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Charged vacancy in graphene: Interplay between Landau levels and atomic collapse resonances
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The interplay between a magnetic field and the Coulomb potential from a charged vacancy on the electron
states in graphene is investigated within the tight-binding model. The Coulomb potential removes locally Landau
level degeneracy, while the vacancy introduces a satellite level next to the normal Landau level. These satellite
levels are found throughout the positive-energy region, but in the negative-energy region, they turn into atomic
collapse resonances. Crossings between Landau levels with different angular quantum number m are found.
Unlike the point impurity system in which an anticrossing occurs between Landau levels of the same m, in this
work anticrossing is found between the normal Landau level and the vacancy-induced level. The atomic collapse
resonance hybridizes with the Landau levels. The charge at which the lowest Landau level m = −1, N = 1
crosses E = 0 increases with enhancing magnetic field. A Landau level scaling anomaly occurs when the charge
is larger than the critical charge β ≈ 0.6 and this critical charge is independent of the magnetic field.
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I. INTRODUCTION

Ever since the discovery of graphene, it has provided an
effective medium to probe analogs and similarities of quantum
electrodynamics (QED) phenomena [1]. The charge carriers
in graphene are massless Dirac fermions with an effective
“speed of light” c ∼ 106 m/s [2]. For energies less than about
1 eV, the electron spectrum is conical with particular chirality
of the electrons and holes around the high-symmetry K and K ′
points. Its unique electric properties allow the detection of the
Klein paradox, which is a counterintuitive relativistic process
[3]. Other QED phenomena, such as anomalous integer quan-
tum Hall effect [4,5] and atomic collapse in artificial nuclei,
were observed on graphene [6].

Atomic collapse is a fundamental quantum relativistic phe-
nomenon [7]. It was predicted about 80 years ago, but turned
out to be impossible to realize in real atoms. By assuming
the nucleus to be a point charge, the collapse occurs whenever
the charge exceeds the supercritical value Z > Zc = 137 [8,9].
Taking into account the finite size of the nucleus, the condition
becomes even more stringent, i.e., Zc = 170. However, be-
cause of its large effective fine-structure constant, the critical
charge in graphene is expected to be as low as Zc ∼ 1–2.
By introducing charge impurities with Z > 1, atomic col-
lapse has been realized experimentally in several different
graphene systems [6,10,11]. Theoretically, similar phenom-
ena have been intensively studied in both the subcritical and
supercritical regimes. References [12–19] studied the atomic
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collapse in graphene in a single charged impurity field. The
extension to the case of two identical impurity charges was
considered in Refs. [20–26]. The interaction between the two
impurities splits the atomic collapse state into a pair of bond-
ing and antibonding molecular collapse states. Furthermore,
a new physical regime termed “frustrated supercritical col-
lapse” was demonstrated [25]. When the “artificial nucleus”
was realized with a charged vacancy in the graphene lattice,
weak satellite states appeared beside the atomic (molecular)
collapse resonances [10,26], which is a consequence of the
discrete sublattice structure of graphene and the removal of
the equivalence of the two sublattices.

It has been argued that a strong magnetic field can
effectively reduce the value of the critical charge Zc [27–31].
However, the situation in two dimensions is different and the
effect of a magnetic field on a charged impurity in graphene
leads to different conclusions. A theoretical study predicted
that the magnetic field drives the critical charge to zero [32].
However, more recent investigations (some focused on an
“exact” numerical solution) found that the magnetic field does
not affect the value of the critical charge [19,33–36]. Recently,
Eren and Güçlü investigated finite-size and external magnetic
field effects on atomic collapse in a graphene quantum dot and
concluded that the size of the quantum dot affects the value of
the critical charge [37].

In previous works, a charged impurity was put on top of
the graphene layer and it was concluded that (1) levels with
the same orbital number m never cross each other, and (2)
an anticrossing occurs between atomic collapse resonance
energy levels [19,38]. Here we model the “artificial nuclei”
by a charged vacancy as in the experiment of Ref. [10] and
investigate the effect of a perpendicular magnetic field on the
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atomic collapse resonance states. In contrast to Refs. [19,38],
the discrete nature of the graphene sublattice is retained in our
approach and we will use the tight-binding model to calculate
the electron states. How these new emerging states influence
the crossing between Landau levels and collapse resonances
is not clear and therefore triggers our interest and are in-
vestigated in this work. Whether the lifting of the sublattice
symmetry due to the vacancy will induce any magnetic field
dependence of the critical charge for atomic collapse will be
critically examined.

The paper is organized as follows. In Sec. II, we present the
model and the method used to obtain the relevant quantities.
How the Landau levels cross atomic collapse resonant states in
charged vacancy graphene is studied in Sec. III. The magnetic
field dependence of the critical charge for atomic collapse is
studied in Sec. IV. In Sec. V, we summarize our study.

II. MODEL

In order to model charged vacancies and to preserve effects
due to the discrete lattice (i.e., to go beyond the continuum
approach), we use the following tight-binding Hamiltonian:

Ĥ =
∑

〈i, j〉
(ti j â

†
i b̂ j + H.c.) +

∑

i

Viâ
†
i âi +

∑

j

Vj b̂
†
j b̂ j, (1)

where âi(b̂ j ) represents the electron creation operator and
â†

i (b̂†
j ) is the annihilation operator of an electron at the sub-

lattice A (B) at site i ( j), and ti j = −2.8 eV is the hopping
strength between the nearest neighbors. The last two terms
take into account the electrostatic potential Vi( j) felt by the
electron from the charged vacancy at site i( j). The electric
potential of the vacancy with effective charge β = Zα is
V (r) = −h̄v f β/r, where Z is the value of the charge, α is
the fine-structure constant of graphene, taking into account its
environment, h̄ is the Planck constant divided by 2π , and v f

is the Fermi velocity. In order to simulate the finite size of
the vacancy, a cutoff of the electron potential is introduced by
replacing r with r∗ = 0.5 nm when r < 0.5 nm. The value of
r∗ was determined in Ref. [10]. The charge on the vacancy
can be tuned by firing voltage pulsed from an Scanning Tun-
neling Microscope (STM) tip on the vacancy [10]. To model
a uniform magnetic field, we make use of Peierls’ substitution
and replace ti j with ti jei2π/φ0

∫ j
i

�Ai j d�l , where �0 = h/e is the
magnetic quantum, h is the Planck constant, and �Ai j is the
magnetic vector potential along the path between sites i and j.
The magnetic field is perpendicular to the graphene plane and
the gauge is taken as �A(x, y, z) = B(y, 0, 0). Electron-electron
interaction is ignored because Ref. [37] indicates that the
Hubbard parameter does not qualitatively change the results
of atomic collapse, and the quantitative difference is small.

The eigenvalue problem with the Hamiltonian (1) is solved
“numerically exact” on a hexagonal flake with armchair edges
to avoid zigzag edges with zero-energy states. The charged
impurity or vacancy is placed in the center of the flake. We
take the hexagonal flake edge width of 200 nm, which is
sufficiently large such that finite-size effects are negligible.
Such a flake contains more than four million carbon atoms
and we use the open-source tight-binding PYBINDING program
to solve the problem numerically [39]. The package employs

FIG. 1. Color map of the LDOS (in logarithmic scale) as a
function of position and energy. (a1)–(c1) The results of a charged
impurity above graphene is compared with (a2)–(c2) the results of
a charged vacancy. Magnetic field strength is B = 12 T and the
vacancy (charged impurity) is located at r = 0.

the kernel polynomial expansion to compute the local density
of states (LDOS). An energy broadening of 1 meV is used to
simulate effects due to disorder.

III. SINGLE VACANCY: EFFECT OF MAGNETIC FIELD

First, the space-energy map of the electronic states in the
subcritical (0 < β < 0.5) and supercritical (β > 0.5) regimes
is plotted in Fig. 1. Figures 1(a1)–1(c1) are for a point charged
impurity which is put 5 nm above graphene and Figs. 1(a2)–
1(c2) are for a charged vacancy system. Figure 1(a1) is for
pristine graphene and Fig. 1(a2) is for a neutral vacancy in
graphene. In the absence of an impurity, Landau levels are
independent of the position. Notice that a vacancy introduces
a satellite level beside each Landau level. These satellite lev-
els are highly localized around the vacancy and their LDOS
intensity rapidly decreases within one nanometer. In order
to show the influence of the sublattice, the LDOS of the
vacancy-induced satellite levels of Landau level N = 0, 1,
and 2 are plotted on different sublattices as a function of the
radial distance r in Fig. 2 for β = 0. The vacancy is formed
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FIG. 2. The LDOS as a function of the radial distance r for the
vacancy-induced level of Landau level N = 0, 1, and 2 in Fig. 1(a2).
(a) The LDOS on the B sublattice and (b) the LDOS on the A
sublattice. The results are for β = 0.

by removing an A sublattice atom, and we see that these
vacancy-induced levels are localized on the B sublattice.

Adding charge, the Landau levels start to bend and split
into sublevels for different orbital number m. Further increas-
ing the charge, many more sublevels appear. In order to show
this process clearly, the LDOS as a function of energy for
several values of the distance from the impurity is shown in
Fig. 3. The energy region was chosen to include only N = 0
and 1 Landau levels. At β = 0.4 in Fig. 3(b1), the peak
labeled m = 0 belongs to N = 0; at β = 0.8 in Fig. 3(c1), the
two peaks labeled m = 0 and −1 belong to N = 1. It is clear
that the sublevels move down significantly in energy near the
charge center. At the position slightly away from the charge
center, new sublevels are observed but their downward move-
ment is small. When the Landau levels are detected far away
from the charge center, they tend not to split and their position
is little affected by the charge. By replacing the point charge
impurity with a charged vacancy, all of the above properties
remain the same except that each level has a satellite level as
shown in Figs. 3(a2)–3(c2). Due to the electron-hole symme-
try, the N = 0 Landau level has two vacancy-induced satellite
levels. In addition, these electron states have a high intensity
close to the vacancy and disappear quickly away from it. In
the following, we show only the results of a charged vacancy
system and the LDOS will be computed at the vacancy.

The LDOS in Fig. 4 is plotted at the vacancy as a function
of energy and charge. Without magnetic field, the atomic
collapse states and vacancy-induced states are recognized
from the high LDOS intensity in the negative-energy re-
gion. The naming of these LDOS resonances are the same
as in Refs. [10,19] and are based on the spatial symmetry
of their LDOS. VP represents the vacancy peak. R1 is the
1s atomic collapse state in atoms, R2 is the 2s state, and
P1 is the 1p state. R1′, R2′, and P1′ are their corresponding
vacancy-induced satellite states. VP, R1′, R2′, and P1′ are the
consequence of the removal of a carbon atom resulting in
the breaking of the sublattice symmetry and are absent in the

FIG. 3. The LDOS as a function of energy for different values
of the distance from the charge. (a1)–(c1) A charged impurity 5 nm
above the graphene plane and (a2)–(c2) for a charged vacancy.

case of a charged impurity system, as investigated in Ref. [19]
within the continuum approach.

When a magnetic field is applied, Landau levels are clearly
formed at low β. As the charge increases, Landau levels near
the vacancy behave differently in the positive- and negative-
energy region. Landau levels split into individual orbital states
with different angular quantum number m in the positive-
energy region. The Landau level N = 1 splits into orbital
states m = −1, m = −1′, m = 0, and m = 0′, followed by the

FIG. 4. Color map of the LDOS at the vacancy as a function of
energy and charge β for (a) B = 0 and (b) B = 8 T. The vacancy is
formed by removing an A sublattice atom.
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splitting of higher Landau levels. The sublevels with accent (′)
are vacancy-induced satellite levels. The annotation method
of the splitting Landau level is consistent with Ref. [19] and
is based on the spatial symmetry of the LDOS. Crossing and
anticrossing are found between Landau levels of different
quantum number as Landau levels drop into the negative-
energy region. References [19,38] summarized the crossing
law as level N = 1, m = −1 crosses level N = 0, m = 0 and
is then repelled by level N = −1, m = −1 with the formation
of an anticrossing following the atomic collapse resonance.
This partially remains the same by replacing the point charge
impurity with a charged vacancy in this work. Here, in ad-
dition, the level N = 1, m = −1 crosses level N = 0, m = 0,
but is then repelled by the vacancy-induced satellite level
N = −1′.

In addition to above phenomenon, Fig. 4(b) shows some
new features due to the broken sublattice symmetry. At small
charge, the value of the LDOS of the vacancy-induced elec-
tronic state is an order of magnitude larger than the value
of the LDOS of normal Landau levels. It helps us to dif-
ferentiate vacancy-induced levels from normal Landau levels
by the color in Fig. 4(b). The vacancy-induced satellite lev-
els (marked with superscript ′) shift down one energy level
through the VP resonance (which is independent of mag-
netic field) in the negative-energy region, e.g., level N = 0′
moves down to level N = −1. As the charge increases, but
still less than the critical charge, those parallel levels are
normal Landau levels. The interlevel spacing of these Lan-
dau levels is preserved until Landau levels cross the atomic
collapse resonance. And the Landau levels shift down one en-
ergy level through the atomic collapse resonance. Meanwhile,
the vacancy-induced levels reappear (e.g., level N = −1′) af-
ter Landau levels cross R1 resonance and they merge into
the lower Landau level through R1′ resonance. This process
repeats and higher orbital states become involved with in-
crease of charge and |E |.

Another interesting feature in Fig. 4(b) needs to be dis-
cussed. The vacancy-induced satellite levels exist throughout
the positive-energy region, but in the negative-energy region,
these levels merge into the normal Landau levels in the region
where the vacancy-induced resonances do not exist. Thus, the
separation distance between the normal Landau level and its
satellite level first increases, then decreases with increasing
charge β. In the Supplemental Material (SM) [40], we show
the LDOS calculated on both sublattices separately. They
exhibit an out-of-phase oscillation which is similar to what
was found in Ref. [10].

IV. CRITICAL CHARGE FOR ATOMIC COLLAPSE

Next, the LDOS of electronic states are investigated as a
function of magnetic field and energy. The results are plotted
in Fig. 5 for β = 0, 0.4, 0.8, 1.2, and 2.0. Landau levels show√

B behavior when the charge is smaller than some critical
charge, as shown in Figs. 5(a) and 5(b). As the charge in-
creases beyond some critical charge, the lowest Landau level
m = −1, N = 1 crosses E = 0 and no longer shows the

√
B

scaling, as shown in Fig. 5(c). At small
√

B, an apparent
feature is the atomic collapse state that is formed. The m =
−1, N = 1 Landau level (LL) crosses E = 0 and is included

FIG. 5. Color map of LDOS taken at the vacancy as a function of
energy and

√
B for several charges. (a) β = 0, (b) β = 0.4, (c) β =

0.8, (d) β = 1.2, and (e) β = 2. The horizontal black dotted line is
at E = 0.

in the atomic collapse resonance. Thus, the atomic collapse
resonance hybridizes with the Landau level. But for larger

√
B

in Fig. 5(c), the m = −1, N = 1 LL and the atomic collapse
resonance locate at different energies. Further increasing the
charge, the R1 atomic collapse resonance moves downward
and hybridizes again with m = −1, N = 1 LL at larger

√
B

in Fig. 5(d). Thus, as the magnetic field increases, the charge
at which the m = −1, N = 1 LL crosses E = 0 increases. In
Refs. [32,37], the crossing of this LL with E = 0 was used
to determine the value of the critical charge. In Fig. 6, this
charge is plotted as a function of magnetic field and fitted to
β = 103 ∗ B1/3 + 0.6. According to this criterion, the critical
charge increases with B.

According to the discussion of Fig. 4, we know that the
crossing and anticrossing between Landau levels only occur in
the atomic collapse resonance region. This is reconfirmed by
Figs. 5(d) and 5(e). The crossing between Landau level N =
1, m = −1 and Landau level N = 0, m = 0 is highlighted
by the circle in Fig. 5(d). As the charge increases, the R1
atomic collapse resonance falls to a lower energy, meanwhile
R2 and P1 atomic collapse appears as shown in Fig. 5(e).
Crossing and anticrossing between higher-order Landau levels
are pointed out by the circle in Fig. 5(e). These crossing and
anticrossing points are located at the same energies as the
atomic collapse resonances. Previously, the absence of

√
B

scaling of the LL was used to determine the critical charge
for atomic collapse [19]. The energy of the Landau level N
can be written as

EN (B) = ±νF

√
2|N |h̄

√
B = ±νN

√
B, (2)
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FIG. 6. The charge at which the Landau level N = 1, m = −1
crosses zero energy vs magnetic field. The numerical results are fitted
to β = 0.103 ∗ B1/3 + 0.6.

where ±νN is the level scaling prefactor. When β is 0,
∂νN/∂B = 0 and Eq. (2) is satisfied. On the other hand,
∂νN/∂B 
= 0 means the level has a scaling anomaly. We use
the LDOS data to calculate the derivative ∂ν1/∂B for Landau
level N = 1, m = −1 and present the results in Fig. 7. The
derivative is almost a constant and close to 0 for β � 0.6,
independent of the magnetic field. A constant derivative im-
plies EN (B) = ±(νN

√
B + γN B3/2) with γ small, and the

√
B

scaling of the LLs is, to a large extent, satisfied. For β > 0.6,
there is a significant nonlinear enlargement at small values of
the magnetic field. The scaling anomaly is mainly a function
of energy and, therefore, we plot ∂ν1/∂B as a function of
energy in Fig. 7(b). Note that for E < 0, ∂ν1/∂B = 0 when
β � 0.6, and we have perfect

√
B scaling. Once β increases

beyond 0.6, the derivative is also nonzero for E < 0. Without
magnetic field, the critical charge in a single impurity system
was previously determined in the continuum limit to be ≈0.5.
Here we found a slightly larger value of ≈0.6, but the most
important conclusion is that the magnetic field does not affect
the value of the critical charge.

V. CONCLUSION

In this work, we studied how the electronic states of
graphene are modified in the presence of a charged vacancy
and a perpendicular magnetic field. A charged vacancy causes
Landau levels to split into sublevels with different quantum
number m and introduces a satellite level next to each

FIG. 7. (a) The derivative of the scaling ν1 for different values of
the charge β for Landau level N = 1, m = −1. (b) Same derivative,
but presented as a function of energy instead of the magnetic field.

normal Landau level. Crossings and anticrossings are formed
between Landau levels of different quantum number and the
Landau level repulsion occurs between normal Landau level
and vacancy-induced level. The atomic collapse resonance
hybridizes with Landau levels and the magnetic field increases
the charge at which the lowest Landau level m = −1, N = 1
crosses E = 0. This E = 0 crossing criterium will result in
different critical charge for different energy levels. This is
different for the scaling anomaly criterium, which results
in a critical charge independent of the chosen energy level
and independent of the magnetic field. Therefore, the scaling
anomaly argument is more fundamental and is therefore
considered to be the correct criterium. As compared to
previous results for the continuum Dirac-Kepler problem, we
find a slightly larger value of βc ≈ 0.6 for the critical charge
for atomic collapse.
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