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Recent Josephson tunneling experiments on twisted flakes of high-Tc cuprate superconductor
Bi2Sr2CaCu2O8+x revealed a nonreciprocal behavior of the critical interlayer Josephson current, i.e., a
Josephson diode effect. Motivated by these findings we study theoretically the emergence of the Josephson
diode effect in twisted interfaces between nodal superconductors, and highlight a strong dependence on the
twist angle θ and damping of the junction. In all cases, the theory predicts diode efficiency that vanishes exactly
at θ = 45◦ and has a strong peak at a twist angle close to θ = 45◦, consistent with experimental observations.
Near 45◦, the junction breaks time-reversal symmetry T spontaneously. We find that for underdamped junctions
showing hysteretic behavior, this results in a dynamical Josephson diode effect in a part of the T -broken phase.
The direction of the diode is trainable in this case by sweeping the external current bias. This effect provides
a sensitive probe of spontaneous T breaking. We then show that explicit T -breaking perturbations with the
symmetry of a magnetic field perpendicular to the junction plane lead to a thermodynamic diode effect that
survives even in the overdamped limit. We discuss an experimental protocol to probe the double-well structure
in the Josephson free energy that underlies the tendency towards spontaneous T breaking even if T is broken
explicitly. Finally, we show that in-plane magnetic fields can control the diode effect in the short junction limit,
and predict the signatures of explicit T breaking in Shapiro steps.

DOI: 10.1103/PhysRevB.109.094518

I. INTRODUCTION

Twisted nodal superconductors have emerged as a promis-
ing platform to engineer exotic forms of superconductiv-
ity [1–8], capable of hosting topological phases with poten-
tially large energy scales inherited from constituent high-
Tc materials such as monolayer cuprate Bi2Sr2CaCu2O8+x

(BSCCO) [9]. In particular, time-reversal symmetry breaking
(TRSB), a prerequisite for chiral topological superconductiv-
ity, has been predicted to occur spontaneously [2,10] for twist
angles θ close to 45◦. The mechanism driving this uncon-
ventional transition is the second harmonic of the interlayer
Josephson current-phase relation (CPR), that favors a nontriv-
ial (i.e., different from 0 or π ) phase difference across the
junction in equilibrium [2,10,11].

Recent Josephson experiments [12] at the twisted interface
between thin flakes of BSCCO have provided evidence for this
second harmonic. In particular, anomalous Fraunhofer pat-
terns in the presence of in-plane magnetic fields and fractional
Shapiro steps under microwave driving are consistent with
the second harmonic being dominant near θ = 45◦. However,
neither of these observations are directly sensitive to TRSB

at the interface. Moreover, it is possible theoretically to have
dominant second harmonic in CPR that does not lead to spon-
taneous TRSB [2,10,11]. Additional complication arises due
to the two-dimensional nature of the interface where TRSB
occurs, precluding bulk probes, such as muon spin resonance
or nuclear spin resonance. Therefore, more direct probes of
TRSB are required.

Some observables proposed to detect TRSB at the in-
terfaces include polar Kerr effect measurements [13] and
spontaneous currents around impurities or edges [14,15], that
may be detected using SQUID magnetometry [16] or oscilla-
tions in magnetic field [17]. Here we argue that a particularly
sensitive probe of TRSB in superconductors is the Josephson
diode effect (JDE), whereby the critical current in a Josephson
junction becomes dependent on the current polarity. Concep-
tually, this follows from the simple observation that current
is odd under both time reversal T and inversion P and hence
the diode effect can be present only when both symmetries are
broken [18].

Nonreciprocal transport properties of superconductors
have been explored recently in a variety of setups where P

2469-9950/2024/109(9)/094518(14) 094518-1 ©2024 American Physical Society

https://orcid.org/0000-0001-7586-9788
https://orcid.org/0000-0003-0417-6452
https://orcid.org/0009-0001-7196-2763
https://orcid.org/0000-0002-4844-2030
https://orcid.org/0000-0002-3109-640X
https://orcid.org/0000-0003-0608-0016
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.094518&domain=pdf&date_stamp=2024-03-28
https://doi.org/10.1103/PhysRevB.109.094518


PAVEL A. VOLKOV et al. PHYSICAL REVIEW B 109, 094518 (2024)
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FIG. 1. (a) Two flakes of a d-wave superconductor form a twisted
c-axis Josephson junction. In the absence of time reversal T and
inversion P , the critical Josephson currents for the two current di-
rections are allowed to be unequal. (b) Schematic phase diagram
implied by the GL theory. Dynamical Josephson diode effect (d-JDE)
is found to occur inside the spontaneously T -broken phase.

and T are broken. In noncentrosymmetric superconductors,
supercurrent diode effects can be induced by applying an
external magnetic field or by proximitizing with a magnetic
material. This was observed recently in an experiment on
a Nb/V/Ta superlattice without an inversion center [19],
in magnetic Josephson junctions built from twisted bi-
layer graphene [20,21] or d-wave superconductors on top
of topological insulators [22], in InAs quantum wells [23],
in NbSe2 nanowires [24] or films [25], and in the Dirac
semimetal NiTe2 [26]. Recent theoretical works on the JDE
in inversion-broken superconductors under an external mag-
netic field, including Rashba superconductors, were also
reported [27–31].

SC diode effects can also occur through spontaneous T
breaking, which gives rise to a hysteresis loop in the diode
response as a function of applied magnetic field, as reported
in experiments on alternating-twist trilayer graphene [32,33].
Another recent experiment on transition metal dichalcogenide
(TMD)-based junctions reports JDE without a clear source of
TRSB, which is difficult to reconcile with the basic symmetry
requirements mentioned above [34] and could be related to
theory ideas developed in [35]. Other relevant theory work on
JDE includes Refs. [36–38].

In this work, we investigate the JDE in twisted c-axis
cuprate junctions, schematically depicted in Fig. 1(a), with

the aim of providing a theoretical background for recent
experimental results [12,39,40]. In particular, Ref. [39] has
reported a diode effect induced and controlled by magnetic
field, whereas Ref. [40] reported a diode effect in the absence
of magnetic field. Reference [12], in addition to the above
effects, observed a zero-field diode effect that can be trained
by a directed current sweeping.

We base our analysis on the mean-field theory of twisted
d-wave superconductors following Refs. [2,10,11]. This
approach famously predicts a strong suppression of the
Josephson critical current for junctions with a twist angle θ

close to 45◦. Importantly, for these values of the twist angle
the remnant value of the critical current is predicted to be due
to a second-harmonic Josephson effect generated by Cooper
pair cotunneling. Both of these features were clearly observed
in recent experiment [12]. Data presented in Refs. [40,41] on
nominally similar samples showed only moderate suppres-
sion and were interpreted as evidence for an s-wave pairing
component. However, experiments that could distinguish the
second Josephson harmonic close to θ = 45◦ have not been
performed in those works, leaving open a possibility that the
same physics is being realized.

Our analysis identifies two different pathways that can en-
gender nonreciprocal currents in twisted d-wave junctions: (i)
dynamical JDE brought about by the spontaneous TRSB and
(ii) thermodynamic JDE relying on explicit TRSB unrelated
to the Josephson physics. In the former the polarity of the
diode depends on its history, is trainable with current biasing,
and allows for detection of spontaneous TRSB in Josephson
experiments. The latter implies a “memory effect,” whereby
the junction exhibits the same polarity of JDE after it has
been cycled above the superconducting critical temperature
Tc or driven into the resistive state by exceeding its critical
current.

Dynamical JDE arises as a result of the characteristic
double-minimum structure of the free energy in the T -broken
phase, predicted to occur in bilayer d-wave junctions in the
vicinity of θ = 45◦. Importantly, because of kinematic and
symmetry constraints the effect vanishes at 45◦ twist and
extends over a subregion of the T -broken phase as illustrated
in the phase diagram, Fig. 1(b). In the presence of explicit
TRSB, on the other hand, the thermodynamic JDE occurs
at all twist angles except θ = 0◦, 45◦ and at all tempera-
tures below Tc. Its strength, as measured by the figure of
merit η defined below, is found to peak in the vicinity
of θ = 45◦.

The rest of this paper is organized as follows. In Sec. II
we introduce the Ginzburg-Landau (GL) theory formalism
appropriate for twisted nodal superconductors and discuss the
relevant symmetries of the free energy in the context of the
JDE. In Sec. III we investigate the dynamical JDE and explain
how it can be used as a sensitive probe of spontaneous T
breaking. In Sec. IV we consider the explicit breaking of T
and its consequences for both thermodynamic and dynami-
cal diode effects. Detailed experimental protocols that allow
to distinguish the two categories of JDEs are contrasted in
Sec. V. Finally, we discuss the consequences of explicit T
breaking for Fraunhofer patterns and Shapiro steps measure-
ments in twisted junctions in Sec. VI and present concluding
remarks in Sec. VII.
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II. SETUP AND SYMMETRIES

We start from the Ginzburg-Landau description of twisted
superconductors and derive the form of the Josephson energy
of the twisted interface. While this approach is strictly valid
only close to Tc, the resulting description of the Josephson
energy can be shown to hold also at low temperatures for weak
tunneling [10,11]. We can write the Ginzburg-Landau free
energy for twisted bilayer d-wave superconductors (omitting
gradient terms) as

F[ψ1, ψ2] = F0[ψ1] + F0[ψ2] + A|ψ1|2|ψ2|2

+ B(ψ∗
1 ψ2 + H.c.) + C

(
ψ∗2

1 ψ2
2 + H.c.

)
, (1)

where ψa (a = 1, 2) is the SC order parameter of layer a
and F0[ψa] = α|ψa|2 + β|ψa|4, with α ∼ (T − Tc) and β >

0, denotes the free energy of each individual layer. The B
term describes single Cooper pair tunneling between the lay-
ers, while C describes Cooper pair co-tunneling. At 45◦, the
former process is forbidden due to a vanishing overlap of
the d-wave order parameters. Denoting the twist angle as θ ,
we follow Ref. [2] and assume B = −B0 cos 2θ with B0 > 0
while we take C as constant independent of the twist.

When C > 0 the free energy (1) admits a T -broken, chiral
SC phase near the 45o twist. To see this we assume identical
layers and take ψ1 = ψ and ψ2 = ψeiφ with real ψ . Equa-
tion (1) then becomes

F (φ) = E0 − h̄

2e

[
Jc1 cos 2θ cos φ − Jc2

2
cos 2φ

]
, (2)

with Jc1 = (4e/h̄)B0ψ
2, Jc2 = (8e/h̄)Cψ4. Here E0 collects

terms independent of the phase φ. For sufficiently small
| cos 2θ |, that is, in the vicinity of θ = 45◦, the last term in
Eq. (2) begins to dominate and produces a free energy with
two nonequivalent minima at φ = ±φ0, resulting in a spon-
taneously T -broken superconducting state. The twist-angle
range for such chiral T -broken SC in this model is 45◦ ± θc

with

θc = 1

2
arccos

(
2Jc2

Jc1

)
. (3)

Note that C > 0 is not required by symmetry. Although mi-
croscopic calculations often show this to be the case [10,11],
including additional effects, such as momentum nonconserv-
ing tunneling, can lead to C < 0 [10]. On the other hand,
twist-angle disorder near 45◦ can favor the T -broken state,
resulting in the same effective description, Eq. (2) at a coarse-
grained level [42].

Additionally, we allow for the possibility of explicit T
breaking in the SC state (i.e., we assume that the normal state
from which SC emerges may also break T ). Such a possibility
is motivated by experimental observations of a memory effect
in a few samples, whereby the diode polarity remains robust
to thermal and current cycling [12]. In such a situation, the
Ginzburg-Landau free energy will also include a term of the
form

Fm = im

2
(ψ1ψ

∗
2 − ψ∗

1 ψ2) = mψ2 sin φ. (4)

Due to the d-wave nature of the order parameters ψ1 and
ψ2, the factor m in Eq. (4) transforms as the irreducible

representation A2 of either of the point groups D4 (valid for
generic nonzero twist angle) and D4d (valid for 45o twist).
Additionally, m is odd under time reversal,

T : m → −m. (5)

Therefore, m transforms as an out-of-plane magnetization.
As this term couples directly to the superconducting phase
difference φ we name it “magnetochiral coupling.” Note that,
unlike an actual out-of-plane magnetic field, this term allows
for homogeneous superconducting order parameters and does
not imply generation of vortices. The symmetries broken by
this term suggest the following potential microscopic origins.
A magnetic field below Hc1 would satisfy this requirement, as
well as spontaneous orbital or spin magnetization that persists
in the normal state, setting the sign of m. Another effect
breaking the relevant symmetries is the presence of trapped
Abrikosov vortices, leading to additional physical effects be-
yond a homogeneous m (see Ref. [39]). The interplay between
the magnetochiral effect identified here and vortex physics
would be an interesting topic for future work.

Precisely at 45◦, the point group D4d does not contain true
inversion, but instead a mirror σd and an eightfold rotoinver-
sion S8 that sends ψ1 → ψ2 and ψ2 → −ψ1, under which m is
even. However, at 0◦ or 90◦ twist angle m instead transforms
as the irrep A2u of the point group D4h, which is odd both
under inversion and a mirror symmetry that interchanges the
two layers, ψ1 ↔ ψ2. Therefore, m cannot arise from an out-
of-plane magnetization at 0◦ or 90◦. The simplest (i.e., the
lowest harmonic) twist-angle dependence consistent with the
above requirements is

m = m0 sin 2θ, (6)

and we will use this functional form in our considerations
below unless otherwise noted. The Josephson current through
the junction IJ (φ) = (2e/h̄)∂φF is obtained as

IJ (φ) = Jc1(θ ) sin φ − Jc2 sin 2φ + Jm(θ ) cos φ, (7)

where we introduced a shorthand notation

Jc1(θ ) = Jc1 cos 2θ, Jm(θ ) = Jm sin 2θ, (8)

and Jm = (2e/h̄)ψ2m0. Interestingly, the same form of the
current-phase relation can arise in ferromagnetic Josephson
junctions [43–47]. In this work we will focus on physical
aspects that are unique to twisted nodal superconductors,
including the twist-angle dependence and how to use the
diode response to distinguish between spontaneous and ex-
plicit TRSB.

Finally, we define the thermodynamic critical current

I±
c = max

φ
[±IJ (φ)], (9)

which is in general different from the actual measured crit-
ical current that may depend on the phase dynamics in the
junction, as explained below. We note that thermodynamic
nonreciprocity, that is I+

c �= I−
c , is only possible when Jm �= 0,

in accord with the requirement that time reversal must be
broken at the level of the free energy in order to observe the
diode effect. On the other hand, we will show that “dynam-
ical” nonreciprocity is possible even when Jm = 0, provided
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that the free energy has a double-well structure as described
by Eq. (2) when θ is close enough to 45◦.

III. DYNAMICAL DIODE EFFECT FROM SPONTANEOUS
T BREAKING

We first discuss the possibility of Josephson diode effect
for Jm = 0. In the symmetry-broken state [Jc1(θ ) < 2Jc2 in
Eq. (2)] nonzero 〈φ〉 breaks both time-reversal and reflection
symmetries, which allows for the diode effect. However, the
current (7) still satisfies IJ (φ) = −IJ (−φ), which implies that
its maximum and minimum have the same absolute value, i.e.,
it is the same in both directions.

Nevertheless, as we show below, the actual measured crit-
ical current is equal to ± maxφ |IJ (φ)| only when capacitance
of the junction can be ignored (i.e., the junction is over-
damped), which typically occurs close to Tc. The situation
changes when capacitive effects are considered. To study
these effects, we use resistively and capacitively shunted
junction (RCSJ) model for the Josephson junction dynam-
ics [48,49] in which the phase evolution is governed by

h̄C

2e
∂ttφ(t ) + h̄

2eR
∂tφ + Jc1(θ ) sin φ − Jc2 sin 2φ = J0, (10)

with R the normal resistance of the junction, C its capacitance,
and J0 represents the bias current. Voltage across the junction
is equal to h̄

2e∂tφ per the Josephson relation. It is convenient
to normalize all currents by Jc2 and define timescale t0 =
h̄/(2eRJc2) to obtain a dimensionless equation

βc∂ττφ + ∂τφ + J̄c1 cos(2θ ) sin φ − sin 2φ = J̄0, (11)

where τ = t/t0 is the dimensionless time variable. We defined
J̄c1 = Jc1/Jc2, J̄0 = J0/Jc2 and

βc = 2eR2CJc2/h̄ (12)

denotes the Stewart-McCumber parameter.
Equation (11) can be interpreted as an equation of motion

of a phase “particle” (also referred to as the RCSJ particle)
with an inertial mass ∝βc in a tilted washboard potential

U (φ) = − h̄

2e
J0φ + F (φ). (13)

The parameter βc controls the importance of friction: for
βc � 1 friction can be ignored, while for βc � 1 inertia can
be neglected and motion is purely viscous. In the latter case,
if U (φ) has any local minima, the motion will terminate there.
Therefore, when βc � 1 the measured critical current is equal
to the thermodynamic critical current.

From a practical perspective, βc can be controlled by tem-
perature. It is expected to vanish when T → Tc, as the critical
current Jc2 goes to zero [see Eq. (12)]. As temperature is
lowered, βc increases due to two effects: the critical current
Jc2 becomes larger, while the resistance of the junction R
may additionally increase due to the thermal depletion of
quasiparticle population [48].

A. Weakly damped junction: βc � 1

We now consider the case where capacitive effects are
dominant, βc � 1. We first ignore the effects of friction, and
only take into account an infinitesimal damping to ensure a

FIG. 2. Schematic of the phase dynamics for −J0 < Jc and βc �
1. (a), (b) for 2Jc2 > Jc1 cos(2θ ) > 0.79Jc2 [see Eq. (16)]; (c), (d) for
0.79Jc2 > Jc1 cos(2θ ). In (a) and (b) one observes that φ can relo-
cate to the other local potential minimum at J ′, when the original
minimum becomes unstable. However, energy conservation allows
unbounded motion only in case (d).

static steady state when the RCSJ particle is trapped in one of
the potential wells. Effects of finite damping will be discussed
in the following subsection.

In the absence of friction, the motion can be analyzed from
the energy viewpoint. As discussed above, for Jc1(θ ) < 2Jc2

the free energy at J0 = 0 has two distinct minima. This is
the interesting case for the onset of JDE. We assume without
loss of generality that the minimum spontaneously chosen is
φ = φ0 > 0 as illustrated in Figs. 2(a) and 2(c). Turning on
the bias current corresponds to tilting the potential landscape
for the phase particle. Because the potential is not symmetric
around the chosen minimum, the sign of J0 will matter for the
determination of the critical current. It therefore follows that
Ic can be different for the two directions of the bias current,
giving rise to the junction nonreciprocity.

Let us consider the onset of voltage across the junction
upon increasing the bias current J0. In our analysis we assume
that the current is turned on adiabatically, i.e., at each value
of J0 + dJ0 we perform the stability analysis starting from
the energy minimum at the previous step φ0(J0). Clearly,
the phase value will track the local minimum of U (φ), until
J0 = Jc where the minimum becomes unstable.

For J0 > 0 the particle follows the initial minimum at φ0

until J0 = Jc, where it becomes unstable. Jc is given by

Jc = Jc2

8

√
8 − 2x2 + 2x

√
x2 + 8(

√
x2 + 8 + x) (14)

with x = Jc1(θ )/(2Jc2). For J0 > Jc the phase φ will exhibit
unbounded motion resulting in a nonzero φ̇ and, therefore,
voltage.

The situation is different for J0 < 0. In this case, the
minimum that is adiabatically connected to the original one
can become unstable at a lower value of |J0| = J ′ < Jc (see
Fig. 2).

The value of J ′ can be found as follows. Since the min-
imum becomes unstable at this current value, the second
derivative of U (φ), Eq. (13), should be zero at the respective
equilibrium position U ′′(φ′) = 0. Noting that U ′′(φ) is inde-
pendent of J0 we can find φ′ that corresponds to the second
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FIG. 3. (a) Characteristic currents for the dynamical diode effect
from the RCSJ model (11) as a function of Jc1(θ ) for the inital
state of φ taken to be at the right potential energy minimum (see
Fig. 2). Jc1(θ ) = 0 corresponds to θ = 45◦. Dashed black line shows
the J ′

0 value, where the initial potential minimum (taken to be at
φ = φ0 > 0) becomes unstable [see Fig. 2(b)]. The black dotted
and solid lines show the normalized critical current for positive and
negative current bias [see Figs. 2(b) and 2(c)] in the βc → ∞ limit.
Diode effect (I+

c �= I−
c ) is present for Jc1 less than a critical value (16).

Colored lines represent I−
c from the numerical solution of Eq. (11)

for finite βc (I+
c remains the same as for βc → ∞). The transition

from diode to nondiode regime remains abrupt for all βc, but shifts to
lower Jc1(θ ) values. (b) Diode efficiency ηdyn, Eq. (17), as a function
of twist angle θ for Jc1(θ = 0) = 0.1Jc2. Note that the system is in a
TRSB state already for θ > 39.2◦ for these values.

local minimum disappearing. The corresponding current value
(J ′) for its disappearance is then given by

J ′ =
√

1 − cos2(φ′−)[Jc1(θ ) − 2Jc2 cos(φ′
−)]. (15)

The dependence of J ′ on Jc1(θ )/Jc2 is shown in Fig. 3 together
with that of Jc. One observes that for Jc1(θ ) = 2Jc2 one has
J ′ = 0, whereas for Jc1(θ ) = 0, one obtains J ′ = Jc.

For |J0| > |J ′| two cases can be distinguished. Figure 2(b)
illustrates the case when at J ′ the initial energy is not sufficient
for φ to overcome the next potential hump. Therefore, φ will
exhibit an oscillatory motion around the remaining minimum.
Infinitesimal damping will eventually localize the particle at
the remaining stable minimum. So the actual critical current
in this case remains Jc for both directions of applied current
and the behavior is reciprocal.

The other possibility is shown in Fig. 2(d). In this case, the
potential energy of φ is sufficient to overcome the next bar-
rier. This results, for infinitesimal damping, in an unbounded
motion and nonzero voltage. In this case the critical current

is −J ′ rather than −Jc and, therefore, there is a nonzero
diode effect for a given initial φ0 value and adiabatic current
ramping. Analyzing Eq. (13) numerically, we find that this
case is realized for(

Jc1(θ )

Jc2

)
<

(
Jc1(θ )

Jc2

)
D

≈ 0.79. (16)

Thus, importantly, we conclude that the diode effect that oc-
curs in the absence of explicit time-reversal breaking is only
expected within a portion of the TRSB phase. In particular,
this sets a limit for the twist angle |θ − 45◦| � 0.4|θTRSB −
45◦| for the onset of the diode effect. In addition, JDE must
vanish at θ = 45◦ despite the broken time-reversal symmetry
at 45◦. We therefore stress that its observation is a sufficient
but not necessary condition for TRSB. For 0.79Jc2 < Jc1(θ ) <

2Jc2, TRS is broken but the diode effect cannot be observed
due to kinetic energy arguments.

B. Intermediate βc

Above we demonstrated that for βc → ∞ in Eq. (11), there
is a finite diode effect for small enough Jc1(θ ). At the same
time, for βc = 0 diode effect should be absent. Here we study
numerically the behavior of Eq. (10) for finite values of βc.

To find the critical current, we assume the initial condi-
tions to be φ(0) = φ0; φ′(0) = 0 and solve Eq. (11) with bias
current ramping up linearly in time, J̄0 = τ/τ0, where τ0 is
the inverse ramping rate. The critical current is determined by
the value of τ when |φ| becomes larger than π . This criterion
implies that φ has traversed the largest potential barrier (see
Fig. 2) and has enough energy to continue moving. The cri-
terion yields the exact value of Jc only in the limit τ0 → ∞
but we have checked that already for τ0 = 4000 the result
is independent of τ0 and use these converged results in our
discussion.

In Fig. 3(a) we present the value of the critical current for
reverse bias (as shown in Fig. 2) as a function of the first-
harmonic critical current for different values of βc. We can
also quantify the dynamical diode efficiency by

ηdyn =
∣∣∣∣ I+

M − I−
M

I+
M + I−

M

∣∣∣∣, (17)

where M = L(R). I+(−)
M is the critical current value when volt-

age first appears on increasing J0 from zero towards positive
(negative) values with initial condition at potential energy
minimum M. For the results of this section, the two options
M = L(R) give an identical result for ηdyn due to the purely
spontaneous nature of symmetry breaking considered (see,
however, Sec. IV B). In Fig. 3(b) we show the calculated
ηdyn as a function of twist angle. As expected from the above
discussion, it vanishes at 45◦ exactly, then increases up to
a finite value on decreasing the twist angle, vanishing at a
critical value. Note that this critical value always remains
within the TRSB phase.

Let us now discuss the effects of decreasing βc (increasing
damping). One observes that the transition between the diode
and reciprocal regime remains abrupt down to the lowest value
considered. This allows us to define a critical value of the first
Josephson harmonic Jc1(θ ) for the onset of the diode effect, as
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FIG. 4. Critical value of the first-harmonic critical current for
the onset of the diode effect. For large McCumber parameter βc,
the result agrees with the analytical βc → ∞ limit (16). Inset shows
the behavior near the onset of hysteretic behavior of the RCSJ model
βhyst

c .

shown in Fig. 4. From the inset, one observes that the diode
effect becomes extremely fragile at small values of βc.

At low βc the RCSJ model solutions are known to become
nonhysteretic [50]. In the hysteretic regime, the switching
current Ic (critical current on increasing the current from
zero) and retrapping current Ir (where the voltage drops to
zero on decreasing the current from high value) are different,
Ir < Ic. For the current bias between Ic and Ir , therefore, two
steady-state solutions of Eq. (11) are possible. In the non-
hysteretic regime, Ic = Ir , and there is only one steady-state
solution of Eq. (11) for each value of J0. However, the dynam-
ical diode effect requires that there can be a zero-voltage and
a finite-voltage solution at the same value of the bias current,
depending on the initial condition for φ. Thus, hysteresis is a
necessary condition for the dynamical diode effect.

Figure 4, inset, suggests that the diode effect disappears
at around βc ≈ 0.35–0.4. This critical value coincides with
the hysteresis onset of the RCSJ model with the second-
harmonic current phase relation for Jc1(θ ) = 0. This value
can be obtained from the value β

hyst
c ≈ 0.7 [50,51] for the

first-harmonic RCSJ model by replacing 2φ → φ̃ in Eq. (11).

IV. DIODE EFFECTS IN THE PRESENCE
OF EXPLICIT T BREAKING

We now consider the situation where time-reversal sym-
metry is explicitly broken, that is, the GL free energy includes
the contribution Fm defined in Eq. (4), with nonvanishing T -
breaking field m. The Fm term is such that IJ (φ) �= −IJ (−φ),
and therefore leads to a Josephson diode effect already at the
level of thermodynamic critical currents. Such a T -breaking
term, if it survives for T > Tc, could also give rise to memory
effects when the system is heated up above Tc. The junction
would then show the same polarity of the diode effect after
cycling above the critical temperature or after being driven
into the resistive state by exceeding its critical current.

A. Thermodynamic diode effect

For concreteness we assume the simplest twist-angle de-
pendence compatible with the symmetry constraints of the

magnetochiral coupling indicated in Eq. (6). However, our re-
sults are not changed qualitatively by adding higher harmonics
that are also allowed by symmetry. It is then straightfor-
ward to obtain the thermodynamic critical currents, defined
as I±

c = maxφ[±IJ (φ)], from the GL free-energy description
that leads to Eq. (7) for the Josephson current. Figure 5 shows
that when both Jc2 and Jm are nonzero the junction exhibits
nonreciprocal behavior, I+

c �= I−
c , for all twist angles except

for θ = 0, 45◦.
This result can be understood as follows. First, note that for

any m �= 0 the free-energy component Fm is odd under both
T and P , and hence the basic symmetry requirements for the
SC diode effect are met. As already discussed in Sec. II, for
an untwisted junction symmetry dictates that m = 0 such that,
the free energy is symmetric around φ = 0 and there is no
thermodynamic nonreciprocity. At θ = 45◦ the magnetochiral
coupling is maximal, as per Eq. (6), but now the first-order
Josephson term Jc1(θ ) vanishes. It is easy to verify that F (φ)
is then symmetric about its T -breaking minima at φ0 = ±π/2
and, once again, this implies equal thermodynamic critical
currents for both directions.

Furthermore, when Jc2 = 0 (no Cooper pair cotunnel-
ing), IJ is stationary for φ0 = arctan[Jc1(θ )/Jm(θ )] and I±

c =
max[±IJ (φ0)] with

IJ (φ0) = ±
√

J2
c1(θ ) + J2

m(θ ), (18)

and there is again no critical current asymmetry. This occurs
because IJ (φ), while no longer antisymmetric in φ, is nev-
ertheless antisymmetric with respect to a shifted origin. We
thus need all three of Jc1(θ ), Jc2, and Jm(θ ) nonvanishing to
observe thermodynamic nonreciprocity, as also demonstrated
numerically in Fig. 5.

We can derive a bound on the diode efficiency, expressed
through the figure of merit

η = I+
c − I−

c

I+
c + I−

c

, (19)

as follows. We first observe that the maximum of |η| occurs
along the Jm(θ ) = ±Jc1(θ ) lines [Fig. 5(c)]. This can be un-
derstood by recasting Eq. (7) using trigonometric identities as

IJ (φ) =
√

J2
c1(θ ) + J2

m(θ ) sin(φ + α) − Jc2 sin 2φ, (20)

where tan α = Jm(θ )/Jc1(θ ). Clearly, the current I+
c will be

maximal when the maxima of the two sine functions coin-
cide. This happens when α = −π/4 or α = 3π/4, implying
Jm(θ ) = −Jc1(θ ). By sketching the two sine functions it is
also easy to see that, at the same time, such α choices min-
imize I−

c , hence leading to maximum η for Jm(θ ) = −Jc1(θ ),
as indeed found numerically.1

Taking α = −π/4 the current-phase relation (20) simpli-
fies to IJ (φ) = Jm(θ )(cos φ − sin φ) − Jc2 sin 2φ which gives

1Similarly, when α = +π/4 or α = −3π/4 the minima of the two
sine functions in Eq. (20) are aligned, leading to optimal but reversed
diode efficiency, η = − 1

3 . Changing the sign of Jc2 also has the effect
of reversing the diode efficiency.
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FIG. 5. Thermodynamic Josephson diode effect as a function of twist angle θ , obtained from the Ginzburg-Landau description in Eq. (7)
(equivalent to the overdamped regime βc � 1 of the RCSJ model). We take Jc2 = 0.1Jc1, which sets the critical twist angle for the appearance
of topological superconductivity to θc = 39.2◦ through Eq. (3), denoted by vertical black dashed lines. (a) Critical Josephson currents I±

c

develop an asymmetry in the presence of the T -breaking term Jm (here Jm = √
2Jc2). (b) The corresponding difference �Ic = I+

c − I−
c and

figure of merit η, defined in Eq. (19), exhibit a sharp increase upon entering the spontaneous T -breaking phase. The diode effect vanishes
at θ = 45◦, where the diode polarity reverses. (c) The figure of merit η in the θ -Jm plane. The maximal diode efficiency |η| = 1

3 lies on the
Jm/Jc1 = ± cot 2θ curves (the orange dashed line shows the “−” solution).

the following critical currents:

I+
c =

√
2Jm(θ ) + Jc2 (21)

and

I−
c =

⎧⎨
⎩

√
2Jm(θ ) − Jc2, Jc2 < Jm (θ )

2
√

2
J2

m (θ )
4Jc2

+ Jc2, Jc2 > Jm (θ )
2
√

2
.

(22)

The maximal diode efficiency η = 1
3 occurs when Jc2 =

Jm(θ )/
√

2, as shown in Fig. 5(c). Note that at Jc2 = √
2|Jm(θ )|

the free energy transitions from having a double-well structure
(for large Jc2) to a T -broken single-well structure (for small
Jc2) (see also Fig. 7). The largest diode efficiency therefore
occurs in the regime with a single T -broken ground state. In
the double-well regime the largest diode efficiency is η = 7

25

near the transition point Jc2 = √
2Jm(θ ).

Figure 6 further illustrates the nonmonotonic behavior of
the asymmetry parameter η as function of Jm, with a peak at
an optimal value Jopt

m . This peak is very broad for low twist-
angle junctions, and becomes progressively sharper when θ

approaches 45◦. Junctions close to 45◦ twist, as in Fig. 6(c),
are very sensitive to explicit T breaking, as shown by their
small optimal value Jopt

m .
We also stress that, within the GL free-energy description,

both the theory with Jc2 > 0 (where the system exhibits chiral
SC in a range of twist angles) and Jc2 < 0 (which favors the
trivial phase for all twist angles) show similar phenomenology
for the thermodynamic diode effect. As such, the observation
of a nonzero asymmetry η in the presence of explicitly broken
T is, in itself, insufficient to determine whether the underlying
superconductor is chiral. However, if the T -breaking term can
be controlled externally (such as by applying an out-of-plane
magnetic field), the presence of two T -breaking ground states
for Jc2 > 0 should be accompanied by a hysteresis loop when

FIG. 6. Thermodynamic Josephson diode effect as a function of the T -breaking perturbation Jm, obtained from the Ginzburg-Landau
description in Eq. (7) (equivalent to the overdamped regime βc � 1 of the RCSJ model). Various curves denote Jc2/Jc1 between 0 and 0.1,
corresponding to θc ranging from 45o (vanishing topological region) to 39.2◦. (a) For small twist angles, the efficiency parameter η shows a
broad and low peak centered around a large optimal value Jopt

m . (b), (c) For larger twist angles near 45◦, η peaks near its theoretical maximum
of 1

3 for the value of Jc2/Jc1 that best approximates θc ≈ θ through Eq. (3). The η peaks become sharper, and occur at a decreasing optimal
value Jopt

m , when θ approaches 45◦.
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FIG. 7. Critical value of the first-harmonic Josephson current
Jc1(θm

cr ) for the emergence of two potential minima in the Josephson
energy Um(φ) (23) for J0 = 0 (illustrated by insets) as a function of
TRSB Josephson current Jm.

Jm is swept back and forth around 0. Such a hysteresis is not
expected in the theory with Jc2 < 0, which supports a single
T -preserving ground state.

B. Dynamical diode effect in the presence
of explicit time-reversal breaking

We now revisit the results of Sec. III in the presence of
explicit TRSB terms in the Josephson energy, which now
takes the form

Um(φ) = − h̄

2e
J0φ + h̄

2e
Jm(θ ) sin φ + F (φ), (23)

where F (φ) is defined by Eq. (2). For J0 = 0, there is always
only one global minimum of Eq. (23). However, two distinct
local minima in the Josephson energy Um(φ) can still remain.
In particular, for a fixed value of Jm, two minima exist for
Jc1(θ ) ranging from zero (corresponding to 45◦) to a finite
critical value. In Fig. 7 we present this critical value of the
first harmonic of the Josephson current as a function of Jm.
Note that for Jm > 2Jc2 only a single minimum exists for all
values of Jc1.

In this section, similarly to Sec. III A, we consider the
dynamical diode effect neglecting damping, i.e., for βc � 1
and assuming adiabatic current ramping. Let us consider the
case when two distinct minima exist [Fig. 8(a)]. For φ being
initially at L (R) there exist two characteristic current values
(I±

L(R)) when the particle escapes that minimum under positive
or negative current bias. In Fig. 8(b) we present I±

L(R) calcu-
lated numerically for Jm/Jc2 = 0.5 as a function of Jc1. The
behavior qualitatively resembles Fig. 3, but the curves for IL

and IR are not symmetric, reflecting the explicit TRSB.
The black dots in Fig. 8(b) mark the values where one

of the minima ceases to exist, but not necessarily leading to
the onset of voltage. At low Jc1 values there are four such
characteristic currents, two positive and two negative. For the
current values between the second and third characteristic
currents (ordered by their value from lowest to highest), two
minima in the potential exist. Remarkably, for Jc1(θ ) � Jc2

one observes that this range does not cover zero current. This
implies that additional minima in (23) can be generated by

I L
- I L
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I R
- I R

+
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- 1
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2
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ηdyn

ηtherm
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Jm (θ)
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0.4
0.5
ηmax

η=1/3

FIG. 8. (a) Illustration of the Josephson potential (23) with
TRSB term Jm < Jc2 in the absence of external current. (b) Four
characteristic current values I±

L,R for βc → ∞ and Jm/Jc2 = 0.5. The
colored lines show the values where the φ can actually escape the
local minimum, leading to the onset of the voltage. The black points
mark all values where one of the local minima ceases to exist,
not necessarily leading to the voltage onset. (c) Maximum diode
efficiency [obtained by varying Jc1 for each value of Jm] for the
thermodynamic and dynamic diode effect.

the applied current in presence of finite Jm, even if there is
only one minimum at J0 = 0 (see Fig. 7). The application of
a current can thus restore, to a degree, the symmetry of the
potential, by counteracting the TRSB term in Eq. (23).

Let us now discuss the expected behavior of the critical
current in an experiment. In thermodynamic equilibrium, φ

always starts at L for Jm > 0 [Fig. 8(a)], and therefore IR

and bistability of the potential is unobservable in the critical
current (see, however, Sec. V for the nonequilibrium case).
Nonetheless, the possibility of preemptive escape alters the
diode effect strength with respect to thermodynamic effect
corresponding to the overdamped limit discussed in Sec. IV A.

In Fig. 8(c) we present the maximal diode efficiency ηmax

[Eq. (17), where M = L(R) for Jm > (<)0], as a function of
Jm (obtained by varying Jc1 for each value of Jm and com-
pare it with the thermodynamic η [Eq. (19)], where |I±

c | =
max[|I±

L |, |I±
R |]. The dynamical diode efficiency can be larger

than the maximal value 1
3 for η, due to the possibility of early

escape. At low values of Jm, ηdyn ≈ 0.53, corresponding to
the dynamical diode effect caused by spontaneous symmetry
breaking (Fig. 3).
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V. DYNAMICAL VS THERMODYNAMIC DIODE EFFECT:
EXPERIMENTAL PROTOCOL

In the above sections we have demonstrated that both spon-
taneous (Sec. III) and explicit (Sec. IV) TRSB can lead to
current nonreciprocity in twist junctions of d-wave supercon-
ductors. However, for purely spontaneous TRSB, one expects
the sign of nonreciprocity to be random, while the addition
of even a small explicit TRSB term will fix it. This raises the
question of how the possible spontaneous nature of TRSB and
the bistability of the current-phase relation can be identified
in an experiment. As has been discussed above, while the
diode effect in the thermodynamic critical current requires the
second harmonic of the Josephson current to be present, it may
occur even in the case when there is no bistability. Here we
explain how can one characterize the TRSB in twisted nodal
superconductors by adapting the protocol used in experiments
on ferromagnetic Josephson junctions [47].

A. Spontaneous TRSB: Jm = 0

Since TRSB occurs spontaneously, the equilibrium value
φ is chosen randomly to be equal to +φ0 or −φ0. The key
insight is that one can deterministically prepare the system in
one or the other equilibrium by current sweeping.

Consider adiabatically decreasing |J0| from high bias larger
than Ic towards zero. For βc > βcr

c (hysteretic regime) the
voltage will only go to zero at Ir , |Ir | < Ic. Let us focus on
how retrapping occurs. The value of Ir corresponds to the case
when φ(t ) eventually stops (φ̇ = 0 as t → ∞) for any initial
conditions. For such a solution to exist, the potential (13)
has to have at least one local minimum (otherwise, there will
be a force acting on φ and causing motion). In Sec. III, we
demonstrated (see Fig. 2) that for J ′ < J0 < Jc values only
one minimum exists. Moreover, this minimum is adiabatically
connected with the right (left) minimum at J0 = 0 for J0 >

(<)0. Thus, for Ir > J ′ (which requires sufficiently strong
damping, but still in the hysteretic regime), the value of φ can
be deterministically prepared by retrapping.

A more general argument can be given that extends to
lower Ir , where for each interval φ ∈ [2πn, 2π (n + 1)] there
exist two minima of (13). Without loss of generality, let us
assume J0 > 0. For J0 > Ir , φ̇(t ) is a periodic function such
that φ(t ) advances by 2π over the period. This implies that
φ̇ has a global minimum φ̇min for every period. For large J0,
where Josephson nonlinearity can be neglected φ̇ > 0 for all
t . Therefore, for large enough J0, φ̇min > 0. To go into the
retrapped state, φ̇min has to go through zero at some value of
J0. We will show now that this value is the retrapping current.
At this critical value, φ̇min = 0, but φ̇ � 0 at all times. The
equation (13), on the other hand, implies that φ̈ ∼ −U ′(φ).
So if φ̇(tmin) = 0, φ̇ has to be negative either before or after
this moment unless U ′(φ(tmin)) = 0. This implies that φ has
to be in the minimum or maximum of U (φ). The former can
be excluded since infinitesimal increase of J0 will not set φ

into motion. Thus, φ is at the maximum of U (φ). This implies
that reducing J0 further would lead to φ̇ < 0. Since energy is
dissipated with time, φ will never be able to overcome the po-
tential maximum and is thus retrapped. For Eq. (13), only one
such maximum exists per 2π interval if Jc1 �= 0. Therefore,
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FIG. 9. (a) Three current sweeping protocols [Eq. (24)] for tc =
2000t0. (b), (c) Voltage (averaged over 10t0) from numerical solution
of Eq. (11) for βc = 5 (b) and βc = 80 (c). Voltage is shown for the
second cycle of the current sweeping to suppress the effects of initial
conditions. The time at which voltage first appears corresponds to a
critical current value in (a). The two half-sweep directions (purple
line) lead to identical critical current amplitudes, as is expected in
the absence of explicit TRSB. For the full-sweep protocol (green
dashed line), on the other hand, the current is sweeped in the opposite
direction with respect to the position of the phase at zero current
(see Fig. 2). The difference in full-sweep and half-sweep current
demonstrates the bistability of the Josephson energy.

φ would stop to the left (right) of the potential maximum for
J0 > (<)0 and will be trapped in different minima depending
on the sign of J0. Note that for large βc, φ can perform many
oscillations before stopping, and thus the result of retrapping
becomes extremely sensitive to βc [45].

The above discussion leads to the following experimen-
tal protocol. One can “prepare” φ to be in the left or right
minimum by retrapping. Then, biasing the junction with pos-
itive or negative voltage will lead to different critical currents
in a part of TRSB phase (see Fig. 3). One can implement these
ideas by comparing the measured voltage for three periodic
current patterns depicted in Fig. 9(a). We refer to these as
full-sweep and half-sweep protocols J full

0 (t ) and Jhalf,±
0 (t ),

mathematically defined as

J full
0 (t ) =

⎧⎪⎨
⎪⎩

Jmaxs(t ), 0 < s(t ) < 1

Jmax[2 − s(t )], 1 < s(t ) < 3

Jmax[−4 + s(t )], 3 < s(t ) < 4

(24)
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where s(t ) = mod [t, 4tc]/tc and Jhalf,±
0 (t ) = ±|J full

0 (t )|. For
the full sweep and half-sweep the junction is biased in op-
posite directions after an interval over which they coincide.
The latter can be viewed as a “preparation” step, where φ

is prepared in the same minimum, but afterwards biased in
opposite directions for full and half-sweeps. A difference in
the measured voltage between the two protocols implies dy-
namical diode effect and spontaneous TRSB.

To demonstrate the protocol explicitly, we numerically
solved Eq. (11). Two typical solutions are presented in
Figs. 9(b) and 9(c). One observes that full and half-sweep
protocols always give different critical current values, as ex-
pected from dynamical diode effect. Note that there is no
difference between ± half-sweep cases, because there is no
explicit TRSB. One observes that changing the value of βc

leads to different relation between full and half-sweep cases.
In particular, this points out that the minimum, where φ is
retrapped, depends on the value of βc [45]. Nonetheless, for
both cases the dynamical diode effect and thus spontaneous
TRSB can be demonstrated from this protocol.

B. Explicit TRSB: Jm �= 0

Large Jm excludes the possibility of deterministic retrap-
ping since there is only one minimum at zero current bias (see
Fig. 7). However, at smaller values of Jm, two minima remnant
from the spontaneous TRSB state can still exist.

In Fig. 10 we present four characteristic regimes that occur
as a function of Jc1 for a fixed Jm. For large Jc1 [Fig. 10(a)],
the full- and half-sweep protocols yield the same values
of the critical current. However, positive and negative bias
(two stages of full-sweep or ± half-sweep protocols) show
different critical current for voltage onset. This is the thermo-
dynamic diode effect, described in Sec. IV A. Decreasing Jc1

[Figs. 10(b) and 10(c)] leads to the splitting between full and
half-sweep protocols, consistent with additional characteristic
current values appearing in Fig. 8(b). This indicates bistability
of the potential (23) remnant from the spontaneous TRSB
state at Jm = 0. Interestingly, the full-sweep/half-sweep crit-
ical current splitting disappears at yet smaller values of Jc1

(corresponding to twist angles closest to 45◦) [Fig. 10(d)].
The analysis of the numerical solution suggests that at low
Jc1 retrapping training is ineffective: φ always gets trapped in
the global minimum, leaving only signatures of the thermody-
namic diode effect.

Thus, the described protocol gives access (for sufficiently
large βc and not too close to 45◦) to all four characteristic
values of the current [Figs. 10(b) and 10(c)]. This allows
to directly demonstrate the presence of two minima in the
Josephson energy even in the presence of explicit TRSB.

VI. OTHER IMPLICATIONS OF SECOND-HARMONIC
AND MAGNETOCHIRAL COUPLING

As discussed in earlier theoretical works [10,11], and
confirmed by experimental observations in twisted BSCCO
bilayers [12], the presence of the second-harmonic term Jc2

in the free energy F (φ) can be probed by means of perturbing
the junction using in-plane magnetic field or a radio-frequency
(rf) drive. In this section we briefly discuss the effect of these

FIG. 10. (a)–(d) Voltage (averaged over 10t0) from numerical
solution of Eq. (11) with added TRSB term Jm (values given in the
panels) and current driving shown in Fig. 9(a). Insets in (d) marked
by black dashed line show magnified transition region (not to scale).
In contrast to Fig. 9, the half-sweep critical current (related to the
voltage onset time) depends on the current polarity (red solid line
for “+,” blue solid line for “−”), reflecting the explicit TRSB. The
full-sweep critical current (green dashed line) coincides with one of
the two half-sweep values when the first harmonic is large (a) or
extremely small (d). For other values of Jc1 (b), (c), the full sweep
shows values of critical current distinct from both (c) or at least one
(b) of the half-sweep protocols. The latter observation can be used
to demonstrate bistability of the Josephson potential even if TRSB is
explicitly broken.

perturbations on the Josephson response in the presence of
both Jc2 and magnetochiral coupling Jm(θ ). We find that the
asymmetry between the two current directions is sensitive to
the presence of in-plane magnetic field which can therefore be
used to probe the effect in greater detail. The magnetochiral
coupling, on the other hand, modifies the junction response to
the rf drive and produces asymmetry in the resulting Shapiro
steps.

A. Fraunhofer patterns

In a regular Josephson junction, all of the junction area
can support the critical current I±

c because of the position-
independent phase difference between the superconductors.
An in-plane magnetic field, however, induces a phase gradient
such that the maximum and minimum interlayer current den-
sities vary spatially. More concretely, with the junction plane
perpendicular to the z direction, when a magnetic field By is
applied along y, the Josephson current density along x is given
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FIG. 11. Fraunhofer interference patterns, Shapiro steps and the JDE. (a), (b) In the presence of a dominant second harmonic and Jm =
0.25Jc2 (with Jc2 = 0.2 in units of Jc1), the envelopes of the positive and negative critical currents are different. At half-integer flux quanta,
the curves intersect and the diode effect vanishes because the contribution from the second harmonic goes to zero due to its π periodicity. (c),
(d) Close to 45◦, the normalized Shapiro step heights (indicated with the color scale) are asymmetric about zero voltage.

by IJ (φx ), where the phase variation [48,49]

φx = 2πd

0
Byx + φ0. (25)

Here d is the effective junction thickness, 0 = (hc/2e) de-
notes the superconducting flux quantum, and φ0 is a uniform
phase shift. When integrated over the area of a junction of
unit length L and width W , the interference from different
contributions results in a Fraunhofer pattern

IJ (φ0,) = [Jc1(θ ) sin(φ0) + Jm(θ ) cos(φ0)]
sin (π/0)

π/0

− Jc2 sin(2φ0)
sin (2π/0)

2π/0
, (26)

where  = dLBy is the magnetic flux through the junction.
The equilibrium critical currents for a given flux are deter-
mined by the extrema of IJ (φ0,) with respect to φ0.

We notice that Eq. (26) has the same form as the zero-
field expression (7), albeit with renormalized coefficients.
The second and first harmonics are renormalized differently.
In particular, at /0 = n + 1/2 with n integer, the second
harmonic vanishes, while the first harmonic and the magne-
tochiral term do not. At the corresponding field values By

we therefore expect the thermodynamic diode effect to be
suppressed. This is indeed observed in our simulation results
[Figs. 11(a) and 11(b)]. The diode effect persists at nonzero
field strengths except at half-integer fluxes where contribution
from the second harmonic vanishes because of its π periodic-
ity. In its absence, the diode effect cannot be induced by the Jm

term alone and, hence, I+
c = I−

c . Moreover, the switch in the
values of the second harmonic at half-integer fluxes changes
the diode polarity and is manifested as the oscillating pattern
in the I+

c and I−
c curves. The polarity flipping as a function

of the in-plane field is, therefore, suggestive of a dominant
second harmonic alongside the magnetochiral term.

B. Shapiro steps

When a Josephson junction is subjected to an external rf
drive, the I-V curves show steps at integer multiples of the
voltage Vs = (h̄ω/2e), where ω is the drive frequency. The
phenomenon is captured by the resistively shunted junction

(RSJ) model [49]

h̄

2eR

∂φ

∂t
+ IJ (φ) = Idc + Jrf sin(ωt ), (27)

where R is the junction resistance, Idc is the measured di-
rect current (dc), and Jrf is the drive amplitude. We solve
Eq. (27) numerically using energy units where h̄/2e = 1,
R = 0.7, and ω = 0.6. Two representative results are depicted
in Figs. 11(c) and 11(d). The nth Shapiro step represents a n
photon-assisted tunneling of Cooper pairs across the junction.
In the presence of a dominant second harmonic, cotunneling
of Cooper pairs gives rise to steps at half-integer multiples of
Vs. In a symmetric Josephson junction, the step heights for
positive and negative bias voltages are identical. We observe
that in the presence of the magnetochiral term the step heights
at half-integer voltages are no longer symmetric about zero
voltage [Fig. 11(d)]. Such an asymmetry, therefore, could be
indicative of explicit TRSB in the junction.

VII. DISCUSSION AND CONCLUSIONS

The free energy F (φ) of a Josephson junction can develop
the characteristic double-well structure when the Cooper pair
cotunneling process (i.e., the second CPR harmonic Jc2) be-
comes dominant. In twisted c-axis junctions between two
d-wave superconductors this is expected to occur as the twist
angle approaches 45◦ and the single-pair tunneling Jc1 is sup-
pressed [2]. In this work we identified two types of Josephson
diode effects that can occur in these kinds of junctions.

The dynamical JDE depends on the initial state of the
system and relies on the fact that, for a given free-energy
minimum, the barrier between the SC and resistive states is
generally different for the two polarities of the bias current.
Therefore, when the damping is small, the junction can exhibit
consistent JDE, provided that the measurement protocol is
devised such that one always starts from the same free-energy
minimum. According to our analysis, spontaneous TRSB is a
prerequisite for the dynamical JDE; however, it occurs only in
a portion of the T -broken phase as illustrated in Fig. 1. Obser-
vation of the dynamical JDE therefore provides evidence for
the bistability of the free-energy landscape and spontaneous
T breaking in the twisted junction.
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The thermodynamic JDE by contrast depends on explicit T
breaking that is present at the level of the GL free energy, that
is, exists already in the normal state of the material. In this
case F (φ) has a single global minimum away from φ = 0, π

and the diode effect exhibits a fixed polarity controlled by
the sign of the T -breaking term. As we discussed, the second
harmonic Jc2 must be present in this case also for the device to
show JDE, even though it need not be dominant. In addition,
thermodynamic JDE survives in the limit of strong damping.
Importantly, signatures of the bistability of the potential can
be revealed in an experiment even in the case when T is bro-
ken explicitly. As discussed in Sec. V B this can be achieved
by comparing different current sweep protocols, allowing to
trap the phase in a local minimum of the free energy.

Some consequences of spontaneous T breaking predicted
by theory [2,10,11] were recently explored in Ref. [12], which
reported anomalous Fraunhofer diffraction patterns and half-
integer Shapiro steps in near-45◦ twisted BSCCO junctions.
The same work reported evidence of zero-field SC diode effect
in these devices. Samples with twist angle slightly away from
45◦ (but within a window of about ±6◦) showed behavior con-
sistent with the dynamical diode effect discussed in Sec. III,
indicative of a Josephson free energy with a pronounced
double-minimum structure. The nonreciprocal response was
probed via the “full-sweep/half-sweep protocol” described in
Sec. V, whereby the current sequence applied to the twisted
junction is defined so as to controllably prepare the system
in one of the two T -broken minima. Importantly, junctions
outside of the 45◦ ± 6◦ twist-angle window showed reciprocal
behavior, consistent with our result that dynamical JDE is
only expected to be observed within a portion of the TRSB
phase. Furthermore, the diode effect was found to vanish in
the limit θ → 45◦, in accord with the discussion in Sec. III.
Our theory therefore provides a good explanatory framework
for the experimental findings of Zhao et al. [12]. Together,
these works make a compelling case for spontaneous TRSB
in high-quality BSCCO junctions with a twist angle close to
45◦.

Several samples studied in Ref. [12] were reported to ex-
hibit a memory effect indicative of the thermodynamic JDE,
with fixed diode polarity independent of its current bias his-
tory [12] and efficiency η up to 20%, somewhat lower than the
theoretically expected maximum of 1

3 (see Fig. 6). Most of
them showed the full-sweep/half-sweep splitting, indicating
bistability of the potential (see Sec. V B). According to our
analysis in Sec. IV such behavior is suggestive of explicit T
breaking in the device that is, presumably, present already
in the normal state. Since optimally doped BSCCO crystals
are normally thought to be nonmagnetic, the nature of this
normal-state T breaking poses an interesting open question.
We consider two distinct possibilities for its origin: (i) Even
though a single monolayer BSCCO is nonmagnetic, it is pos-
sible that a twisted bilayer develops normal state orbital or
spin magnetism. This would not be unprecedented; twisted
graphene bilayers are well known to develop T -breaking in-
stabilities even thought a single monolayer is nonmagnetic.
(ii) A “vestigial” order [52] that arises from fluctuations of the
two superconducting order parameters breaking time-reversal
symmetry [53–56]. Briefly, the idea is that above Tc the
individual phase-averaged order parameters vanish, 〈ψ1〉 =

〈ψ2〉 = 0, but the composite object m ∝ 〈iψ1ψ
∗
2 + c.c.〉 may

remain ordered up to a higher critical temperature Tm > Tc.
This scenario requires the relative phase φ to remain fixed
at one or the other T -breaking value even above Tc, hence
enabling the return to the same free-energy minimum upon
cooling back below Tc. However, the free energy of the su-
perconducting state below Tc is identical to the case without
vestigial order and therefore current training of the diode
polarity (dynamical diode effect) should still be possible.
Consequently, coupling to other degrees of freedom (spins or
orbitals), e.g., through scenario (i), appears required to explain
the observed memory effect.

Josephson diode effects have also been observed in
twisted BSCCO junctions by two other groups [39,40]. Ref-
erence [39] reports a large thermodynamic diode effect in
presence of a magnetic field along z, with a diode efficiency η

reaching up to 60%. Its efficiency was found to be largest near
45o, but nevertheless nonzero for all twist angles considered.
Further, the diode polarity can be switched by cycling an
applied out-of-plane magnetic field, accompanied by a hys-
teresis loop. Such observations have been attributed to the
presence of a component of the magnetic field through the
junction, generated by the in-plane bending of flux lines con-
necting the misaligned Abrikosov vortex lattices of the two
BSCCO flakes. Therefore, in such a setup the identification of
potential signatures of spontaneous T breaking, as discussed
in this work, will be much more subtle. Developing a gener-
alization of our theory to include effects of vortices remains
an interesting question for future work, which may explain
the large value of η observed. Reference [40], by contrast,
reports observation of the diode effect in the nominal absence
of external magnetic field for a sample close to 45o. We note
that our theory predicts that the thermodynamic diode effi-
ciency rises rapidly as the angle is tuned away from 45◦ (see
Fig. 5) and even a small misalignment from 45o can lead to a
significant diode effect. The finite value of Ic in the sample has
been interpreted in Ref. [40] as evidence of non-d-wave pair-
ing component. However, the remnant critical current could
as well arise from the second-harmonic mechanism [10,11]
considered in our work. Shapiro step measurements could be
potentially used to test this scenario.

Our results are agnostic to the microscopic origin of the
second-harmonic term in the Josephson free energy. A first
possibility is that of direct Cooper pair cotunneling between
the twisted BSSCO flakes [2]. The expected magnitude of
such a contribution is, however, difficult to compute ac-
curately [8,11]. Another interesting recent proposal is that
twist-angle inhomogeneities for near-45◦ junctions may lead
to a first-harmonic term that vanishes on average but still
retains significant spatial fluctuations [42]. Such a setup was
then shown to lead, under suitable conditions, to an effec-
tive second-harmonic term with the correct sign to promote
spontaneous T breaking at the interface. Similarly, we do not
attempt to identify the microscopic mechanism behind the
possible residual T breaking suggested in the normal state
of twisted BSCCO bilayers by the results of Ref. [12]. This
is clearly an intriguing effect and, provided that it can be
reproduced in more samples and that conditions for its onset
are better understood, furnishes an interesting topic for future
studies.
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On the other hand, the phenomenological character of our
model allows the application of our results to other systems
where the same current-phase relation appears. For example,
our results for the undamped and overdamped limits are in
agreement with Refs. [57] and [21], respectively. Therefore,
the analysis performed in this work for arbitrary damping
and the experimental protocols discussed in Sec. V can prove
useful for the analysis of a wide variety of systems [21,43,57].
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