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Polar Kerr effect in multiband spin-orbit coupled superconductors
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We undertake a theoretical analysis to probe the Kerr spectrum within the superconducting phase of strontium
ruthenate, where the Kerr rotation experiments demonstrate the existence of a superconducting state with broken
time-reversal symmetry. We find that spin-orbit coupling changes the hybridization along the Fermi surface’s
diagonal zone mainly affects Hall transport. We show that the dominant Hall response arises mainly from
the quasi-1D orbitals dyz and dxz, linked to their hybridization, while other contributions are negligible. This
shows that breaking of time-reversal symmetry of quasi-1D orbitals can account for the existence of the Kerr
angle, irrespective of the order symmetry specific to the dxy orbital. Moreover, the optical Hall conductivity and
Kerr angle estimated for the hypothesized superconducting orders also closely match the experimental findings,
providing important insight on the role of the spin-orbit coupling, hybridization, and emergent order.
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I. INTRODUCTION

Despite extensive efforts and a multitude of precise experi-
ments, the true nature of the superconducting order parameter
in Sr2RuO4 continues to elude a definitive answer [1–16].
From an alternative perspective, there is no single compre-
hensive universal order parameter that can explain all of
those outcomes of conducted experiments. For more than
two decades, its superconductivity state has been viewed as
a two-dimensional analogy to the super-fluid state of 3He,
namely two-dimensional px + ipy (a time-reversal symmetry-
breaking superconducting state due to spontaneous magnetic
fields) [17]. The initial report of the nuclear magnetic res-
onance (NMR) measurement of the Knight shift [18] and
the existence of a nonzero Kerr angle [19] are known as
two strong experimental evidences that support this proposed
superconducting pairing. However, the lack of edge currents
[20] and the absence of a cusp in the strain dependency of
Tc [21,22] exclude this odd-parity pairing state. The more
recent NMR experiments have been shown to be inconsistent
with triplet pairings and have revealed that the domi-
nant pairings have spin-singlet character and suggest time-
reversal symmetry-breaking linear combinations of extended
s-wave [23].

One of the main reasons for the aforementioned longstand-
ing issue is the multi-orbital nature of Sr2RuO4 that hampers
the identification of active and passive bands for the super-
conducting pairing. The quasi-2D nature of the electronic
dispersion introduces these two classes and represents that the
superconducting order is derived from either the quasi-2D or-
bital dxy or the quasi-1D orbitals dxz and dyz [24]. Two classes
possess fully different Fermi surfaces such that for the former
case, it is isotropic (one circular Fermi surface) whereas for
the latter the resulting Fermi surface is highly anisotropic due

to near degeneracies and avoided crossings of different bands.
Some thermodynamic and transport properties may favor the
first class as the active band and others the second one. For
example, the model used under biaxial or uniaxial pressure
is based on the first band class because Lifshitz transition
occurs for the quasi-2D orbital dxy whose van Hove peak
is nearest to the Fermi surface and have an isotropic Fermi
sheet [25–28]. The anisotropic Fermi surfaces of the quasi-1D
orbitals dxz and dyz with the hybridization gives rise to a finite
Berry curvature, which have a close connection with Hall-type
response [29,30]. In fact, Berry curvature is associated with
the orbital hybridization. Taking into account spin-orbit cou-
pling (SOC) provides a spin-dependent hybridization between
three orbitals and gives rise to mixing two classes. Thus one
can expect that SOC has profound effects on the Hall-type
responses [29].

There are additional supporting evidences indicating the
predominant involvement of quasi-1D orbitals, namely from
inelastic neutron scattering studies [31], exact weak-coupling
analysis of the Hubbard model [32], and tunneling spec-
troscopy results [33]. Nevertheless, it is noteworthy that these
orbitals seem to exert minimal influence on heat capacity
measurements [34] and remain relatively unaffected when
subjected to strain [26]. This can be attributed to the proximity
of the dxy orbital to the van Hove singularity. Consequently, it
becomes increasingly evident that the quasi-1D orbitals play
a pivotal role, at the very least, in governing the intrinsic
anomalous Hall transport. Identifying these quasi-1D orbitals
as the primary active entities also elucidates the absence of
edge currents [35–37].

Exploring the intrinsic Hall response of the superconduct-
ing state in Sr2RuO4 in the presence of SOC holds significant
interest. Thus far, the investigation of this phenomenon
has employed specific methodologies, delineated into two
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categories: (i) single-orbital models, where the presence of
impurities is crucial as an extrinsic mechanism to induce
Hall transport [38–41]; and (ii) two-orbital models without
impurities, where the intrinsic coupling between orbitals and
the transitions between them generate the Hall-type response
[42–44]. In the latter case, any factor influencing interor-
bital transitions logically affects Hall transport. Notably, SOC
emerges as the primary factor, influencing the Fermi surface
along the diagonal direction and inducing electron transfer
between orbitals in this region [45]. The computational exam-
ination of SOC’s impact on the polar Kerr effect has shown
decreasing in the polar Kerr effect due to SOC [29]. Unlike
this claim, Ref. [19] predicted an increase in the Kerr signal
due to the presence of SOC. This variation can be ascribed
to the utilization of a three-dimensional model characterized
by the nodal nature of the tight-binding model (defining the
Fermi surface as three slightly warped cylinders along the
c-axis), as well as the gap structure [46,47]. Within this model,
SOC induces a pronounced momentum-dependent perpendic-
ularity to the RuO2 planes, affecting both orbital and spin
characteristics of electronic states near the Fermi level. Sig-
nificantly, certain regions exhibit a robust SOC effect, while in
others, its impact is negligible [48]. Drawing inspiration from
the two primary models discussed earlier, which focus on 2D
p-wave chiral pairing, novel models have been suggested to
bolster Hall transport phenomena [49–51].

In the present paper, we theoretically study intrinsic Hall
response of the superconducting state of Sr2RuO4, using the
three-orbital model in the presence of SOC. Extending the
procedure outlined in Ref. [42], we have determined that
the primary contribution to the optical Hall conductivity, and
consequently, the polar Kerr effect, emanates from the quasi-
1D orbitals, even when considering interorbital interactions
within a mixture of two classes and accounting for the rear-
rangement of orbital hybridization. In other words, at least
one of the quasi-1D orbitals needs to have its superconducting
time-reversal symmetry broken in order to achieve a suit-
able Kerr rotation. In the following section, we outline the
physical model used to describe the electronic band structure
and superconducting ground state. Section III will investigate
the dynamical Hall conductivity and calculate the polar Kerr
angle based on the most recent suggested superconducting
gap functions for Sr2RuO4. Finally, the last section provides a
short summary and conclusions.

II. MODEL HAMILTONIAN

Employing the effective three-orbital model that encom-
passes the t2g orbital manifold, the Hamiltonian for normal
state can be written as follows [52–54]:

H0 =
∑

k

ψ
†
kĤ(k)ψk, (1)

where Ĥ(k) is defined as

Ĥ(k) =
⎛
⎝ ξ

yz
k σ0 gkσ0 + iλσz −iλσy

gkσ0 − iλσz ξ xz
k σ0 iλσx

iλσy −iλσx ξ
xy
k σ0

⎞
⎠, (2)
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FIG. 1. Energy dispersion along high-symmetry momentum
paths �XM�, in the absence (a) and presence (b) of spin-orbit
coupling.

under the basis ψ
†
k = (φ�

k↑, φ�
k↓), with φ�

kσ =
(d†

yz,kσ , d†
xz,kσ , d†

xy,kσ̄ ), and σi=x,y,z denotes the 2 × 2 Pauli

matrices in the spin basis. The field operator d†
ν,kσ (dν,kσ )

creates (annihilates) an electron with momentum k and spin
σ (σ̄ = −σ ) at orbital ν = yz, xz, xy. Moreover, λ is the
strength of SOC and the electronic dispersions are described
by the following tight-binding relations [55]:

ξ
yz
k = −μ1 − 2t yz

x cos kx − 2t yz
y cos ky,

ξ xz
k = −μ1 − 2t xz

x cos kx − 2t xz
y cos ky,

ξ
xy
k = −μ2 − 2t xy

x cos kx − 2t xy
y cos ky − 4t xy

xy cos kx cos ky,

gk = −2g sin kx sin ky,

where μi=1,2, tν
ϑ=x,y,xy, and g represent the chemical potentials,

hopping parameters, and the hybridization coefficient, respec-
tively. Moreover, the interorbital coupling g and hopping inte-
gral t xy

xy correspond to the next-nearest neighbors. The tight-
binding parameters are set as t xz

x = t yz
y = t = 0.4 eV, t xz

y =
t yz
x = 0.1t , t xy

x = t xy
y = 0.8t , t xy

xy = 0.3t , g = 0.1t , μ1 = t ,
μ2 = 1.1t [25]. Figure 1 shows the band structure with and
without SOC. Bands α and β arise from quasi-1D orbitals,
while band γ comes from the quasi-2D orbital. The intro-
duction of SOC brings about substantial modifications to the
single-particle band structure, particularly at specific high-
symmetry points within the Brillouin zone, where multiple
bands coincide at the same energy level [56]. Notably, in
Sr2RuO4, this energy-level degeneracy becomes apparent in
the diagonal direction of reciprocal space, leading to the sepa-
ration of Fermi-surface sheets [48]. This bandsplitting occurs
near the Fermi level, and the diagonal region, crucial for the
Berry phase, significantly influences the observed anomalous
Hall effect [29].

Within the Nambu space ψ
′†
k = (φ�

k↑, φ�
k↓, φ−k↑, φ−k↓),

the superconducting Hamiltonian can be written as

HSC =
∑

k

ψ
′†
k ĤSC(k)ψ ′

k, (3)
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where ĤSC(k) is a 12×12 tensor defined by

ĤSC(k) =
[
Ĥ(k) �̂(k)
�̂†(k) −Ĥ∗(−k)

]
, (4)

in which the superconducting order parameter is a 6 × 6 an-
tidiagonal matrix �̂(k)=�(k) ⊗ σx. Here, �(k) is a 3 × 3
matrix, and we exclusively focus on intra-orbital pairing
within a diagonal matrix format, which comprises the fol-
lowing orbital elements �ν

k = �ν′
k + i�ν′′

k . Note that the
multi-orbital (band) structure makes different superconduct-
ing gap textures on each orbital (band). Later, we set the most
favored forms for the orbital order parameters to calculate
intrinsic anomalous Hall transport.

III. OPTICAL HALL CONDUCTIVITY
AND POLAR KERR EFFECT

Within the linear response theory, the dynamical Hall con-
ductivity is given by the following Kubo formula:

σ H (ω) = 1
2 lim

q→0
[σxy(q, ω) − σyx(q, ω)], (5)

with

σi j (q, ω) = i

ω
Ki j (q, ω). (6)

Here Ki j (q, ω) is the current correlator and is obtained from
the analytical continuation, iωm →ω + i0+, of its Matsubara
counterpart

Ki j (q, iωm)

= T
∑
k,iυn

Tr[Ĵi(k)Ĝ0(k, iυn)Ĵ j (k)Ĝ0(k + q, iυn+iωm)],

(7)

in which υn = 2(n + 1)πT , and ωm = 2mπT are Matsubara
fermionic and bosonic frequencies, respectively. In the above
equation, the bare Green’s function in the superconducting
state is a 12 × 12 matrix (2 Nambu, 3 orbital, 2 spin degrees
of freedom) and is given by

Ĝ0(k, iωm) = [iωm − ĤSC(k)]−1

=
[

Ĝ0(k, iωm) F̂0(k, iωm)
F̂ †

0 (k, iωm) −Ĝᵀ
0 (−k,−iωm)

]
, (8)

in which Ĝ0(k, iωm) and F̂0(k, iωm) are the normal and
anomalous Green’s functions, respectively. In Eq. (7), the
charge current operator Ĵi(k) is defined as

Ĵi(k) = ev̂i(k) = Ĵ (e)
i (k) ⊕ Ĵ (h)

i (k), (9)

wherein

Ĵ (e)
i (k) = −e∇kiĤ(k); Ĵ (h)

i (k) = e∇ki (−Ĥ∗(−k))

are particle and hole contributions of the charge current oper-
ator, respectively. Taking into account the bare current vertex
tensor v̂i(k), and substituting the above terms into Eq. (5),
we can show that the Hall conductivity is governed by the
following proportionality equation:

σ H (ω) ∝ (vxz − vyz ) × vxz−yz, (10)

with

vxz(yz) = ∂kx ξ
xz(yz)
k î + ∂kyξ

xz(yz)
k ĵ;

and

vxz−yz = ∂kx gk î + ∂ky gk ĵ,

which will end up with different set of the prefactor compo-
nents of the velocity. Terms including vxy, are proportional to
λ2g that in comparison with vyz and vxz with dependency as
g, are negligible. Therefore, the dominant terms is related to
the prefactors of v

yz
x v

xz−yz
y , v

yz
y v

xz−yz
x , vxz

x v
xz−yz
y , and vxz

y v
xz−yz
x

(see Appendix). In fact, these results express that the leading
contribution to the Hall-type response originates from the dyz

and dxz orbitals even in the presence of SOC, which couples
the orbital dxy with these orbitals. Defining z = iυn and z′ =
i(ωm + υn) and in accordance with the explanations provided
earlier, the dynamical Hall conductivity can be expressed as
follows:

σ H (ω) = 2ie2

ω

∑
k

gk�
[
�xz∗

k �
yz
k

]
× [(

vxz
x − vyz

x

)
vxz−yz

y − (
vxz

y − vyz
y

)
vxz−yz

x

]
× lim

iωm→ω+i0+

[
T

∑
iυn

(z2 − z′2)(z + z′)

×
(
z2 − Eyz2

k

)(
z2 − Exz2

k

)(
z2 − Exy2

k

)2

(
z2 − E2

1k

)2(
z2 − E2

2k

)2(
z2 − E2

3k

)2

×
(
z′2 − Eyz2

k

)(
z′2 − Exz2

k

)(
z′2 − Exy2

k

)2

(
z′2 − E2

1k

)2(
z′2 − E2

2k

)2(
z′2 − E2

3k

)2

]
. (11)

This expression elucidates the conditions under which the
superconducting state may display a nonvanishing Kerr rota-
tion. It implies that there must be a phase difference between
the quasi-1D orbitals. Moreover the superconducting state of
these two orbitals, in accordance with the two-dimensional
feature, must also break the time-reversal symmetry. Addi-
tionally, a significant contribution comes from the essential
role played by interorbital velocity, which is required for
the existence of a nonzero anomalous Hall effect. As a
consequence, the quasi-1D orbitals with a k-dependent hy-
bridization leads to a nonzero Hall transport. Here we define
E ν

k =
√

ξν2
k + |�ν

k|2 for the orbital ν, and the BCS quasipar-
ticle spectra Eik (i =1− 3) can be obtained by rephrasing
D(k, z = iυn) = det[G−1

0 (k, iυn)], as

D(k, z) ∝ (
z2 − E2

1k

)2(
z2 − E2

2k

)2(
z2 − E2

3k

)2
. (12)

The minimum of the sum of the quasiparticle spectra occurs
at the diagonal zone, where kx = ky = π/2. This proximity to
the diagonal zone is closely related to orbital hybridization,
which plays a pivotal role in determining the frequency de-
pendence of the dynamical Hall-type response in multi-orbital
superconductors exhibiting broken time-reversal symmetry.
Moreover, the resonance peak that appears at the minimum of
the sum of the quasiparticle spectra is affected by the intensity
of SOC. The presence of SOC has a notable impact on or-
bital hybridization, particularly at the point (π, π ) where the
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Fermi surface intersects orbital sheets. Consequently, one can
anticipate that this interaction affects the dynamical optical
response. However, in the absence of SOC, this minimum
shifts to

min[E1k + E3k] ≈ 2g; E2k = 0,

aligning with the findings of Ref. [57].
The Hall conductivity behavior and other electronic char-

acteristics in the superconducting state are determined by
the precise shape of the superconducting gap symmetry.
Therefore, to calculate σ H (ω), we need to know the super-
conducting order parameter. In the case of a two-dimensional
square lattice material, the classification of gap symmetries
is determined by the irreducible representations (irrep.) of
the D4h group, which encompass extended s-wave, gxy(x2−y2 ),
dx2−y2 , dxy, and px(y), as elaborated

A1g : s′ = cos kx + cos ky,

A2g : gxy(x2−y2 ) = sin kx sin ky[cos kx − cos ky],

B1g : dx2−y2 = cos kx − cos ky,

B2g : dxy = sin kx sin ky,

Eu : px(y) = sin kx(y). (13)

In this context, one noteworthy aspect is the capacity to eluci-
date signs of time-reversal symmetry breaking, prompting our
exploration of the following scenarios for superconducting
gap momentum dependency [42,58], defined as (�yz

k ,�xz
k ):

(i) �0(i sin ky cos kx, sin kx cos ky)

(ii) �0(cos kx − i cos kx, cos ky + i cos ky)

(iii) �0(cos kx + i sin ky cos kx, cos ky + i sin kx cos ky),
(14)

for p + ip, s′ + id , and s′ + ip, respectively. Moreover, we set
the pairing on the dxy orbital as [6,59,60]

�
xy
k = �′

0(cos kx − cos ky)(1 + i sin kx sin ky). (15)

In Fig. 2, we illustrate the results for the dynamical Hall
conductivity at zero temperature σ H (ω) across three different
strengths of SOC. The finite values of SOC are chosen as
λ = g/2 [61] and λ = g [32,48], and we set �′

0 = 2�0 =
0.5 meV [42]. In the lower panel, we observe �σ H (ω), which
characterizes the absorption spectrum. In the absence of SOC
for all pairings, the initiation of absorption processes, arising
from orbital hopping between dyz and dxz orbitals, manifests
at the interorbital interaction and peaks at the minimum point
in the sum of the two lowest BCS quasiparticle spectra in the
diagonal region, i.e., 2g. Incorporating SOC results in a no-
table shift of both the onset and resonance peak toward higher
frequencies. This shift may be related to the reconfiguration of
hybridization between the quasi-1D orbitals, the introduction
of transitions involving the quasi-2D orbital with the quasi-1D
orbitals, and the energy splitting in regions characterized by
degenerate t2g bands. In fact, the frequency region 2�0 �
ω � 2g + λ corresponds to interorbital hoppings, which can
arise from either interorbital interactions or SOC. The main
peaks in this region are attributed to near degeneracies (along
the diagonal zone) between orbitals in the quasiparticle band
structure and the orbital mixing. The positive feature seen

FIG. 2. [(a)–(c)] Plotting the real parts and [(d)–(f)] imaginary
parts of the dynamical Hall conductivity σ H (ω) vs photon energy
at zero temperature for various quasi-1D pairings: p + ip, s′ + id ,
and s′ + ip, with the d + ig pairing for quasi-2D orbital, considering
values of the spin-orbit coupling: λ = 0 (red), λ = g/2 (green), and
λ = g (blue).

at frequencies ω � 0.1 (ω � 0.15), as well as the negative
features around 0.1 eV and 0.2 eV (0.15 eV and 0.25 eV)
for λ = 0 (λ ≈ g), can be assigned to the appearance of the
dxy orbital and its hopping with the quasi-1D orbitals by
comparing Figs. 2(d)–2(f) with the findings in Ref. [42]. Ad-
ditionally, it is worth noting that the various pairings exhibit
distinct resonance peak intensities and spectral weights, likely
associated to their unique pairing characteristics. In the case
of nonchiral pairings, the absorption spectrum tends to be
smaller compared to the chiral case. A substantial reduction
in spectral weight occurs at higher frequencies, approximately
ω � 0.4 eV, which corresponds to associated with strongly
correlated electronic limit.

Utilizing the dynamical Hall conductivity and following
the established formalism of Kerr rotation one can obtain the
polar Kerr angle as

θKerr (ω) = 4π

ωd
�[σ H (ω)ϕ(ω)], (16)

where d = 6.8 Å is the interlayer distance [38], and

ϕ(ω) = [n(ω)[n(ω)2 − 1]]−1.

Here n(ω) = √
ε∞ + (4π i/ω)σ (ω) denotes the refraction in-

dex defined by the dynamical Drude model, σ (ω) = σ0/(1 −
iωτ ), where σ0 is the static Drude conductivity with relax-
ation time τ−1 = γ

Scatt
= 0.4 eV, and ε∞ = 10 refers to the

background dielectric tensor. Notice that Kerr angle strongly
depends on the quasiparticle scattering rate γ

Scatt
[38,39].
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FIG. 3. Plotting the Kerr rotation angle (in unit of nanoradian)
vs photon energy for three pairing symmetries: p + ip, s′ + id , and
s′ + ip, for three values of spin-orbit coupling: λ = 0, λ = g/2, and
λ = g. We can roughly categorize the behavior of the Kerr rotation
angle into three distinct regimes: I, II, and III. The region I represents
interorbital transitions, and the vertical dashed line indicates the
maximum of angle in the region III.

The results of Kerr rotation angle versus the photon energy
are shown in Fig. 3, covering different strengths of SOC and
for pairing symmetries: (a) p + ip, (b) s′ + id , and (c) s′ + ip.
In a qualitative sense, we can delineate three primary regions
labeled as I, II, and III, each represented by distinct colors.
The region I, encompassing frequencies ω � 0.3 eV, reveals
a complex structure with the resonant enhancements which
are associated with interorbital transitions. In the intermediate
frequency range (region II), the Kerr rotation angle exhibits
a distinctive flat-like behavior. The variation in this region
can be attributed to the fact that the primary contribution to
θKerr (ω) for nonchiral pairings arises from the real part of
σ H (ω) in the strongly correlated system limit. In contrast,
for the chiral pairing p + ip, both the real and imaginary
parts of σ H (ω) are of similar magnitude, resulting in com-
parable contributions to θKerr (ω). On the other hand, region
III shows a hump that corresponds to the situation where the
spectra are dominated by a strong magneto-optical response
at ω < ωedge for chiral pairing and at ω > ωedge for nonchiral
pairings, respectively. Here ωedge = ωp/

√
ε∞ is the frequency

of the plasma edge, and ωp is the plasma frequency and
we set it as ωp = 2.9 eV [38,42]. The behavior of the Kerr
spectra suggests a broadening of the optical response and a
sensitivity to pairing in the intermediate region, especially
in proximity to the plasma edge [57]. Interestingly, in re-
gion III, the peak of the Kerr angle shifts towards higher
energy for the nonchiral pairings. In fact, for the nonchiral
pairings, the Kerr angle is primarily dominated by the real
part of the frequency-dependent Hall conductivity; however,
for the chiral pairing p + ip, the Kerr angle receives contribu-
tions from both the real and imaginary parts, as indicated in
Table I.

Notably, the inclusion of SOC leads to an enhancement
in the Kerr angle. This effect could be attributed to the in-
troduction of spin magnetic order, which contributes to the
observed finite Kerr signal in a spin system. In this framework,

TABLE I. Comparing the results obtained for maximum Kerr ro-
tation (at region III) for three considered pairing symmetries: p + ip,
s′ + id , and s′ + id . Polar Kerr spectrum is peaked at ω ≈ 0.85 eV
and ω ≈ 0.95 eV for the chiral and nonchiral pairings, respectively;
indicating by the vertical dashed lines in Fig. 3. Each dataset within
individual cells corresponds to the calculated results for λ = 0, λ =
g/2, and λ = g, respectively.

Pairings θKerr (nrad) �[σ H ](10−8e2/h̄) �[σ H ](10−8e2/h̄)

p + ip 25, 26, 54 –6.2, –7, –10 –7.3, –7.6, –18.4
s′ + id 51, 53, 64 0.04, 0.042, 0.05 –18.4, –19, –23.2
s′ + ip 42, 44, 53 0.033, 0.035, 0.043 –15.2, –15, –19.3

magnetic order pertains to the transitions occurring between
orbitals, in which the magnetic orbital (spin) order describes
electronic transitions between orbitals without (with) con-
sidering spin [45]. Since these transitions between orbitals
exclusively occurs among quasi-1D orbitals, the quasi-2D
orbital does not partake in the development of the orbital
magnetic moment [42,46]. Spin magnetic order emerges due
to the presence of SOC, resulting in the interplay among three
orbitals. However, as elucidated in our findings, the primary
contribution to the Hall conductivity comes from quasi-1D or-
bitals. Consequently, SOC induces more transitions between
quasi-1D orbitals, providing an explanation for the amplified
Kerr signal.

At the end, in comparison with existing experimental
findings [62], where θKerr

Exp ≈ 65 nrad was measured at ω =
0.8 eV, the results obtained for all three pairings appear to
be in reasonable agreement, particularly for the chiral order
parameter.

IV. SUMMARY

We have presented a detailed theoretical study of the
intrinsic Kerr response for the three-orbital model in the pres-
ence of spin-orbit coupling λ, as an application model for
Sr2RuO4 superconductor. Our investigation has unveiled that
the spontaneous Hall transport, resulting in a nonzero Kerr
angle and finite Berry curvature, is primarily instigated by
the quasi-1D orbitals dxz and dyz with a interorbital coupling
g. We have demonstrated that the terms associated with the
quasi-1D orbitals primarily influence the results, as they are
directly proportional to g. In contrast, the contribution of the
orbital dxy to the optical Hall response are expressed as a
proportionality to λ2g, and can be neglected. As a result, the
absence of edge currents can be rationalized by considering
the dxz and dyz orbitals as the primary active components.
This choice arises because the components of the pairings in
these orbitals are nearly decoupled, except in small regions
of k space where the Fermi surfaces closely intersect. Con-
sequently, this scenario leads to a substantial reduction in
edge currents. The SOC plays a pivotal role in amplifying
the intensity of the resonance peak, particularly when the
frequency of electromagnetic radiation aligns with the charac-
teristic scale of hybridization. This heightened hybridization,
in turn, leads to a remarkable enhancement of the Kerr angle
for possible pairing states characterized by the breaking of
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time-reversal symmetry. This enhancement can be attributed
to the incorporation of contributions from spin magnetic or-
der into the optical Hall response and the influence of Berry
curvature.
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APPENDIX

Here, we offer a synophis of the numerator prefactors as-
sociated with each term in Eq. (11), categorized by velocity
type, while neglecting terms of order Oλ2g. For the terms that

include v
yz
x v

xz−yz
y and v

yz
y v

xz−yz
x , we can write

4gk(z − z′)(z + z′)2�[
�xz∗

k �
yz
k

]
× (

z2 − Exz2
k

)(
z2 − Eyz2

k

)(
z2 − Exy2

k

)2

× (
z′2 − Exz2

k

)(
z′2 − Eyz2

k

)(
z′2 − Exy2

k

)2 + Oλ2g,

and for the terms that include vxz
x v

xz−yz
y and vxz

y v
xz−yz
x , we have

− 4gk(z − z′)(z + z′)2�[
�xz∗

k �
yz
k

]
× (

z2 − Eyz2
k

)(
z2 − Exz2

k

)(
z2 − Exy2

k

)2

× (
z′2 − Eyz2

k

)(
z′2 − Exz2

k

)(
z′2 − Exy2

k

)2 + Oλ2g.

Furthermore, the inclusion of the following terms: v
yz
x v

xy
y ,

v
yz
y v

xy
x , vxz

x v
xy
y , vxz

y v
xy
x , v

xy
x v

xz−yz
y , and v

xy
y v

xz−yz
x , all are propor-

tional to Oλ2g, making them negligible. For the rest of the
components, these coefficients vanish.
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netic moment of a chiral p-wave superconductor, New J. Phys.
11, 055063 (2009).

[47] M. Gradhand, K. I. Wysokinski, J. F. Annett, and B. L. Györffy,
Kerr rotation in the unconventional superconductor Sr2RuO4,
Phys. Rev. B 88, 094504 (2013).

[48] M. W. Haverkort, I. S. Elfimov, L. H. Tjeng, G. A. Sawatzky,
and A. Damascelli, Strong spin-orbit coupling effects on the
Fermi surface of Sr2RuO4 and Sr2RhO4, Phys. Rev. Lett. 101,
026406 (2008).

[49] J.-L. Zhang, Y. Li, W. Huang, and F.-C. Zhang, Hidden anoma-
lous Hall effect in Sr2RuO4 with chiral superconductivity
dominated by the Ru dxy orbital, Phys. Rev. B 102, 180509(R)
(2020).

[50] H.-T. Liu, W. Chen, and W. Huang, Impact of random impurities
on the anomalous Hall effect in chiral superconductors, Phys.
Rev. B 107, 224517 (2023).

[51] J.-L. Zhang, W. Chen, H.-T. Liu, Y. Li, Z. Wang, and
W. Huang, Quantum-geometry-induced anomalous Hall effect
in non-unitary superconductors and application to Sr2RuO4,
arXiv:2309.14448.

[52] A. Ramires and M. Sigrist, Identifying detrimental effects for
multiorbital superconductivity: Application to Sr2RuO4, Phys.
Rev. B 94, 104501 (2016).

[53] A. Ramires and M. Sigrist, A note on the upper critical field of
Sr2RuO4 under strain, J. Phys.: Conf. Ser. 807, 052011 (2017).

[54] Z. Wang, X. Wang, and C. Kallin, Spin-orbit coupling and spin-
triplet pairing symmetry in Sr2RuO4, Phys. Rev. B 101, 064507
(2020).

[55] A. Akbari and P. Thalmeier, Multiorbital and hybridization
effects in the quasiparticle interference of the triplet
superconductor Sr2RuO4, Phys. Rev. B 88, 134519
(2013).

[56] H. Suzuki, L. Wang, J. Bertinshaw, H. U. R. Strand, S.
Käser, M. Krautloher, Z. Yang, N. Wentzell, O. Parcollet,
F. Jerzembeck et al., Distinct spin and orbital dynamics in
Sr2RuO4, Nat. Commun. 14, 7042 (2023).

094510-7

https://doi.org/10.1126/science.1248292
https://doi.org/10.1126/science.aaf9398
https://doi.org/10.7566/JPSJ.89.034712
https://doi.org/10.1103/PhysRevLett.78.3374
https://doi.org/10.1103/PhysRevB.94.224507
https://doi.org/10.1103/PhysRevLett.120.076602
https://doi.org/10.1103/PhysRevB.102.014509
https://doi.org/10.1103/PhysRevLett.130.026702
https://doi.org/10.1103/PhysRevB.96.144503
https://doi.org/10.1088/0953-8984/26/27/274205
https://doi.org/10.1103/PhysRevLett.83.3320
https://doi.org/10.1103/PhysRevLett.105.136401
https://doi.org/10.1103/PhysRevB.88.134521
https://doi.org/10.1103/PhysRevLett.92.047002
https://doi.org/10.1103/PhysRevB.72.012504
https://doi.org/10.1103/PhysRevB.76.014526
https://doi.org/10.1103/PhysRevB.81.214501
https://doi.org/10.1103/PhysRevB.80.104508
https://doi.org/10.1103/PhysRevB.78.060501
https://doi.org/10.1103/PhysRevLett.100.227003
https://doi.org/10.1103/PhysRevLett.118.027001
https://doi.org/10.1103/PhysRevLett.108.157001
https://doi.org/10.1103/PhysRevLett.108.077004
https://doi.org/10.1103/PhysRevB.103.094503
https://doi.org/10.1103/PhysRevLett.100.096601
https://doi.org/10.1088/1367-2630/11/5/055063
https://doi.org/10.1103/PhysRevB.88.094504
https://doi.org/10.1103/PhysRevLett.101.026406
https://doi.org/10.1103/PhysRevB.102.180509
https://doi.org/10.1103/PhysRevB.107.224517
https://arxiv.org/abs/2309.14448
https://doi.org/10.1103/PhysRevB.94.104501
https://doi.org/10.1088/1742-6596/807/5/052011
https://doi.org/10.1103/PhysRevB.101.064507
https://doi.org/10.1103/PhysRevB.88.134519
https://doi.org/10.1038/s41467-023-42804-3


YAZDANI-HAMID, BIDERANG, AND AKBARI PHYSICAL REVIEW B 109, 094510 (2024)

[57] E. Taylor and C. Kallin, Anomalous Hall conductivity of clean
Sr2RuO4 at finite temperatures, J. Phys.: Conf. Ser. 449, 012036
(2013).

[58] T. Scaffidi, Degeneracy between even- and odd-parity super-
conductivity in the quasi-one-dimensional Hubbard model and
implications for Sr2RuO4, Phys. Rev. B 107, 014505 (2023).

[59] G. Palle, C. Hicks, R. Valentí, Z. Hu, Y.-S. Li, A. Rost, M.
Nicklas, A. P. Mackenzie, and J. Schmalian, Constraints on the
superconducting state of Sr2RuO4 from elastocaloric measure-
ments, Phys. Rev. B 108, 094516 (2023).

[60] X. Wang, Z. Wang, and C. Kallin, Higher angular
momentum pairing states in Sr2RuO4 in the presence
of longer-range interactions, Phys. Rev. B 106, 134512
(2022).

[61] Y. Yanase and M. Ogata, Microscopic identification of the D-
vector in triplet superconductor Sr2RuO4, J. Phys. Soc. Jpn. 72,
673 (2003).

[62] T. Katsufuji, M. Kasai, and Y. Tokura, In-plane and out-of-
plane optical spectra of Sr2RuO4, Phys. Rev. Lett. 76, 126
(1996).

094510-8

https://doi.org/10.1088/1742-6596/449/1/012036
https://doi.org/10.1103/PhysRevB.107.014505
https://doi.org/10.1103/PhysRevB.108.094516
https://doi.org/10.1103/PhysRevB.106.134512
https://doi.org/10.1143/JPSJ.72.673
https://doi.org/10.1103/PhysRevLett.76.126

