the
simulation of R → 0 has been performed by Drummond [14]
and our results are in good agreement with theirs, we will
directly utilize their fitting formulas later.

The data points of time step 0.001 a.u. are shown in Table I
as an example, while g(0) is the final result. Among them,
the PCF data for the 1:64 density ratio show good agreement
with the results obtained from Drummond [14]. The finite-size
error is discussed in Appendix B. After considering the low-
density limit and Kimball cusp conditions [26], the raw data
are processed as discussed in Appendix A; the contact PCF
data are then well represented by

g1 = 1 + 1.3005rs − 0.3089r2
s − 0.0776r2.5

s + r3
s

6
, (17)

g2 = 1 + 1.8353rs − 0.7687r2
s + 0.1313r2.5

s + r3
s

6
, (18)

and g0 can be expressed the same as in Drummond’s work
[14]:

g0 = 1 + 1.23rs − 3.38208r3/2
s + 8.6957r2

s − 7.37037r7/3
s

+ 1.75648r8/3
s + 0.173694r3

s , (19)

where rs = ( 3
4πn )1/3. The PCF data are obtained with a time

step of 0.001 a.u. The DMC calculation for the three density
ratios is shown in Fig. 1. In Fig. 1(d), g(0) of R = 1 and R =
1
2 is larger than that of the PSN scheme after re

s = 3, while
g(0) of R → 0 is smaller than that of the PSN scheme. This
means that the new values of g(0) will be more concentrated.
This will have a significant impact on the lifetime calculations,
especially for vacancy defects.

For the positron-electron correlation energy, both the en-
ergy data points obtained from R = 1 (Ne = 40, Np = 40) and
R = 1

2 (Ne = 60, Np = 30) are used to fit the six parameters in
Eqs. (15) and (16). These data points are shown in Table II and
can be calculated by

Ee−p
c,v = Ev (Ne + Np) − Ev (Ne) − Ev (Np), (20)

where Ee−p
c,v is the electron-positron correlation energy per

volume and Ev is the energy per volume. The fitted curve is
shown as a dashed line in Fig. 2, while the solid line represents
the data from the PSN scheme. Although the differences be-
tween them are small, there are still noticeable discrepancies,
especially for re

s values between 1 and 3. The fitted parameter
results are as follows (ε0 from Drummond’s work [14] is
used):

aa = 2.379, ba = −4.498, ca = −0.400,

bb = 13.610, cb = −10.810, cc = 2.910. (21)

The new correlation energy and the PSN correlation energy
as functions of the positron density np (at re

s = 2, 3, 4, 5)
are shown in Fig. 3. The dashed lines are the QMC results
and the solid lines are the PSN results. The values of the
former are noticeably larger than those of the latter. Indeed,
this will clearly have a significant impact on the subsequent
calculation of positron annihilation lifetimes. It is important
to note that our QMC simulations were only performed for re

s
values ranging from 1 to 8. Therefore, the data obtained are

104104-3



Y. DONG et al. PHYSICAL REVIEW B 109, 104104 (2024)

TABLE I. Data points obtained from quantum Monte Carlo (QMC) simulations with a time step of 0.001 a.u., except for the final results of
g(0) (average results of the time steps of 0.001, 0.002, and 0.003). The error of g(0) is obtained from fitting, re

s = ( 3
4πne

)1/3. Ne and Np are the
numbers of electrons and positrons in QMC simulations. re

s is in a.u. (Bohr). EVMC, EDMC, Error of EDMC and Var. of VMC are in a.u. (Hartree)
per particle.

re
s Ne Np EVMC Var. of VMC EDMC Error of EDMC g(0) Error of g(0)

1 40 40 0.4928 2.7751 0.4883 0.00009 1.850 0.0251
2 40 40 −0.0516 0.6152 −0.0547 0.00004 3.226 0.0338
3 40 40 −0.1115 0.3230 −0.1146 0.00003 5.505 0.0688
4 40 40 −0.1187 0.2437 −0.1223 0.00005 9.774 0.0598
5 40 40 −0.1163 0.2062 −0.1207 0.00005 16.062 0.1834
6 40 40 −0.1113 0.2015 −0.1170 0.00002 26.637 0.1210

1 60 30 0.4323 1.3252 0.4286 0.00009 1.932 0.0103
2 60 30 −0.0541 0.2969 −0.0568 0.00004 3.598 0.0458
3 60 30 −0.1060 0.1419 −0.1086 0.00002 6.373 0.0517
4 60 30 −0.1113 0.0986 −0.1144 0.00005 11.267 0.0464
5 60 30 −0.1079 0.0834 −0.1115 0.00005 19.179 0.2008
6 60 30 −0.1035 0.1161 −0.1077 0.00005 31.194 0.1705

1 64 1 0.5560 0.9561 0.5536 0.00008 2.107 0.0314
2 64 1 −0.0067 0.1810 −0.0082 0.00004 4.087 0.0554
3 64 1 −0.0719 0.0643 −0.0730 0.00004 7.347 0.0714
4 64 1 −0.0809 0.0346 −0.0818 0.00003 12.729 0.2732
5 64 1 −0.0784 0.0231 −0.0792 0.00004 22.744 0.3128
6 64 1 −0.0735 0.0159 −0.0743 0.00002 35.303 0.2830
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(d)
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FIG. 1. PCF as a function of r/re
s for (a) Np : Ne = 1 : 64, (b) Np : Ne = 30 : 60, and (c) Np : Ne = 40 : 40, calculated from DMC

simulations with a time step of 0.001 a.u. (d) The g(0) at three different density ratios derived from the PSN scheme and QMC simulations.
The indexes of 0, 1, and 2 represent R → 0 (Np : Ne = 1 : 64), R = 1 (Np : Ne = 40 : 40), and R = 1/2 (Np : Ne = 30 : 60), respectively. The
dashed lines are the fitted curves of data obtained from the QMC simulations. The solid lines are obtained from the PSN scheme.
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TABLE II. The QMC simulations of correlation energy per
volume, Ee−p

c,v , for different re
s values at R = Np/Ne = 1 and R =

Np/Ne = 1
2 . The unit of the energy is 10−3 Rydberg per unit volume.

re
s Ne Np Ee−p

c,v (mRy/a.u.) Error of Ee−p
c,v (mRy/a.u.)

1.0 40 40 −46.256 3.6718
1.2 40 40 −25.586 1.2489
1.4 40 40 −15.670 1.0440
2.0 40 40 −5.021 0.2459
3.0 40 40 −1.4203 0.0550
4.0 40 40 −0.6034 0.0311
5.0 40 40 −0.3231 0.0055
6.0 40 40 −0.2012 0.0023
7.0 40 40 −0.1320 0.0016
1.0 60 30 −31.101 3.9276
2.0 60 30 −3.372 0.2477
3.0 60 30 −0.950 0.0528
4.0 60 30 −0.401 0.0378
5.0 60 30 −0.212 0.0016
6.0 60 30 −0.130 0.0022
7.0 60 30 −0.086 0.0017

used to modify the potential energy within this range, while
keeping the continuity at the boundary by making adjustments
in ε0, as clarified in Appendix C.

In summary, we use the QMC method to modify the for-
mulas closely related to positrons in our calculations. Due to
significant changes in the electron-positron correlation energy
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FIG. 2. The correlation energy obtained from QMC simulations
at R = 1. The red dashed line is the curve fitted by the QMC data
points using Eq. (15), and the black solid line is obtained from the
PSN scheme. The unit of the energy is 10−3 Rydberg per unit volume.
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FIG. 3. The comparison between new correlation energy (dashed
line) and PSN correlation energy (solid line) as a function of positron
density np at re

s = 2, 3, 4, 5. The unit of the energy is 10−3 Rydberg
per unit volume.

and enhancement factor, our final results show noticeable
differences compared to the calculations before modification.
The specific details of the calculations and the results are
described in the subsequent sections.

IV. CALCULATION DETAILS AND RESULTS

In practical applications, a fully self-consistent algorithm
is employed to perform TCDFT calculations similar as de-
scribed in Wiktor’s excellent work [11] and the semiconductor
corrections are not taken into account in the calculation. Since
there is only one single positron in the system, self-interaction
correction (SIC) has been done in ABINIT code so that there
is no positron-positron Hartree and exchange-correlation in-
teraction. The projector augmented-wave (PAW) approach is
utilized [27] and semicore electrons were set to be valence
electrons in the pseudopotentials that we used to ensure the
positron wave function behaves well near the nucleus. The
lattice parameters we used are experimental lattice parameters
obtained through the Materials Project. The two-body self-
consistent loop is shown in Fig. 4. It is convenient for us to
utilize the the open-source software package ABINT [28,29].
In the full electron-positron correlation functional calculation
of bulk lifetimes, we set the positron occupation to be 0.001 to
make sure it can be close enough to the zero positron limit and
we only take CONV instead of the self-consistent scheme. In
the calculation of defect lifetimes, the self-consistent scheme
is used and it is necessary to consider lattice relaxation to
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TABLE III. Experimental bulk positron lifetimes of some materials.

Material Expt. Expt.*

Li 291 [33] 291
C-diamond 97.5 [34], 107 [35] 102
Na 338 [33] 338
Mg 220 [36], 225 [37] 223
Al 160.7 [38] 161
Si 216.7 [39], 217 [34], 218 [35] 217
Fe 108.0 [40] 108
Ni 104.3 [34] 104
Cu 112 [41] 112
Ga 198 [42] 198
Ge 222 [35], 228 [37], 228 [43] 226
Ag 130 [37] 130
Au 117 [44], 113 [45] 115
GaAs 231.6 [46], 231 [47], 230 [48] 231
MgO 130 [49], 166 [50], 152 [50], 155 [51] 151
ZnO 153 [52], 159 [53], 158 [54], 161 [55] 158
SiC-3C 138 [56], 140 [57] 139
NiO 110 [51] 110

accurately calculate the localized state of the positron. We
calculated monovacancy defects of Si, Al, GaAs, ZnO, 3C-
SiC, and MgO. We used 2×2×2 supercells for Si, GaAs,
3C-SiC, and MgO, while 3×3×3 supercells were used for
Al and ZnO to ensure that there are at least 64 atoms in a
supercell. The exchange-correlation (xc) functionals in the
pseudopotential files are Perdew-Burke-Ernzerhof (PBE) gen-
eralized gradient approximation [30]. The results are shown
in Table III, with results from other LDA schemes including
Boronski-Nieminen LDA (BNLDA) [31], Arponen-Pajanne
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FIG. 5. The relative error (�τ/τExp) between the four calculation
results and the experimental values for the bulk positron lifetimes of
some materials.

LDA (APLDA) [15], and perturbed-hypernetted-chain LDA
(PHCLDA) [32].

The experimental values of the bulk lifetimes are shown
in Table III. These values are chosen from Campillo Roble’s
paper [58]. We try to choose the experimental values after
1990 and the statistical error smaller than 2 ps. If there are
no such values, we then chose the latest values or the values
with an error smaller than 5 ps after 1980. In Tables III
and IV, we show the average experimental values. Figure 5
shows the relative errors [(τ − τExp∗)/τExp∗, where τ is the
computational value of a certain LDA scheme and τExp is the
average of the experimental values] between the calculated
values and experimental values of the lifetimes of various
materials in Table III for different computational approaches.
As a comparison, we directly used a zero-positron limit cor-
relation functional to calculate the bulk lifetimes. We then
compared these results with the calculations using the fully
electron-positron correlation functional with positron occu-
pancy set to 0.001. The comparison reveals that there is almost
no difference between the two sets of results, demonstrating
that setting the positron occupancy to 0.001 is sufficiently
close to zero. Figure 6 represents the relative standard devi-
ation of the each calculation scheme to judge which scheme
is the best. From Fig. 5, our computational scheme generally
underestimates the bulk lifetimes. From Fig. 6, we can tell that
in terms of the calculated materials, our scheme performs the
best.
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TABLE IV. Bulk positron lifetimes of some materials from different calculation schemes and the number of valence electrons used in
pseudopotential files. In the table, ZPL represents zero-positron limit, which means using a correlation functional within zero-positron limit
directly, FC represents full correlation functional, which means using a full correlation functional in the calculation and setting the positron
occupation to 0.001. The absolute deviation between the calculation values and average experimental values is shown in the parentheses after
each calculation value.

Positron annihilation lifetime (ps)

Material Valence No. BNLDA APLDA PHCLDA This work (ZPL) This work (FC) Expt.*

Li 3 293 (2) 260 (31) 283 (8) 296 (5) 296 (5) 291
C-diamond 4 99 (3) 87 (15) 90 (12) 101 (1) 101 (1) 102
Na 9 318 (20) 291 (47) 310 (28) 334 (4) 334 (4) 338
Mg 10 220 (3) 200 (23) 213 (10) 218 (5) 217 (6) 223
Al 11 162 (1) 146 (15) 154 (7) 159 (2) 159 (2) 161
Si 12 209 (8) 182 (35) 193 (24) 208 (9) 209 (8) 217
Fe 16 102 (6) 93 (15) 98 (10) 103 (5) 103 (5) 108
Ni 18 90 (14) 90 (14) 94(10) 93 (14) 93 (14) 104
Cu 19 101 (11) 98 (14) 103 (9) 103 (8) 103 (8) 112
Ga 21 179 (19) 167 (31) 176 (22) 180 (18) 181 (17) 198
GaAs 21 for Ga, 23 for As 217 (14) 189 (42) 201 (30) 219 (12) 220 (11) 231
MgO 10 for Mg, 6 for O 136 (15) 109 (42) 114 (37) 137 (14) 137 (14) 151
3C-SiC 12 for Si, 4 for C 140 (1) 122 (17) 129 (10) 142 (3) 141 (2) 139
NiO 18 for Ni, 6 for O 101 (9) 94 (16) 98 (12) 104 (6) 104 (6) 110

The primary goal of this work is to accurately calculate
the positron annihilation lifetimes in vacancy-type defects.
Indeed, for the case of positron localization within a vacancy,
its density can reach a level comparable to the electron density
in certain regions. In such cases, using the zero-positron-
density approximation for calculations may have a significant
deviation. Therefore, a fully self-consistent computational ap-
proach is a more reasonable choice in these situations. Due
to the additional computational resources and time required
for vacancy calculations, we choose only a few representative
materials for which experimental values are reported, and
we focus solely on calculating their monovacancy positron
annihilation lifetimes. The results are shown in Table V.

Si is often used as a benchmark to assess the accuracy of
computational schemes. Previous calculation schemes have
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FIG. 6. The standard deviation of relative errors derived from
Fig. 5.

successfully determined the positron annihilation lifetimes
of monovacancy in Si [11]. Our calculations for both the
bulk lifetime and monovacancy lifetime in Si are slightly
smaller than the experimental results. Other computed values
exhibit similar patterns as well. The computational results
for aluminum (Al) are also 8 ps lower than the experimental
values. Different papers present significant discrepancies in
the computational results for the As monovacancy (VAs) in
GaAs [9,47,64]. Our calculations indicate a positron lifetime
of approximately 293 ps for VAs and 235 ps for VAs

−, which
are more in line with the experimental analysis conducted by
Saarinen et al. (295 ps for VAs and 257 ps for VAs

−) [47]. The
calculation results of monovacancy VSi with different charge
states of 3C-SiC are slightly lower than the results of PSN (the
PSN results here are smaller than the values in Wiktor’s work
[65] since we did not apply the semiconductor correction), but
the differences are not substantial. Kerbiriou et al. did observe
a signal varying with temperature from 210 to 220 ps [66];
our calculation results also support the inference that these

TABLE V. The monovacancy lifetimes of some materials calcu-
lated by this computational scheme and PSN scheme.

Positron Annihilation Lifetime (ps)

This work PSN Expt.

Si-VSi 265 273 272 [59], 273 [60]
Al-VAl 236 249 244 [61]
GaAs-VAs 293 310 295 [47]
GaAs-V−

As 235 267 257 [47]
ZnO-VZn 221 229 230 [62]
3C-SiC-VSi 213 220 210-220 [57]
3C-SiC-V−

Si 210 217 210-220 [57]
3C-SiC-V2−

Si 207 214 210-220 [57]
MgO-VMg 185 192 180 [49], 210 [63]
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signals arise from different charge states of Si monovacancy
defects. The result of VZn in ZnO is again smaller than the
experimental data. In conclusion, both the bulk lifetimes and
defect lifetimes calculated in our study are mostly smaller
than the experimental results and the PSN scheme results,
mostly because of our larger enhancement factor, which is
consistent with the anticipated underestimation of lifetimes by
LDA. However, the discrepancies are not outrageously large
and our results demonstrate a certain degree of reasonability.
In the future, we can adjust the LDA model using the GGA
method, which will require further research to explore GGA
corrections under finite densities. Our model holds the poten-
tial to provide computational values that are more consistent
with experimental results.

V. CONCLUSION

In summary, a different calculation scheme was proposed
after a series of QMC simulations to modify the electron-
positron correlation energy and enhancement factor based on
the formulas proposed by Puska et al. The new enhancement
factor was generally larger than the previous value, especially
in the calculation of vacancy-type defects. We took advantage
of the open source package ABINIT to perform our calculation
with the PAW approach. For the calculation of vacancy-type
defects, lattice relaxation was considered.

This work demonstrates good overall agreement between
the calculated and experimental values. For bulk lifetimes,
our computation scheme yields better results compared to
APLDA, PHCLDA, and BNLDA. For monovacancy defect
lifetimes, our calculated values are generally lower compared
to the results of the PSN scheme and experimental values.
However, this does not imply that our results are worse. There
is hope to obtain more precise computational values, after
conducting study on GGA corrections in the future.

In conclusion, we proposed a different LDA scheme to
calculate positron lifetimes, not only for bulk materials but
also for vacancy-type defects.
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APPENDIX A: THE WAVE FUNCTION USED IN
THE QMC CALCULATION AND THE FITTING

OF THE CONTACT PCF

Since we only use the u term in the Jastrow optimization,
the detailed expression of the wave function can be written as

ψSJ
PW (r′

1, r′
2, . . . , r′

Np ; r1, r2, . . . , rNe )

= exp

⎡
⎣ Np∑

I=1

Ne∑
i=1

uep(|ri − rI |) +
Ne↑−1∑

i=1

Ne↑∑
j=i+1

ue
↑↑(|ri − r j |) +

Ne−1∑
i=Ne↑+1

Ne∑
j=i+1

ue
↑↑(|ri − r j |) +

Ne↑∑
i=1

Ne∑
j=Ne↑+1

ue
↑↓(|ri − r j |)

+
Np↑−1∑

I=1

Np↑∑
J=I+1

up
↑↑(|r′

I − r′
J |) +

Np−1∑
I=Np↑+1

Np∑
J=I+1

up
↑↑(|r′

I − r′
J |) +

Np↑∑
I=1

Np∑
J=Np↑+1

up
↑↓(|r′

I − r′
J |)

⎤
⎦ψs(r′

1, . . . , r′
Np ; r1, . . . , rNe ),

(A1)

where label e is for electron and label p is for positron; Ne =
Ne↑ + Ne↓ and Np = Np↑ + Np↓, where Ne and Np are the total
number of electrons and positrons. ↑ and ↓ are spin-up and
spin-down particles. r′

I and ri are the positions of positron I
and electron i. ψs is the Slater wave function. And for two of
the same kind of particles, we have u↑↑ = u↓↓ �= u↑↓.

Backflow corrections in QMC are capable of introducing
further correlations in ψSJ by substituting the coordinates
in the Slater determinants by a set of collective coordinates
xi({r j}), given by

xi = ri + ξi({r j}), (A2)

where ξi is the backflow displacement of particle i, which
depends on the configuration of the system {r j}, and contains
optimizable parameters that can be fed into a standard method
such as variance minimization.

As for the extracting of the contact PCFs, we first applied
2gDMC − gVMC to obtain g(r). Then we fitted the poly-
nomial a0 − r + a2r2 + a3r3 + a4r4 + a5r5 + a6r6 + a7r7 to
log[g(r)], where a0, a2, a3, a4, a5, a6, and a7 are fitting

parameters. The polynomial satisfies the Kimball cusp condi-
tion [26]. We choose a seventh-degree polynomial to enhance
fitting accuracy while smoothing out the tail (r became large)
as much as possible. Then the contact PCF is g(0) = exp(a0).
In order to obtain the errors on g(0), the standard deviation of
each bin of g(r) data should be the same, and we calculate the
χ2 of the fit and make it equal to the degrees of freedom,

χ2 =
n∑

i=1

(Oi − Ci )2

σ 2
= n − 7, (A3)

where n is the number of data, 7 is the number of fitting
parameters, Oi is the data observed, Ci is the calculation value,
and σ is the standard deviation. So the standard deviation
should be

σ =
√∑n

i=1(Oi − Ci )2

n − 7
. (A4)

Hence, we could determine the standard deviation in g(0).
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TABLE VI. Energy obtained by SJ and SJB through DMC.

re
s R = 1/2 R = 1

ESJ
DMC ESJB

DMC ESJ
DMC ESJB

DMC

1 0.4309 0.4286 0.4907 0.4884
2 −0.0548 −0.0568 −0.0527 −0.0546
3 −0.1073 −0.1086 −0.1129 −0.1146
4 −0.1130 −0.1145 −0.1208 −0.1226
5 −0.1106 −0.1121 −0.1194 −0.1212
6 −0.1070 −0.1087 −0.1169 −0.1190

APPENDIX B: THE FINITE-SIZE ERROR
AND THE COMPARISON OF THE RESULTS

OF SJ AND SJB OPTIMIZATION

The results of correlation energy and enhancement factors
of SJ (Slater, Jastrow) and SJB (Slater, Jastrow and Backflow)
optimization at R = 1/2 and R = 1 are shown in Table VI
and Fig. 7, correspondingly. They show a significant level of
consistency. Considering the smaller variance of the SJB wave
function, we chose the results of SJB.

The finite-size error of the correlation energy and con-
tact PCFs are ignored. The PCFs should be multiplied by
Ne/(Ne − 1) according to Drummond’s work [67], where Ne

is the electron number. However, this will also violate the
normalization condition on the finite-system PCF. Besides, the
errors are even smaller than the difference between two QMC
simulations with different time steps. So we just ignore the
error brought by this correction in our contact PCFs. In Fig. 8,
we have shown energy [Figs. 8(a) and 8(b)] and contact PCF
[Figs. 8(c) and 8(d)] with different total particle numbers in
simulation systems at re

s = 4. The results remain consistent
after the total number of particles larger than 60. Taking the
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FIG. 7. The contact PCF obtained by SJ plane waves (square)
and SJB plane waves (circle) at R = 1/2 (blue) and R = 1 (red).

energy, for example, the energy of different total particle num-
bers is shown in Fig. 8. The value of 80 particles for R = 1 is
−0.1223 Hartree/particle and for R = 1

2 with 90 particles is
−0.1144 Hartree/particle, and the errors after 64 particles are
smaller than 3%. If we use Eq. (B1) [25] to do the correction,
we will obtain −0.1205 Hartree/particle [red dashed line in
Fig. 8(b)] and −0.1150 Hartree/particle [blue dashed line in
Fig. 8(a)], which keeps the error smaller than 3%. N is the
particle number, E∞ is the energy of N particles system, �THF

is the difference between the Hartree-Fock kinetic energies
of the finite and infinite systems, and the term b/N accounts
for the finite-size effects arising in the interaction energy. We
find that this can be disregarded, especially for the lifetime
calculation. The same situation applies to other simulations
as well. So we decided to use the results without correction
directly,

E∞ = EN + a�THF (N ) + b

N
. (B1)

APPENDIX C: ADJUSTMENTS IN ε0

The correlation energy of one positron in homogeneous
electron gas, ε0, can be expressed as follows (in Ry) [8]:

For rs � 0.302,

ε = −1.56/
√

rs + (0.051lnrs − 0.081)lnrs + 1.14. (C1)

For 0.302 � rs � 0.56,

ε = −0.92305 − 0.05459

r2
s

. (C2)

For 0.56 � rs � 8.0,

ε = − 13.15111

(rs + 2.5)2
+ 2.8655

rs + 2.5
− 0.6298. (C3)

For 8.0 � rs � ∞,

ε = −179856.276 8n2 + 186.4207n − 0.524. (C4)

Now, we need to replace the expression where 1 � rs � 8
by the formula obtained by Drummond et al. [14]. In order to
keep the continuity of the derivatives and function values at
rs = 1 and rs = 8, we add a term 0.092 681 3

101 r101
s to Eq. (C3)

and −3.386 7×107n3 to Eq. (C4) to ensure the continuity
of derivatives and then adjust the constants of all four ex-
pressions to ensure the continuity of function values. Two
additional terms will quickly vanish when rs is away from the
two breakpoints rs = 1 and rs = 8.
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