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Ginzburg-Landau approach to the vortex–domain wall interaction
in superconductors with nematic order
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In this work, we study the interaction between vortices and nematic domain walls within the framework of
a Ginzburg-Landau approach. The free energy of the system is written in terms of a complex order parameter
characteristic of s-wave superconductivity and a real (Ising-type) order parameter associated with nematicity.
The interaction between both order parameters is described by a biquadratic and a trilinear derivative term. To
study the effects of these interactions, we solve the time-dependent dissipative Ginzburg-Landau equations using
a highly effective pseudospectral method by which we calculate the trajectories of a vortex that, for different
coupling parameters, is either attracted or repelled by a wall, as well as of the wall dynamics. We show that
despite its simplicity, this theory displays many phenomena observed experimentally in Fe-based superconduc-
tors. In particular, we find that the sign of the biquadratic term determines the attractive (pinning) or repulsive
(antipinning) character of the interaction, as observed in FeSe and BaFeCoAs compounds, respectively. The
trilinear term is responsible for the elliptical shape of vortex cores as well as the orientation of the axes of
the ellipses and vortex trajectories with respect to the axes of the structural lattice. For the case of pinning, we
show that the vortex core is well described by a heart-shaped structure in agreement with scanning tunneling
microscopy experiments performed in FeSe.
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I. INTRODUCTION

The existence of the theoretically proposed electronic ne-
matic phase in strongly correlated systems [1,2] has been
confirmed through an amount of experimental work con-
ducted in several systems [2]. The best documented examples
of electronic nematicity are two-dimensional electron fluids in
large magnetic fields at Landau levels N � 1 [3,4] and in the
bilayer ruthenate Sr3Ru2O7 (in a range of magnetic fields) [5].
Nematicity is also seen in diverse systems, and it is believed
to play a central role in unconventional superconductors [6,7],
in both cuprate [8–10] and iron-based [11–18] family com-
pounds. A key fact supporting the interplay between nematic
and superconducting orders is the fact that their phase bound-
aries, as a function of doping, intersect near the composition
that maximizes the superconducting critical temperature [12],
where the signature of a nematic quantum critical point has
been reported [13]. A similar behavior has been reported
recently in the family of nickel compounds Ba1−xSrxNi2As2

[19,20].
Electronic nematic order [2] is a state of the electronic fluid

that spontaneously breaks the point group symmetry of the
underlying lattice. In this paper, we will consider the case of
systems with translational symmetry along the c axis and na-
tive C4 point group symmetry of the a-b plane spontaneously
broken down to one of its C2 subgroups, with symmetry dx2−y2

or dxy. Although this is the most common case, other point
group symmetries, such as C6, are relevant in several sys-
tems such as dichalcogenide [21] and kagome materials [22].

Several microscopic mechanisms can give rise to an electronic
nematic state including a Pomeranchuk instability [23–25],
orbital order [26,27], or they can arise as a vestigial order
of a magnetically [28,29] and/or charge-ordered state [30,31].
Electronic nematic states typically do not arise in weakly
interacting systems and are the result of strong correlation
effects.

In most experimental situations, the nematic phase mani-
fests as the result of the breaking of a discrete C4 point-group
symmetry of the underlying crystal structure of the material.
It is generally expected that in a nematic state, the crystal
should distort since there is always a coupling between the
electronic degrees of freedom and the lattice. How large this
distortion is depends on the microscopic mechanism behind
the nematic order. In some systems, such as in the underdoped
YBa2Cu3O7−δ , the orthorhombic crystal structure sets in at
high temperatures, and electron nematicity is observed as an
ordering effect seen at lower temperatures [9]. On the other
hand, in some pnictides, such as in Ba(Fe1−xCox )2As2, ne-
matic order (without long-range magnetic order) arises on a
relatively small fraction of the phase diagram, while in FeSe
this situation occurs in a broader range of temperatures and
doping.

We should note that it is conceptually important to distin-
guish a tetragonal-to-orthorhombic structural transition from
an electronic nematic transition even though both break
the same point group symmetry. Most structural transitions
are typically first-order phase transitions and generally do
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not exhibit significant thermal ordering effects. In contrast,
electronic nematic transitions can be continuous and have
significant thermal fluctuations near the ordering transition.
The nematic transition in the Fe superconductors appears to
be either continuous or weakly first order, which strongly sug-
gests that it is primarily driven by an electronic mechanism.
The Curie law divergence of the nematic susceptibility in the
tetragonal phase is another piece of evidence supporting its
electronic origin [13,32]. However, since the nematic state
breaks the same symmetries as an orthorhombic crystal struc-
ture, it is hard to disentangle both effects. In particular, many
experiments often show a concurrent breaking of the C4 sym-
metry in the structural and transport properties consistent with
a transition driven by electronic degrees of freedom [14–18].
On the other hand, despite the considerable amount of experi-
mental evidence of the existence of electronic nematicity in Fe
superconductors, there is still no consensus on its microscopic
origin.

One of the consequences of the appearance of a symmetry-
breaking nematic phase is the formation of a dense array of
structural and nematic domains (ND), which has been ob-
served and characterized by several techniques [12,33]. The
role of these domains and the walls separating them, the so-
called nematic domain walls (NDW), in the properties of the
normal metallic phase is still under intense study and debate
[34,35].

An interesting and less explored issue concerns the rele-
vance of the nematic domains in the superconducting phase.
For instance NDW will, in principle, interact with super-
conducting vortices. As nematicity is naturally coupled to
anisotropic strain, the existence of nematic domains has been
linked in some systems to the existence and location of struc-
tural twin boundaries (TB), which have been identified in
several works as sources of correlated vortex pinning (and
in some cases of vortex channels) on their own [36–39]. The
influence of NDW/TB in the vortex dynamics in Fe-based ne-
matic superconductors has been reported in different magnetic
and transport experiments [12,40,41], and the NDW/TB-
vortex interaction has been directly observed in FeSe [42–45]
and Ba(Fe1−xCox )2As2 [46–48] compounds. While in the first
case vortices are pinned by domain boundaries, in the second
case vortices avoid them.

At a phenomenological level, the interplay between ne-
maticity and superconductivity can be described in principle
via the Ginzburg-Landau (GL) formalism. In its simpler ver-
sion, the GL free energy can be expressed as a functional
of two order parameters, a complex field associated with su-
perconductivity and a real (Ising-type) field associated with
nematicity. To lowest order, these fields are coupled via a
trilinear term (involving derivatives) and a biquadratic term.
The main effect of the trilinear term is to give rise to an
anisotropy in the superfluid density of the superconducting
state, and it manifests in the elliptical shape of vortex cores.
Although the coefficient of the biquadratic term has to satisfy
certain bounds, its sign is not fixed a priori, representing
order competition (cooperation) when it is positive (nega-
tive). Experimentally, the cooperative or competitive coupling
manifests in several ways. For example, in-plane anisotropic
superconducting properties are reflected in elongated super-
conducting vortices oriented along the crystallographic axes

of the orthorhombic phase, as observed in early scanning
tunneling microscopy (STM) studies in FeSe superconductors
[42]. Also, flux flow resistivity anisotropy [41], anisotropic
critical current density [49], and an anisotropic supercon-
ducting gap [50] are additional evidence for in-plane broken
symmetry in the superconducting properties.

Finally, it is worth mentioning that the coupling of elec-
tronic nematicity with strain might be more complex than
generally believed [51]. However, even in a simpler scenario
in which NDW are univocally linked with structural TB, they
are an additional source of pinning (or antipinning) in such a
way that the final vortex–domain wall interaction will result
from the combination of structural and nematic vortex inter-
actions.

The purpose of this work is to analyze from a theoretical
perspective some properties of the NDW-vortex interaction in
the framework of a time-dependent GL theory. To this end,
we will use the simplest GL theory of a nematic supercon-
ductor, with an s-wave superconductor order parameter and
an Ising-like nematic order parameter. Nematic domain walls
can be present for two types of nematic orders with dxy and
dx2−y2 symmetry, respectively, and the elliptically distorted
vortices are oriented differently relative to the crystallographic
axis. For definiteness, in the body of the paper we consider
primarily the dxy nematic ordering. To further characterize the
interaction, we calculate trajectories, energies, and forces as
a function of time and distance. Despite the simplicity of the
model, we find that many features are qualitatively consistent
with experimental findings. The model can successfully cap-
ture the elongation of vortex cores in the presence of nematic
ordering, and it reproduces the pinning (antipinning) of vor-
tices on domain walls as well as other features observed in
experiments.

This paper is organized as follows. In Sec. II we describe
the phenomenological GL model for the coupled super-
conducting and scalar nematic order parameters. The main
calculations are presented in Sec. III organized in different
subsections. The numerical method is described first, followed
by the domain boundary effect in the superconducting order
parameter and in the single vortex dynamics, where the role
of the biquadratic and trilinear coupling terms is considered.
Finally, a summary and conclusions are presented in Sec. IV.

II. GINZBURG-LANDAU MODEL

The total Ginzburg-Landau (GL) free energy of interest is

F = FS + FN + FSN, (1)

where FS is the standard energy for an s-wave complex super-
conductor order parameter ψ , FN is the free energy for a real
Ising-type nematic order parameter, and FSN is the coupling
energy between them. For FS we write

FS =
∫

V

[
αGL|ψ |2 + β

2
|ψ |4 + h̄2

2m
|Dψ |2 + (∇ × A)2

8π

]
,

(2)
where the superfluid Cooper pair density is ns = |ψ |2, A is
the magnetic vector potential that relates to the magnetic in-
duction as ∇×A = B, and D = −i∇ − e

h̄c A is the covariant
derivative. Although m stands for a parameter with dimen-
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sions of mass, it should not be taken as the mass of any
particle or quasiparticle but as a parameter related to the phase
stiffness of the order parameter. The charge of the Cooper
pairs (twice the electron charge) will be denoted as e, while
h̄ and c are the reduced Planck constant and the speed of light,
respectively.

We will consider configurations that are translational
invariant along the c-direction, which implies that any de-
pendence on this coordinate will hereby be ignored. As for
the coordinates in the ab plane, attention has to be drawn to
the choice of axes. In Fe-based superconductors (as well as
in many cuprates), nematicity occurs simultaneously with a
tetragonal to orthorhombic structural phase transition, with
the ab basis rotated in a π/4 angle between the different
phases. In this work, we will choose our ab base to coincide
with that of the tetragonal phase.

The contribution of the nematic Ising-type order parameter
to the GL free energy is given by

FN =
∫

V

[
γ2(∇η)2 + γ3η

2 + γ4

2
η4

]
, (3)

while the coupling between superconductivity and nematicity
is given by two terms,

FSN = Fbi + Ftri. (4)

The first one is a biquadratic coupling of the form

Fbi = λ2

∫
V

η2|ψ |2. (5)

This term indeed does not depend on the specific character of
the nematic order parameter, and it could be present even if η

was a true scalar field.
In addition, there could be a trilinear term of the form

Ftr = h̄2

2m
λ1

∫
V

ηei jDiψ (D jψ )∗, (6)

where

ei j = 2
(
nin j − 1

2δi j
)
, (7)

and n = (cos α, sin α) is the director signaling orientation of
the nematic order with respect to the coordinate basis (which
in this work corresponds to the tetragonal phase). A model of
this type was used, for instance, in [52] to study vortices in the
London limit, and more recently in [53] where vortex-vortex
interactions were analyzed.

In the present paper, and inspired by nematicity in Fe-
based superconductors, we will choose α as follows: As the
director aligns according to one of the orthorhombic axes, if
we choose x̂ and ŷ directions to coincide with the tetragonal
axis, then α = π/4 (cf. [52,53], where x̂ and ŷ were chosen
as the orthorhombic axis and then α = 0). During the phase
transition, structural domains with different orientations of the
orthorhombic axes can form, separated by a domain wall or
twin boundary as shown schematically in Fig. 1(a).

Note that while the biquadratic coupling between the ne-
matic and superconductor order parameters can be present
even in the case in which η is a standard scalar field, the
trilinear term is instead a genuine nematic coupling. The
biquadratic coupling parameter λ2 can be either positive or
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FIG. 1. (a) Schematic representation of the domain wall and
the broken orthorhombic symmetry. Notice that the crystalline or-
thorhombic axes at each side of the wall form a 45◦ angle with
the wall. (b) Profile of the normalized superconductor ψ̃2

N = |ψ̃ |2
ψ̃2

v

and nematic η̃N = η̃

η̃v
[see Eqs. (10) and (16) for definitions] order

parameters for the competing case with λ̂2 > 0. (c) Same as (b) but
for the cooperative case with λ̂2 < 0.

negative (within some bounds), resulting in competition or
cooperation of the nematic order parameter with superconduc-
tivity. A nonzero λ1, on the other hand, will result in elliptical
vortices and its sign will select the orientation of the major
axis of the ellipse with respect to the nematic order director.

As we did in [53], we consider dissipative dynamics [54]
and write the time-dependent equations for the order parame-
ters and the electromagnetic fields as

h̄2

2mD
∂tψ = − δF

δψ∗ ,
σ

c2
∂t A = −δF

δA
,

h̄2

2mDn
∂tη = −δF

δη
.

(8)

In the above expressions, D and Dn are two diffusion constants
(one for each order parameter, and not necessarily equal), and
σ is the electrical conductivity of the normal state.

Three different length scales are present in the system,
namely

ξ 2 = h̄2

2m|αGL| , λ2
L = mc2

4πe2ρ0
, l2

η = γ2

|γ3| , (9)

where ξ , λl , and lη are the bare superconductor coherence
length, the bare London penetration length (where ρ0 = |αGL|

βGL
),

and the bare nematic coherence length, respectively. We can
rewrite the superconductor and nematic order parameters in
terms of two dimensionless order parameters ψ̃ and η̃ as

ψ = √
ρ0ψ̃, η = η0η̃, (10)
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where η2
0 = |γ3|

γ4
, and redefine the vector potential in terms of

a simpler quantity a as

A = mc|αGL|
h̄e

a. (11)

In terms of the newly defined variables, the total free en-
ergy can be written as

F = |αGL|ρ0

∫
V

1

2
(|ψ̃ |2 − 1)2 + ξ 2|∇ψ̃ |2 − a Im(ψ̃∗∇ψ̃ )

+ 1

4ξ 2
a2ψ̃2 + κ2

4
(∇ × a)2 + �2(∇η̃)2 + �4

2
(η̃2 − 1)2

+ λ̂2η̃
2ψ̃2 − ξ 2λ̂1η̃[(Dxψ )∗Dyψ + (Dyψ̃ )∗Dxψ̃], (12)

where, as we mentioned before, we have set the director angle
for the nematic parameter as α = π/4, and we have redefined
the parameters as

�2 = γ2

|αGL|(ρ0/η
2
0 )

, �4 = γ4η
2
0

|αGL|(ρ0/η
2
0 )

,

λ̂2 = λ2η
2
0

|αGL| , λ̂1 = λ1η0

h̄
. (13)

We have also introduced the GL parameter in its usual defini-
tion as

κ = λL

ξ
. (14)

The GL parameter is dimensionless and expresses the ratio
between two characteristic lengths. In standard s-wave su-
perconductors without nematicity, a condition of κ > 1/

√
2

is necessary for type II superconductivity. For nematic su-
perconductors this condition has been revisited in [53]. In
many realistic superconductors, the London penetration depth
λ is much greater than the coherence length ξ , allowing κ

to easily be higher than 100. However, for certain Fe-based
materials, reported values for κ are on the order of 20 [55].
In our numerical simulations, we will present examples with
kappa set to κ = 4√

2
. In this case the superconductor remains

type II, but the absence of significantly different length scales
simplifies numerical simulations.

Notice that these redefinitions imply that �2 has di-
mensions of [L]2, while the rest of the parameters are
dimensionless. The nematic coherence length with these new
variables is calculated as l2

η = �2
�4

.
We will work under the assumption that both supercon-

ducting and nematic symmetries are broken. For constant
order parameters, the minimum energy is achieved when the
interaction potential is minimized,

V (|ψ̃ |2, η̃) = ρ0|αGL|
∫

V

1

2
(|ψ̃ |2 − 1)2

+ �4

2
(η̃2 − 1)2 + λ̂2|ψ̃ |2η̃2. (15)

On the minimum, the order parameters take the values

ψ̃2
v = 1 − λ̂2

1 − λ̂2
2

�4

, η̃2
v = 1 − λ̂2

�4

1 − λ̂2
2

�4

, (16)

and thus the free energy is

F0 = |αGL|ρ0V

(
ψ̃2

v − 1
)(

ψ̃2
v + η̃2

v

)
2η̃2

v

. (17)

For further convenience, we will refer the energy to this value,

F̃ = F − F0. (18)

The theory can be reformulated in terms of a dimensionless
time parameter τ , related to the physical time t by

t = h̄2

2mD|αGL|τ, (19)

if we also redefine the conductivity and the nematic diffusion
constant as

σ1 = 4πσ

c2

2mD|αGL|
h̄2 , Dη = Dn

(
ρ0/η

2
0

)
. (20)

The explicit form of the equations can be found in [53].

III. VORTEX–DOMAIN WALL INTERACTION

A. Numerical method

Calculations were performed using the geophysical high-
order suite for turbulence (or GHOST for short [56,57]),
which uses a high-order pseudospectral method. Following
Ref. [58], we consider configurations in a [0, 2π ]×[0, 2π ]
simulation box using 512×512 grid points. We only focus on a
[0, π ]×[0, π ] sector, since the other sectors serve as images to
satisfy the periodicity in the [0, 2π ]×[0, 2π ] domain required
by the pseudospectral method. The initial conditions depend
on the number of singularities (domain walls or superconduct-
ing vortices) under consideration.

As discussed in [53], the initial condition for a single vortex
located at (x/L, y/L) = (π/2, π/2) is taken as

ψ̃ (x, y, t = 0) = ψ̃v

(λ + iμ)√
λ2 + μ2

tanh

√
λ2 + μ2

√
2ξ

, (21)

where the Clebsch potentials are λ(x) = √
2 cos x and μ(y) =√

2 cos y (a shift in the vortex position is trivially achieved by
modifying the Clebsch potentials), and the initial condition for
the vector potential is

ax(x, y, t = 0) = a0 sin (x) cos (y), (22)

ay(x, y, t = 0) = −a0 cos (x) sin (y), (23)

which is a well-known initial condition in fluid dynamics
known as a Taylor-Green flow. The resulting initial magnetic
field Bz(x, y, t = 0) = 2a0 sin x sin y (with a0 a normalization
constant related to the total flux in the simulation box; see
[53]) satisfies the necessary conditions of periodicity and is
easy to implement numerically.

The positive definiteness of the energy [Eq. (12)] imposes
bounds on the parameters of the model; the requirement of
working in the phase where both nematicity and supercon-
ductivity are active introduces additional constraints. We have
provided a detailed discussion of these bounds in Ref. [53].
Furthermore, certain parameter choices have been made for
numerical reasons without loss of generality. To prevent un-
necessary numerical complications, we have aligned all length
and time scales to be of a similar order. It is worth noting
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that this last condition could be relaxed for a quantitative
comparison with more realistic situations.

For the simulations carried out in this paper, we set the
nematic coherence length to be equal to the superconducting
coherence length lη = ξ = 0.04. As we have mentioned be-
fore, the GL parameter will be set as κ = 4√

2
. This choice

might not be realistic for real superconductors, but makes
simulations simpler as all relevant length scales are of the
same order. For simplicity, we have also set ρ0 = η0 = 1
and �4 = 1 (notice that this choice also sets the value of
�2). On the other hand, we have chosen Dn = D = h̄

2m , and
the dimensionless conductivity as σ1 = 15. The values of
these constants can be relevant in setting time scales for
equilibration processes and energy dissipation but will not
alter the main conclusions of this work. An integration time
step dt = 6×10−5 was used, consistent with the required
Courant-Friedrichs-Lewy condition for stability of the numer-
ical solution (see [53]).

B. The superconductor order parameter and the domain wall

It is well known that an Ising-type order parameter theory
admits nontrivial solutions representing a two-dimensional
defect, or a domain wall. For instance, it is easy to check that
when λ̂1 = λ̂2 = 0, a static solution for η̃ is

η̃(x) = η̃v tanh

(
x√
2lη

)
, (24)

which represents a domain wall located at x = 0, following
the typical orientation of a structural twin boundary (the posi-
tion and orientation of the wall can be easily changed). Here,
lη is the nematic coherence length defined in Eq. (9) and
related to the domain wall thickness.

In this subsection, we explore the interaction of a domain
wall of this type with a superconducting vortex, placed at
different distances from the nematic domain wall. In order to
induce the domain wall formation at the x/L = π/2 plane, we
take the initial condition corresponding to the nematic order
parameter as

η̃(x, y, t = 0) = η̃v

tanh
(

1√
2lη

) tanh

(
λ(x)

2lη

)
. (25)

As a first test of the numerical method, we verified that for
the pure nematic theory, the initial condition (25) evolves to
the exact solution (24). The energy per area of the domain wall
can be calculated explicitly, resulting in

Ewall = 4
3ρ0|αGL|

√
2�2�4, (26)

where the area of the wall is Ly×Lz = π2. Our simulations
indicate that the initial condition proposed for the nematic
order parameter rapidly converges to the exact solution for
the wall, and the energy can be numerically computed with
precision down to O(10−4).

We continue studying the behavior of the superconductor
order parameter in the presence of a domain wall. We first
consider the case in which λ2 �= 0, λ1 = 0, and the initial con-
figuration for the superconductor order parameter is |ψ̃ |2 =
ρ0 (i.e., there is no vortex). We show in Fig. 1(b) [Fig. 1(c)]
that superconductivity is enhanced (depressed) for positive

(negative) values of λ̂2. This is consistent with the fact that the
order parameters compete (cooperate) for positive (negative)
values of λ2.

C. A single vortex in the presence of a nematic domain wall

We now turn to study the case of a single vortex in the
presence of a nematic domain wall. We first study the effect
of the biquadratic coupling, and after that we see how these re-
sults are modified when the trilinear coupling is active. As we
mentioned before, the biquadratic coupling would be present
even in cases in which the order parameter was a scalar, so
results in this subsection could apply to a more general range
of theories.

1. Biquadratic coupling

Before entering into the details of the simulations, it is clear
that for λ2 > 0 (λ2 < 0) the interaction will be repulsive (at-
tractive). Because superconductivity is enhanced for positive
coupling, the vortex will move its normal core away from the
wall in order to minimize the free energy, thus exhibiting a
repulsive interaction between the vortex and the domain wall.
On the other hand, since superconductivity is depressed for
negative coupling, we expect that the normal core will tend to
remain on the domain wall, resulting instead in an attractive
interaction. It is also easy to predict that the interaction is
short-ranged.

We show in the top panel of Fig. 2 the density plot of
|ψ̃ (x, y)|2 for the attractive case (λ2 < 0). We start with a
vortex at a distance d = 3ξ from the domain wall, and after a
finite time the vortex becomes pinned to the wall. Notice that
the wall has its own dynamics, and it bends during the pinn-
ing process. The rigidity of the wall is controlled by the pa-
rameters of the theory. In the bottom panel of Fig. 2 we show
the same density plot but for the repulsive case (λ2 > 0). For
this simulation, we placed the vortex within the domain wall
and waited until it was repelled. Remember that the effective
superconducting coherence length depends on the value and
sign of λ2, and thus the core size is noticeably larger than
in the attractive case. The wall bending effect is also more
pronounced in the repulsive than in the attractive case.

Far from the domain wall the vortex core has cylindrical
symmetry, but as it is attracted to the NDW the vortex loses
this symmetry and ends up elongated along the direction se-
lected by the domain wall. The lack of cylindrical symmetry
is more evident when the λ1 coupling is turned on, as we will
discuss soon. Since there is no direct coupling between the
vector potential and the nematic order parameter, the lack of
cylindrical symmetry is less pronounced in the magnetic field
(not shown).

We now characterize the interaction between the vortex
and the domain wall in a more quantitative way. For the sake
of clarity, we mostly focus on the repulsive case (a similar
analysis can be performed for the attractive case). In Fig. 3 we
show the trajectory of the vortex core as a function of time, the
interaction energy per unit length, and the force per unit length
as a function of the distance of the vortex core to the wall,
for different values of the biquadratic coupling parameter. For
these simulations, the vortex was placed on top of the domain
wall in an unstable equilibrium, signed by the transient time
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FIG. 2. (a)–(c) Snapshots of the density plot of |ψ̃ |2 for the purely biquadratic case in the attractive regime with λ̂2 = −0.5 and a wall
width of lη = ξ = 0.04. The vertical (horizontal) dashed line represents the x = π/2(y = π/2) axis, for visual guidance. Once the vortex is
pinned, it changes its symmetry to align with the direction selected by the wall. (d)–(f) Same plots as (a)–(c) but for the repulsive case with
λ̂2 = 0.5 and the same wall width. The domain wall bends sharply as the vortex is repelled and retakes its original form once the vortex is far
from the wall. Notice that once the vortex leaves the domain wall, it retains its cylindrical symmetry (see the text below).

that it takes for the vortex to begin its movement. We see that
the vortex acquires maximum acceleration at the boundary of
the wall, as shown in Fig. 3(a).

To calculate the interaction energy, we first calculate the
domain wall energy and the energy of an isolated vortex (with
no domain wall), and we then subtract these energies from
the total energy in the simulation domain. More precisely, we
are interested in energies per unit length of the vortex. As we

are assuming translational symmetry along the c axes, this
amounts to integrating over the ab plane. Notice that we de-
fined dimensionless coordinates x̃ = x/ξ , ỹ = y/ξ , and field
ã = a/ξ . Thus, energies per unit length can be expressed as

Ẽ = Ẽ0E, (27)

where E is a dimensionless function of the variables κ , λ̂1,
λ̂2, �4, and �2/ξ

2, and Ẽ0 sets the scale for the energy per
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FIG. 3. (a) Distance of the vortex from the NDW, measured from the center of the wall, as a function of time for different values of λ̂2

(with λ̂1 = 0). (b) Dimensionless interaction energy as a function of the distance of the vortex to the center of the NDW [see Eqs. (27)–(30)
for definitions]. (c) Dimensionless interaction force as a function of the vortex distance from the NDW. The dashed vertical line indicates the
domain wall edge.
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TABLE I. Fitting parameters for the energy as a function of the
vortex–domain wall distance in the biquadratic repulsive regime (see
text for details).

λ̂2 E0 c1 c2

0.1 0.617 1.658 2.434
0.2 1.176 2.490 2.757
0.3 1.703 3.358 3.044
0.4 2.223 4.546 3.413
0.5 2.761 6.328 3.922

unit length,

Ẽ0 = |αGL|ρ0ξ
2 = |αGL|2

β
ξ 2 = H2

c

4π
ξ 2, (28)

where Hc is the thermodynamic superconducting critical
magnetic field.

We can define the dimensionless interaction energy be-
tween the vortex and the NDW as

Eint = ẼT − Ẽvortex − Ẽwall

Ẽ0
. (29)

Using these data, we can reconstruct Eint(x) and calculate the
effective force per unit length F̃eff between the vortex and the
wall as

F̃eff = −∂Eint

∂x
= F0F = H2

c

4π
ξF , (30)

where F is a dimensionless function. The data can be fitted by
a simple expression of the type

Efit = E0

1 + c1sinh2 x
c2

. (31)

The coefficients that fit the aforementioned energies can be
found in Table I.

Figure 3(c) shows the calculated interaction force between
the domain wall and the vortex, where we have scaled the
position in units of the coherence length. Notice that the
maximum of the force occurs in the vicinity of the domain
wall edge, marked by the dashed vertical line in Fig. 3(c). The

force exponentially tends to zero as the vortex leaves the wall,
confirming the short-range nature of the interaction.

2. The effect of the trilinear term

We next study the case in which the C4 breaking coupling is
present. It has been observed in many experiments (see below)
that vortices are elliptical with the axes of the ellipsoid ori-
ented along the axes of the orthorhombic phase. The trilinear
term in our model reproduces that effect. To see this, we take
the trilinear term with η constant and fixed. Then, the free
energy is

F̃s=
∫

V
α̃GL|ψ |2 + β

2
|ψ |4 + h̄2

2m
li jDiψDiψ

∗ + (∇ × A)2

8π
,

where α̃GL = αGL + λ2η
2 and

li j = δi j + λ1ei j = (1 − λ1η)δi j + 2λ1η nin j . (32)

After using the expression of ni with α = π/4, this be-
comes

l = I2x2 + λ1η σ1, (33)

with σ1 the symmetric Pauli matrix. The eigenvalues of l are

l± = 1 ± |λ1η|, (34)

resulting in elliptical vortices with core size axes

ξ 2
± = h̄2l±

2mα̃GL
. (35)

Defining the eccentricity of an ellipse as e = (1 − a2
</a2

>)1/2,
where a> (a<) are the larger and smaller axes, we obtain
that e = [2|λ1η|/(1 + |λ1η|)]1/2 (remember that within our
approach |λ1η| < 1, and hence e < 1).

We next consider the dynamics of an elliptical vortex in
the presence of a domain wall. The description in this case
is not intuitive as we find the opposite behavior to that ob-
served before for λ1 = 0: the trajectory of the vortex is not
a straight line perpendicular to the wall. In Fig. 4 we present
snapshots of the superconductor order parameter for λ2 = 0.5
and λ1 = 0.5, As before, we have chosen for this figure the
bare nematic coherence length to be lη = ξ . A positive λ̂2
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FIG. 4. Snapshots of the superconductor order parameter |ψ̃ |2 with C4 symmetry-breaking coupling λ̂1 = 0.5 and a repulsive interaction
with the wall λ̂2 = 0.5. The GL parameter is set as κ = 4√

2
. The wall width is the same as the superconductor coherence length. As the vortex

leaves the wall, the trajectory deviates from the y = π/2 line, as opposed to the purely biquadratic coupling, where the trajectory evolves along
curves with constant y.
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FIG. 5. Panels (a) and (b) show x̃(t ) and ỹ(t ), respectively, measured from the center of the NDW, as a function of time for different values
of λ̂1. (c) Vortex trajectories ỹ(x̃(t )) for several values of λ̂1. As the coupling tends to zero, the trajectory becomes perpendicular to the NDW.

causes the vortex to be repelled perpendicular to the wall into
a region of increasing nematic order parameter, where the
vortex becomes more elliptical as the nematicity increases, as
λ̂1 = 0.5. This causes the vortex to deviate from its expected
perpendicular trajectory.

In Fig. 5 we show the coordinates x̃(t ), ỹ(t ) of the vortex
as a function of time, and the trajectories in the plane ỹ(x̃) for
fixed λ̂2 and varying λ̂1. Contrary to the purely biquadratic
case, the vortex trajectory has a component parallel to the
wall. While the component perpendicular to the wall is weakly
affected by the value of λ̂1 [see Fig. 5(a)], the component
parallel to the wall [see Fig. 5(b)] is roughly linear with λ̂1.
Plotting the trajectories followed by the vortices [Fig. 5(c)]
we notice that deviation angles are directly proportional to λ̂1

and, as expected, the angle tends to zero when λ1 → 0.
For the attractive case, the vortex is pinned to the wall.

Due to the different values of the nematic order parameter

(a) (b)

ξ

FIG. 6. (a) Calculated density of the superconductor order pa-
rameter |ψ̃ |2 for a vortex pinned to a nematic domain wall with
λ̂1 = 0.5 and κ = 4√

2
. The nematic domain wall is represented by

the black dotted line, and the orthorhombic a and b axes on each
domain are shown with white arrows. (b) Experimental zero-bias
conductance image from Watashige et al. [44], showing vortices
pinned to a domain wall at T = 1.5 K and a magnetic field of 1 T
applied along the c axis. Crystallographic axes are shown by white
arrows. Note that the color code between figures in both panels is
inverted: in panel (a) dark corresponds to the vortex core, while in
(b) the core is represented with white.

across the wall, the vortex core displays a peculiar symmetry
pattern corresponding to the superposition of two ellipses with
axes that are rotated at different sides of the wall, producing
a structure with a heart-shaped core. Indeed, as shown in
Fig. 6(a), the vortex core is well described by the contour lines
of the “heart” function,

h(x, y) = (x − x0)2 + (y − y0)2 ± 2|λ1ηv||x − x0|(y − y0),

(36)

where (x0, y0) = (π/2, π/2) corresponds to the center of the
vortex. This pattern for a vortex core pinned to a wall is in-
deed very similar to the one observed via STM measurements
for FeSe in Ref. [44]. Note that even though the GL theory
considered here is simpler than the one used in Ref. [44], the
pinned vortex shape is very similar to that found in theoretical
and experimental studies.

IV. SUMMARY AND CONCLUSIONS

In this paper, we addressed vortex-nematic domain wall
interactions in a Ginzburg-Landau theory of an s-wave super-
conductor interacting with a real (Ising-type) nematic order
parameter. The choice of a real order parameter (as op-
posed to nematic order in liquids described by a tensor order
parameter) is inspired by the phenomenology of Fe-based
superconductors, where nematicity manifests as the breaking
of a C4 symmetry down to a C2 symmetry. Since the nematic
order parameter is of Ising-type, it gives rise to domains
whose presence is eventually dictated by boundary conditions,
thermal history, and additional interactions of the nematic
order parameter with other degrees of freedom.

In the simple GL theory, we have considered the super-
conductor order parameter, and the nematic order parameter
interaction is introduced via two terms: a biquadratic coupling
and a trilinear derivative coupling. The biquadratic term is
mainly responsible for the attractive or repulsive character of
the interaction, while the trilinear term modifies the in-plane
superconductivity, affecting the shape of the vortex and its
trajectory (that is not necessarily a straight line perpendicular
to the wall in the repulsive case).
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In Fe-based superconductors, the nematic domain walls
are often linked to twin boundaries separating two different
orthorhombic domains. A more complete treatment of the
problem would then require the introduction of elastic terms in
the free energy, taking into account the coupling of these elas-
tic terms with the superconductor order parameters and the
nematic order parameter. For symmetry reasons, it is expected
that twin-boundaries and nematic walls will be strongly cou-
pled. In the simplest scenario, it is usually assumed that they
are superimposed. Yet their properties could be different. For
instance, their width, and as a consequence the extent of
its influence on the superconducting properties, could differ.
Thus, the final behavior of the vortex will be the result of these
two combined effects, i.e., vortex-nematic domain wall and
vortex-twin boundary interaction.

Despite its simplicity, the model captures some relevant
features of vortices in Fe-based superconductors. As an ex-
ample, the elongated vortex shape, related in our calculations
to the trilinear derivative coupling, has been observed in
FeSe crystalline films (see, e.g, [42]). The attractive vortex–
domain wall interaction that results in our model mainly
from a negative bi-quadratic coupling term is consistent with
the observed vortex accumulation on FeSe domain bound-
aries, where degraded superconductivity was found [42,44].
On the other hand, the repulsive character observed in un-
derdoped Ba(Fe1−xCox )2As2, explained by the observation
of enhanced superfluid density on twin boundaries [33], is
consistent with a positive bi-quadratic coupling term. As
for the calculated peculiar cordate vortex core shape formed
when the vortex is pinned on a domain wall, as shown in
Fig. 6(a), it is remarkably similar to the shape observed by
the STM measurements shown in Fig. 6(b) for cleaved single
FeSe crystals [44]. Furthermore, there are some interesting
features predicted by the model still to be explored experi-
mentally through direct observation techniques in Fe-based
compounds, such as the relationship between the anisotropy
of the vortex core, domain wall directions, and vortex
trajectories.

Finally, there are several lines of research in which our
research can be extended. As mentioned before, the intro-
duction in the formalism of the elastic degrees of freedom
is fundamental to understanding the resulting NDM/TB in-
teraction. Thermal effects in the Ginzburg-Landau framework
are typically introduced through the temperature dependence
of parameters, notably the quadratic terms in the potential.
Alternatively, they can be incorporated by introducing ther-
mal noise to the time-dependent Ginzburg-Landau equations,
with correlations that are temperature-dependent. From a
theoretical standpoint, there is no requirement for the two
transitions to occur simultaneously. In fact, scenarios of
non-symmetry-restoration have been discussed in other sit-
uations, especially in cases involving a negative value for
the biquadratic term [59]. For realistic Fe-based samples, the
nematic transition normally occurs at a higher temperature
than the superconducting one and the transition temperatures
are doping-dependent. The inclusion of thermal effects in the
TDGL approach for nematic superconductors is undoubtedly
an interesting point that we plan to explore in the future. Fi-
nally, the implementation of appropriate boundary conditions
to describe vortex lattices, and the way lattices are affected
by the presence of domains and the introduction of external
currents to study the dynamics of pinning, are of interest. We
hope to return to these questions in future studies.
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