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Proximity effect of s-wave superconductor on an inversion-broken Weyl semimetal
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Inducing superconductivity in systems with unconventional band structures is a promising approach for
realizing unconventional superconductivity. Of particular interest are single-interface or Josephson junction
architectures involving Weyl semimetals (WSM), which are predicted to host odd-parity, potentially topological,
superconducting states. These expectations rely crucially on the tunneling of electronic states at the interface
between the two systems. In this study, we revisit the question of induced superconductivity in an inversion-
broken WSM via quantum tunneling, treating the interface as an effective potential barrier. We determine the
conditions under which the gap function couples to the Weyl physics and its properties within the WSM. Our
simulations show that the mismatch in the nature of the low-energy electronic states leads to a rapid decay of the
superconductivity within the semimetal.

DOI: 10.1103/PhysRevB.109.094517

I. INTRODUCTION

New quantum states of matter have been predicted to ap-
pear when materials with nontrivial band structure are placed
in proximity with correlated phases such as superconductivity
and magnetism. However, a key requirement is the ability of
the electronic states on the two sides of the interface to ad-
mix efficiently. While symmetry considerations and effective
models predict possible induced phases, a quantitative under-
standing can only be ascertained by a detailed modeling of
the relevant physics at the interface. In this paper, we discuss
the nature of superconductivity induced in a time reversal
preserving Weyl semimetal (WSM) when placed in proximity
to an s-wave superconductor within a continuum model. Moti-
vated by the experimental observation in ion-irradiated NbAs
microstructures [1], our primary focus is on understanding the
conditions under which superconductivity can be induced in a
WSM. Unlike past approaches that either (a) rely on a tunnel-
ing model [2–8] or (b) use effective field-theory approaches
starting from a phenomenological pairing model [3,9–16], we
numerically solve the Bogoliubov–de Gennes equation for
the full superconductor-WSM system. The purpose of this
approach is to establish the effectiveness of the proximity
effect to induce superconductivity which faithfully accounts
for the mismatch of material parameters such as location of
low-energy states in the Brillouin zone, Fermi velocity, and
the symmetry of the wave functions.

This paper is organized as follows: In Sec. II, we intro-
duce models for the WSM and superconducting materials,
and establish our Nambu basis. In Sec. III, we detail the
numerical method we use to calculate the superconducting
pairing amplitudes. In Sec. IV, we explore the results for (i) a
superconductor-WSM architecture, (ii) a Josephson junction
architecture, and (iii) an exploration of superconductor-WSM
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architectures to identify key parameters. Finally, we discuss
the implications of our findings in Sec. V.

II. MODEL

Consider a device of length L with a boundary at z = LB

separating: (i) a metallic superconductor and (ii) a WSM with
broken inversion symmetry, as seen in Fig. 1. The Hamilto-
nian for the WSM is [17]

HW SM =
∫

d3r
∑
ss′

∑
σσ ′

�†
sσ (r)

[
vσxSzPx − vσyPy

+ (
mzP

2
z − m

)
σz − μσ0S0

]
�s′σ ′ (r). (1)

Here, �†
sσ (�sσ ) is a creation (annihilation) operator for an

electron with spin s =↑,↓ and orbital quantum number σ =
1, 2. The momentum operator is given by P = −i �∇, μ is
the chemical potential, and the Pauli matrices σi (Si) act in
the orbital (spin) subspace, with S0 and σ0 their respective
identities. Parity and time-reversal operators are P = σz and
T = ıSyK where K performs complex conjugation. Of the
four possible terms that break inversion symmetry, but pre-
serve time reversal, two generate nodal rings while the other
two generate Weyl nodes in either the kx − kz or ky − kz plane.
Focusing on nodal phenomena, the term that has Weyl nodes

FIG. 1. (Left) Device consisting of an s-wave superconductor
(SC) in contact with a WSM (WSM); the boundary is located at LB.
(Right) A Josephson junction architecture with boundaries at BL and
BR.
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in the kx − kz is given by

HIB =
∫

d3r
∑
ss′

∑
σσ ′

�†
sσ (ασx )�s′σ ′ (r). (2)

The distance between the nodes along the kx direction
is given by 2α, which in principle can be determined from
data on Weyl semimetals. We treat it as a phenomenological
parameter in our effective model. An important consideration
in constructing a continuum model is to account for the dis-
continuity in the Hamiltonian along the z direction. Our goal
is to use a basis that spans the entire device, which requires the
same degrees of freedom and power of the Pz operator on both
sides of the interface. To implement the numerical procedure
in a Fourier basis, the model for the metallic region is also
written in the two-band basis. The parameters are chosen so
that a quadratically dispersing spin-degenerate band centered
about the � point intersects the Fermi surface:

HM =
∫

r

∑
ss′

∑
σσ ′

�†
sσ (r)[(mzP2 + E0)σzS0

− μσ0S0]�s′σ ′ (r), (3)

where E0 is the band gap. Finally, we add to the metallic
model a superconducting term:

HSC =
∫

r

∑
ss′

∑
σσ ′

(iSy)ss′�σσ ′ (r)�†
sσ (r)�†

s′σ ′ (r) + H.c. (4)

The gap function �σσ ′ is given by

�σσ ′ (r) = gσσ ′ (r)Fσσ ′ (r), (5)

where Fσσ ′ (r) is the pairing amplitude. The interaction
strength gσσ ′ (r) is constant within the superconductor, and
only nonzero for σ = σ ′ = 1. Note that the σ = 1 band is the
only one that intersects the chemical potential. The advantage
of this representation is that the Hamiltonian can be expanded
in a basis of sin(kzz) with the choice of kz determined by the
boundary condition at z = 0 and z = L. A self-consistent so-
lution accurately captures the interface at z = LB represented
by a sharp discontinuity.

We obtain the BdG Hamiltonian for the bulk model in the
Nambu basis:

�k⊥ (z) = [�k⊥,1,↑, �k⊥,1,↓, �k⊥,2,↑,

× �k⊥,2,↓, �
†
−k⊥,1,↓, �

†
−k⊥,1,↑, �

†
−k⊥,2,↓, �

†
−k⊥,2,↑]T

(6)

in the form

H = 1

2

∫
dz

∫
d2k⊥�†

k⊥ (z)HBdG(k⊥, z)�k⊥ (z)

with the BdG Hamiltonian

HBdG(k⊥, z) = σzτz[mz�(LB − z)k2
⊥ − mz∂

2
z + E0(z)] + τz[v(z)(kxσxSz − kyσy) − m(z)σz + α(z)σx − μ]

+ (iSy)�11(z)σ+σxτ+ − (iSy)�11(z)σ+σxτ−, (7)

where τi are the Pauli matrices in the particle-hole subspace,
τ± = (τx ± iτy)/2, and �11 is the gap function of the host
superconductor. The parameters E0, m, v, and α have been re-
placed with piecewise functions that are nonzero only within
their respective regions.

With broken inversion symmetry and the introduction of
the orbital quantum number σ , four nonzero pairing ampli-
tudes are allowed:

F11(z)=−1

2

∫
d2k⊥[〈�−k⊥,1,↓�k⊥,1,↑〉+〈�k⊥,1,↓�−k⊥,1,↑〉],

(8)

FT (z)=−1

2

∫
d2k⊥[〈�−k⊥,1,↓�k⊥,2,↑〉 + 〈�k⊥,2,↓�−k⊥,1,↑〉],

(9)

FS (z)=−1

2

∫
d2k⊥[〈�−k⊥,1,↓�k⊥,2,↑〉 − 〈�k⊥,2,↓�−k⊥,1,↑〉],

(10)

F22(z)=−1

2

∫
d2k⊥[〈�−k⊥,2,↓�k⊥,2,↑〉+〈�k⊥,2,↓�−k⊥,2,↑〉],

(11)

where FS and FT denote an orbital singlet (spin triplet) and
orbital triplet (spin singlet) pairing, respectively.

III. METHOD

We seek to self-consistently calculate the pairing amplitude
given by Eqs. (8)–(11). To this end, we solve the BdG equation

Hk⊥ (z)
α,k⊥ (z) = Eα,k⊥
α,k⊥ (z), (12)

where the wave function 
α,k⊥ (z) is given by


α,k⊥ (z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uα,k⊥,1,↑(z)

uα,k⊥,1,↓(z)

uα,k⊥,2,↑(z)

uα,k⊥,2,↓(z)

vα,−k⊥,1,↓(z)

vα,−k⊥,1,↑(z)

vα,−k⊥,2,↓(z)

vα,−k⊥,2,↑(z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and is subject to the boundary condition 
α,k⊥ (0) =

α,k⊥ (L) = 0. We follow the approach taken in Setiwan et al.
[18], and take the particle (hole) wave functions uα,k⊥,σ,s(z)
(vα,k⊥,σ,s(z)) to be

uα,k⊥,σ,s(z) =
√

2

L

N∑
n=1

u(n)
α,k⊥,σ,s sin(knz), (13)

vα,k⊥,σ,s(z) =
√

2

L

N∑
n=1

v
(n)
α,k⊥,σ,s sin(knz), (14)
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where kn = nπ/L. The cutoff mode N is chosen such that
N = (kw

F L/π )
√

1 + ωD/(μ + m), with kw
F the Fermi momen-

tum of the WSM, and ωD the Debye frequency. Under these
conditions, Eqs. (8)–(11) are simplified from a coupled dif-
ferential equation into a finite eigenvalue problem that can be
solved numerically. To do so, we recast the Hamiltonian in the
chosen Fourier basis

〈n|H(k⊥)|m〉 = 2

L

∫ L

0
dz sin(knz)Hk⊥ (z) sin(kmz). (15)

As mentioned previously, this approach requires the same
degrees of freedom and power of the Pz operator on both sides
of the interface. To illustrate, imagine the coefficient attached
to Pz (mz) is not constant throughout the device; it will have
a value of mL in the SC and mR in the WSM. The associated
off-diagonal matrix elements hnm are now given by

hnm = 2mL

L

∫ LB

0
dzk2

m sin(knz) sin(kmz)

+ 2mR

L

∫ L

LB

dzk2
m sin(knz) sin(kmz)

∝ (mL − mR)k2
m.

Since this term is not symmetric under an exchange of n and
m, the resulting Hamiltonian is not Hermitian. Clearly the
Fourier expansion is not the best approach without a proper
accounting of the interface, but the numerical approach is still
valid if an appropriate basis can be chosen. In general, the
Bogoliubov–de Gennes (BdG) equation is rearranged into the
differential equation∑

n

mn(z)(∂z )n�α,k⊥ = A(z)�α,k⊥ , (16)

where A(z) is a matrix that is typically constant in either
region. Equation (16) need not be solved in its entirety; if a
general solution for �α,k⊥ can be found as a series with some
set of basis functions, then this numerical approach can be
implemented using those basis functions.

We are now equipped to self-consistently calculate the
pairing amplitudes given by Eqs. (8)–(11):

Fσσ ′ (z) = −1

2

∫
d2k⊥

∑
nm

[〈
�

(n)
−k⊥,↓,σ �

(m)
k⊥,↑,σ ′

〉
± 〈

�
(n)
k⊥,↓,σ ′�

(m)
−k⊥,↑,σ

〉]
sin(knz) sin(kmz). (17)

We apply a Bogoliubov transform

�
(n)
k⊥,s,σ =

∑
α

[
u(n)

α,k⊥,s,σ γα,k⊥ + v
∗(n)
α,−k⊥,s,σ γ

†
α,k⊥

]
, (18)

where γα,k⊥ (γ †
α,k⊥) is the quasiparticle annihilation (creation)

operator for a quasiparticle with energy Eα . The pairing am-
plitude is now given by

Fσσ ′ (z) = − 1

2

∑
|ζα |�ωD

∑
nm

∫
d2k⊥

[
u(n)

α,−k⊥,↓,σ v
∗(m)
α,k⊥,↑,σ ′

± u(n)
α,k⊥,↓,σ ′v

∗(m)
α,−k⊥,↑,σ

]
sin(knz) sin(kmz), (19)

where ζα = Eα − μ provides a cutoff for the interaction, and
the BCS ground state is the vacuum state of the quasiparticle

FIG. 2. Band structure of the proximitized model in the particle
subspace. The Debye window, shown as dashed red lines, is cho-
sen such that there is no overlap between the Weyl and metallic
subspaces. The parameters used are N = 145, E0 = 0.05, �0 = 0.1,
ωD = 0.3, mz = 3, m = 2, α = 2, v = 1, and μ = 0.71.

(i.e., 〈γ †
α,k⊥γα,k⊥〉 = 0). Parameters are chosen such that the

Debye window rests above the bottom of the host metallic
band and below intersections of the Weyl bands.

A cut of the noninteracting band structure along ky = 0 in
the particle subspace is shown in Fig. 2. With the appropriate
choice of parameters and the Debye window (dashed red), the
numerical model faithfully approximates a set of Weyl and
metallic bands that couple across the interface.

IV. RESULTS

We consider two different architectures. First, we an-
alyze the induced superconductivity in a device with a
superconductor placed adjacent to a WSM. The mismatch
in band structure results in superconductivity limited to the
interface with very little leaking into the WSM. To verify that
this is not a result of boundary conditions, we next look at a
superconductor-WSM-superconductor device.

A. Superconductor-WSM

Shown in Figs. 3(a), 3(c), and 3(e) are the pairing chan-
nels F11, F22, and FT . The FS channel has been omitted
since it is several orders of magnitude smaller than the
others. The upper panels cover the entire device while
the lower panels focus on the behavior near the interface.
The magnitudes are normalized to F0 = �0/g11, with g11 ≈
49 and F0 ≈ 6.1 × 10−3. The broken inversion symmetry im-
plies that a classification in terms of singlets and triplets is not
appropriate. This is reflected in the finite amplitude seen in all
three pairing channels even though the superconductor is an
s-wave spin singlet. However, the mismatch in symmetry and
band structure across the interface leads to a significant re-
duction in amplitude which decays very quickly as one enters
the semimetal. While the peak and oscillatory behavior near
the interface are expected from the finite number of Fourier
nodes and the steplike change in Hamiltonian, the significant
dropoff across the interface is a result of disparity between the
semimetallic and metallic behavior of the low-energy elec-
tronic states. In the Appendix, Sec. A 2, we show that, for
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FIG. 3. (Left) Real component of (a) F11/F0, (c) F22/F0, and (e) FT /F0 throughout the device (top) and around the boundary (bottom). The
pairing amplitude decays sharply near the interface. (b),(d),(f) Momentum-space behavior of |F11| (b) in the center of the host SC, (d) on the
interface, and (f) just within the interface on the WSM side. The Weyl nodes are marked at kx = ±α/v, and the edges of the metallic (Weyl)
Debye window are marked at ±kM (±kW ). The boundary is placed at LB = 0.6L, and the parameters used are N = 145, E0 = 0.05, �0 = 0.1,
ωD = 0.3, mz = 3, m = 2, α = 2, v = 1, and μ = 0.71, g11 = 48.53, and F0 = 6.18 × 10−3.

metallic bands on both sides, the canonical result of a smooth
evolution is recovered.

To better characterize the proximity effect, we analyze
the momentum dependence of the superconducting gap. Fig-
ure 3(b) shows the form of the pairing amplitude in the
middle of the host SC, whereas Figs. 3(d) and 3(f) show

the pairing amplitude on and near the interface on the
WSM side. Notably, the majority of weight remains near
the � point until one gets well inside the WSM. How-
ever, the amplitude has essentially decayed to zero by that
point. This suggests that the confinement of the supercon-
ducting pairing to the interface on the WSM side of the
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FIG. 4. (Left) Real component of (a) F11/F0, (c) F22/F0, and (e) FT /F0 of the two Josephson junctions. (Right) Momentum-space behavior
on the left boundary of (b) F11, (d) F22, and (f) FT . The boundaries are placed at BL = 0.4L and BR = 0.6L, and the parameters used are
N = 145, E0 = 0.05, �0 = 0.1, ωD = 0.3, mz = 3, m = 2, α = 2, v = 1, μ = 0.71, g11 = 48.53, and F0 = 6.18 × 10−3.

junction is correlated to the degree to which the metallic
electronic states penetrate the WSM. In other words, the wave
functions participating in the superconductivity at and near
the interface inside the WSM resemble those of the host
superconductor.

Similar behavior is observed by both F22 and FT . While
these results are anticipated by symmetry, the quantitative

suppression (by order of magnitude and larger) can only be
determined by the detailed analysis presented here.

B. Superconductor-WSM-superconductor

While the surface state of the WSM at the interface with
the superconductor is accurately captured above, those at the
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FIG. 5. (Left column) BdG energy bands of the single SC-WSM system for (a) v = 0.5vc
� , (b) v = vc

u, and (c) v = 4.0vc
u. The bands are

color weighted by the average of their wave function over the length of the device. (Right column) Corresponding momentum-space distribution
for F11 at the interface. The model parameters used are: N = 146, E0 = 0.05, �0 = 0.1, ωD = 0.3, mz = 2, m = 2, μ = 0.7, g11 = 48.9, and
F0 = 6.13 × 10−3, with α adjusted based on v.

other end of the device are ignored. Since the induced super-
conductivity is localized to the region around the interface,
this approximation is expected to be valid. To verify this, we
next turn to the behavior of a SC-WSM-SC device. To better

capture the physics, a greater momentum-space resolution is
implemented.

Plotted in Fig. 4(a) is the real component of the pairing
mode F11 throughout the device, as well as its behavior near
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FIG. 6. Least-squares fit calculation of (blue) decay length and
(purple) interface amplitude as v is increased for (top) F11, (middle)
F22, and (bottom) FT . ξ = 0.04L for the chosen parameters of the
simulation. As the velocity mismatch becomes smaller, both the
amplitude at the boundary and the coherence length inside the WSM
decrease.

the boundaries. The results are in agreement with those in
Sec. IV A where induced superconductivity is predominantly
in the F11 channel confined to the interface. The behaviors of
F22 and FT are shown in Figs. 4(c) and 4(e). The latter are
finite as expected by the broken inversion symmetry but are
much weaker as compared to the F11 channel.

The momentum-space dependence at the boundary for
F11, F22, and FT are shown in Figs. 4(b), 4(d), and 4(f), re-
spectively. As in the single-interface case the majority of the

FIG. 7. Plot of R(k) for (red) v < vc
� , (green) vc

� < v < vc
u, and

(blue) v > vc
u using the same parameters as our simulations and E =

μ − ωD = 0.4. Only v > vc
u guarantees a ratio of one.

weight remains near the � point in all three channels reflecting
the very weak coupling to the Weyl nodes.

C. Velocity mismatch across the interface

An important determinant of the coupling across the in-
terface is the mismatch in the perpendicular velocity between
states of the host superconductor (vsc

z ) and the WSM (vw
z ). To

understand its impact, we vary the Weyl velocity v and adjust
α to keep the Fermi surfaces separate; all other parameters are
fixed. Two limiting values of v are (i) vc

� , below which the
two systems share no states with similar energy and velocity,
and (ii) vc

u, above which there are states for which the two
systems have the same energy and velocity. The simulation
in Secs. IV A and IV B have a Weyl velocity of v = 0.89vc

� ,
which suggests that the states near the chemical potential on
the two sides of the interface have very different velocities.
The derivation of these values is given in the Appendix (see
Sec. A 1).

Shown in Fig. 5 are plots of the energy bands for the
BdG equations with ky = 0, along with the corresponding
momentum-space distribution of F11 at the interface, for v =
0.5vc

� , v = vc
u, and v = 4.0vc

u. The energy-band plots have
been color weighted by the average of their wave function
over the device. To ensure that the Fermi surfaces of the two
systems remain well separated, we adjust α such that the two-
band structures still meet at E = μ + ωD. Three distinct band
structures are observed: (i) Metalliclike bands that average
to the center of the SC at 0.3L (light blue), (ii) Weyl-like
bands that average to the center of the WSM at 0.8L (light
maroon), and (iii) edge states bridging the two-band structures
that average to the interface at 0.6L (light brown). We find
that, below vc

� , the pairing function is mostly confined to the
host superconductor and does not couple to the Weyl or edge
states; this is reflected in the form of F11(k⊥) as a function
of z. As v is increased to vc

u, the edge states and the pairing
function are able to weakly couple to the Weyl nodes. Finally,
at v = 4.0vc

u, the edge states and pairing functions are more
evenly distributed between the Weyl nodes and � point.

To better understand the behavior of the pairing modes as
v is increased, we fit the real component of each mode in real
space to extract the penetration depth ζ and the paring ampli-
tude at the interface. These values are plotted and compared to
the Cooper pair size ξ = 2mzkF /(π�0) and the initial pairing
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FIG. 8. Real component of F11 for a metallic model and host superconductor (left) throughout the device and (right) around the interface,
where the parameters are varied to explore the effect of the sharp interface: (a)–(b) identical on both sides, (c)–(d) shifted band with mismatch
in Fermi surface, and (e)–(f) broken inversion symmetry in the metallic side. All simulations use N = 145 Fourier modes. ξ = 0.01L for the
parameters of the simulation.

amplitude strength F0 in Fig. 6. For a clean superconductor the
coherence length is 0.74ξ . As v is increased, and the pairing
amplitudes couple more with the Weyl physics, the amplitude
of the pairing modes at the interface and the decay length
decrease. This suggests that the mismatch in band structure
and loss of inversion symmetry are antagonistic to proximal
superconductivity. Even when states with similar velocities
and energies exist at the interface, the overlap of wave func-
tions is not sufficient to induce superconductivity well inside
the WSM.

V. DISCUSSION

A promising architecture often proposed to realize uncon-
ventional, and potentially topological, superconductivity is
proximal coupling of an s-wave superconductor to materials
such as WSMs, topological insulators, and other unconven-
tional systems. Theoretical modeling providing support to
these approaches employ tunneling models across the inter-
face where the parameters are phenomenological inputs. Of
interest for experimental implementation are design principles
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which inform on an optimal choice of material properties to
achieve proximal superconductivity. This study elucidates the
effects of proximitized superconductivity in an architecture
without assuming new physics at the interface beyond quan-
tum tunneling. This is achieved by a numerical calculation
of the electronic wave functions and their correlations, by
expanding the respective Hamiltonians in a common Fourier
basis.

Our simulations show that the degree to which the su-
perconductivity and Weyl physics couple is dependent on
mismatches in electronic velocity normal to the interface. The
two systems are only able to sufficiently couple once the
Weyl velocity v reaches some minimum value vu

c ; however, all
three pairing channels show a negative correlation between the
Weyl velocity and their respective decay length and interface
amplitude. This suggests that the induced pairing is unable
to penetrate far into the bulk of the WSM. Within a con-
tinuum model, with quantum tunneling across the interface,
predominantly surface superconducting state is induced by
proximity. In other words, ensuring continuity of wave func-
tion and probability current at a sharp boundary separating
two regions is not enough. Other treatments implement the
same boundary assuming tunneling [19] across the interface
but cannot capture the decay of the amplitude in the super-
conductor. Additional physics involving electronic states near
the boundary is needed to induce superconductivity inside the
bulk of the WSM. These can be implemented by adding an
interface potential or using an alternative approach based on
transmission/reflection coefficients [20,21]. Determining the
boundary conditions that allow for efficient proximity effect
in Weyl semimetals is an interesting next step and beyond the
scope of this work.

The momentum-space pairings reveal higher weight near
the � point while the edge state is distributed around the Weyl
nodes. The inability of the pairing amplitude to penetrate into
the bulk of the WSM likely stems from a mismatch in the
momentum of their low-energy physics. Future simulations
for topologically nontrivial systems with low-energy physics
more closely aligned in momentum space are planned to ver-
ify these conclusions. Of particular interest are architectures
consisting of the superconducting transition metal dichalco-
genide (TMDC) NbSe2 in contact with another TMDC.
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APPENDIX

1. Derivation of critical velocities

In this section we determine the critical velocity vc
� , below

which the two-band structures never have identical z velocity,
and vc

u, above which the two-band structures are guaranteed
to have states with identical z velocity. The velocity vz =
∂kz E (k) for the metallic and Weyl band structures. They are

vW
z = 2mzkz

(
mzk2

z − m
)

√
v2(kx ± α/v)2 + v2k2

y + (
mzk2

z − m
)2

, (A1)

vM
z = 2mzkz. (A2)

It will prove convenient to write the ratio of these two ve-
locities, R ≡ vW

z /vM
z , in terms of the band energy E , the

Weyl wave-vector magnitude k2
W = (kx ± α/v)2 + k2

y , and the
metallic wave-vector magnitude k2

M = k2
x + k2

y :

R =
√

E2 − v2k2
W

E

√√√√√
E2 − v2k2

W + m

E − E0 − mzk2
M

. (A3)

For kW = kM ≡ k with functions f (k) =
√

E2 − v2k2
W and

g(k) = E − E0 − mzk2
M , Eq. (A3) is

R(k, E ) = f (k)

E

√
f (k) + m

g(k)
. (A4)

We seek a condition on our parameters that will either forbid
or allow R(k, E ) = 1. A local extreme exists at k = 0 which
has the value

R(0, E ) =
√

E + m

E − E0
≡ h0 � 1.

Determining vc
� is equivalent to finding v for which the con-

cavity of R(0, E ) changes sign:

R′′(0) = mzh0

g0
− v2h0

f 2
0

[
2g0h2

0 + f0

2g0h2
0

]

⇒ v�
c =

√
E + m

E − E0

√
2mzE2

3E + 2m
. (A5)

For v < vc
� , h0 is a global minimum, and thus the electronic

velocities are never equal. However, v > vc
� is not enough to

guarantee equal velocities, as seen in Fig. 7. We denote kW
c

(kM
c ) to be the root of f (k) [g(k)]. When kW

c < kM
c , the ratio

function diverges before it can reach one; thus, the value vc
u is

obtained when the two roots are equivalent:

vc
u =

√
mzE2

E − E0
= vc

�

√
3E + 2m

2E + 2m
. (A6)

For vc
� < v < vc

u, it is still possible to have R(k, E ) = 1 for
some value of k; in practice, however, this window is quite
small and does not guarantee a ratio of one.
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2. Metallic simulations

To demonstrate that the numerical approach faithfully ac-
counts for proximal superconductivity, we replace the Weyl
Hamiltonian with a metallic Hamiltonian [Eq. (3)]. We study
three cases.

(i) The parameters of the Hamiltonian are identical on
both sides of the interface. This is the standard model of
N-SC junction. In Fig. 8(b), we recover the smooth evo-
lution from the SC to the metal without any oscillatory
behavior. Note that for a clean superconductor the coherence
length is 0.74ξ which is quantitatively consistent with the
data.

(ii) To introduce a mismatch at the interface we introduce
a relative shift of the bands. The net effect is to introduce
mismatch in velocity and density of states at the chemical po-
tential. While an oscillatory behavior is beginning to emerge
in Fig. 8(d), a sharp dropoff or an evanescent behavior is not
observed.

(iii) To test the effect of inversion breaking, we introduce
Eq. (2) to the metallic side of the interface. A sharp change in
symmetry across the interface leads to a sharper fall off and
the emergence of oscillatory behavior [see Fig. 8(f)].

We estimate the decay length of each case by fitting to an
exponential decay. For these simulations, the Cooper pair size
ξ is approximately 0.01L.
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