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Absence of floating phase in superconductors with time-reversal symmetry breaking on any lattice
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Due to the interplay of multicomponent order parameters [e.g., a twisted bilayer superconductor with
interlayer Josephson coupling or a frustrated (n � 3)-band superconductor], a superconductor can possess a
U(1) × Z2 symmetry, corresponding to the superconducting Tc and time-reversal symmetry breaking transition
TTRSB, respectively. It was then conjectured that in this class of Hamiltonians, there exists a vast parameter
regime O such that the system exhibits vestigial TRSB, i.e., TTRSB > Tc, while at the boundary ∂O, the system
possesses a single phase transition TTRSB = Tc. In this paper, we provide evidence towards this conjecture by
mathematically eliminating the possibility of a floating phase, i.e., TTRSB < Tc, for the strong coupling regime.
More specifically, we prove that the correlation functions of U (1) spins are bounded above by that of Z2 spins for
all temperatures and lattice structures (e.g., Zd for all d). In particular, this guarantees the existence of high-Tc

TRSB (and consequently topological) superconductivity in a large class of Hamiltonians. Note that the same
property can also be proven for a certain parameter regime (� � 4/5) of the generalized XY model on any
lattice structure, despite belonging to an entirely distinct class of U(1) × Z2 Hamiltonians.
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I. INTRODUCTION

In the last several years, there has been considerable
excitement generated by various theoretical [1–7] and ex-
perimental [8–11] proposals concerning the existence of
time-reversal symmetry breaking (TRSB) pairing states in
various unconventional superconductors. However, conclu-
sive experimental evidence of these states has so far not been
reported.

Recently, it was proposed that high-Tc topological su-
perconductivity can be reliably achieved via twisting two
identical 2D layers of BSCCO (dx2−y2 -wave pairing sym-
metry) relative to each other [12,13]. At relative orientation
45◦, the first-order interlayer Josephson coupling −J1 cos φ

vanishes so that the second-order coupling J2 cos 2φ (with
a sign that favors an interlayer phase difference φ = ±π/2)
becomes the dominant interlayer interaction. This interlayer
term was conjectured to induce a TRSB transition (dx2−y2 ±
idxy state) with a critical temperature that is on the same
order as the superconducting transition, i.e., TTRSB ≈ Tc, and
thus generating high Tc topological superconductivity (albeit
with a gap magnitude proportional to J2, which is expected
to be very small [6] in the actual system). Similar proposals
were also made for 30◦-twisted bilayer graphene [14–17] and
inherent two-component systems [18], which is especially
enticing since it is not limited to 2D layers and may also
circumvent the issue of a small gap magnitude in the previous
proposal. Alternatively, it was proposed that in a (n � 3)-band
superconductor, the interband 1st order Josephson coupling
can cause sufficient frustration among the interband phase
differences so that the ground state configurations may exhibit
phase differences which differ from 0 or π and thus result in
TRSB [7]. Similar proposals have been argued to occur in the
hole doped Ba1−xKxFe2As2 pnictide superconductor [19] and
other classes of materials [20–24].

Such proposals all fall within the same class of Hamilto-
nians (defined explicitly in Sec. II) which possesses a U(1) ×
Z2 symmetry, corresponding to the superconducting Tc and
TRSB transition TTRSB, respectively. To achieve high Tc topo-
logical superconductivity, it is then imperative that the TRSB
transition occurs on the same order as the superconducting
transition TTRSB ≈ Tc. In fact, it was conjectured that in a
certain parameter regime (schematically denoted by O, see
Fig. 1), the system exhibits vestigial order1 so that TTRSB > Tc,
while the two transitions coincide exactly TTRSB = Tc at the
boundary ∂O (see Fig. 1) [7,12,17,18].

Within the context of mean-field theory including ap-
plied either to a Ginzburg-Landau effective field theory
[7,12,17–19,26] or an XY model on a regularized lattice [27],
the conjecture is relatively well-understood.2 However, it is
well known that mean-field theory is reliable only when the
effective number of neighboring spins is large as occurs when
there are long-range interactions or in high dimensions (gen-
erally believed to be d � 4). In low dimension (d = 2, 3)
systems, fluctuations due to local nearest-neighbor interac-
tions may play an important fact and thus it is conventional
to rely on numerical results (in 2D [17,25] and in 3D [7,18])
and RG calculations (in 2D [17,28]) to provide us insight into
the problem. Unfortunately, in certain scenarios, the distinct

1The term denotes the existence of a temperature region Tc < T <

TTRSB, in which the individual multicomponent order parameters are
zero (e.g., schematically, 〈ψ1〉 = 〈ψ2〉 = 0), while the higher order
terms are nontrivial (e.g.,〈ψ∗

1 ψ2〉 �= 0) and thus “vestigial.”
2For example, at the critical regime � in Fig. 1, the second-order

Josephson coupling first occurs in the quartic order of Ginzburg-
Landau theory and thus does not affect the critical temperature of the
system (see, for example, Eq. (2) of Ref. [12]). A rigorous version of
this argument can be found in Appendix of Ref. [27].
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FIG. 1. Schematic sketch. Using the example of a two-
component system [12,18] with phases φ±, the parameter space
involving (ν, J2) describes the coupling strength ν of the current-
current interaction −ν∇φ+ · ∇φ− and that of an intercomponent
J2 cos 2(φ+ − φ−) term. See, e.g., Eq. (1) of Ref. [18]. The regime
O is where vestigial order TTRSB > Tc is expected to occur, while
the boundary ∂O denotes points in which there is only a single
phase transition TTRSB = Tc. In particular, it includes the critical
regime � ⊆ ∂O, i.e., ν = 0, which has been studied extensively via
numerics (in 2D [25] and in 3D [7,18]). The regimes �∞, ∂O∞,O∞
correspond to the strong coupling limit, i.e., J2 → ∞. We emphasize
that the shape of ∂O should not be taken too seriously, but from
numerics (in 2D [17] and 3D [18]), it is expected that for finite
J2 > 0, there exists vestigial order for large ν and a single phase
transition at small ν. Similarly, the size of ∂O∞ should not be taken
seriously, but from numerics [7,25], it is expected that �∞ ⊆ ∂O∞.
Also write Ō ≡ O ∪ ∂O and similarly Ō∞.

approaches contradict with each other; for example, at the
critical regime �, numerical evidence agrees with the conjec-
ture TTRSB = Tc, while latter RG calculations [28] suggest a
vestigial TRSB phase TTRSB > Tc (although further detailed
RG calculations seem to reconcile this matter [29]). Therefore
the main goal of this paper is to obtain exact results on the
short-range nearest-neighbor model.

For the majority of this paper, we shall consider a class
of Hamiltonians which are physically motivated by the strong
coupling regime (taking J2 → ∞ in Fig. 1), and prove math-
ematically that the possibility of a floating phase3 is excluded
on any lattice structure4 so that TTRSB � Tc. More specifically,
we prove that the correlation functions of U(1) XY spins is
bounded above by that of Z2 Ising spins for all temperatures
and lattice structures (e.g., Zd for all d). In particular, this
guarantees the existence of high-Tc superconductivity with
TRSB and possibly topological superconductivity5 for a large

3The term denotes the existence of a temperature region, TTRSB <

T < Tc, in which the multicomponent order parameters are individ-
ually nonzero, but not yet coupled together to have a fixed phase
difference. Hence, each component is “floating” independently.

4Trivial cases where the transition temperature is = 0, ∞ are also
included

5Even though TRSB is necessary and in general related to topolog-
ical superconductivity, it is unfortunately, not a sufficient condition.

FIG. 2. Phase diagram of 2D generalized XY model [Eq. (1)]
[33–36]. We write Tferro, Tnem instead of TTRSB, Tc since physically,
the Z2 transition is into a ferromagnetic state instead of TRSB, while
the U(1) transition is into a nematic state [34].

class of Hamiltonians. Interestingly, at the boundary ∂O∞
where the system is believed to have a single phase transition
TTRSB = Tc, the correlation inequality implies if the U(1) SC
transition has a diverging correlation length at the conjectured
TTRSB = Tc, then so must the Z2 TRSB transition. In a 2D
system where the SC transition is believed to be BKT, this
implies that the conjectured single phase transition cannot be
first order.

The paper is organized as follows. Section II introduces
the classical statistical model under investigation as well as
its motivation. We also provide a quick sketch of subtle
mathematical regularizations necessary to define the ther-
modynamic limit on a general lattice structure. Section III
introduces the (random) cluster representation, which acts as
an exact dual graphical representation closely related to the
Wolff algorithm. Section V studies the class of Hamiltonian
at the critical regime �∞ and uses the cluster representation to
prove the main statement, i.e., Theorem 2. It should be noted
that within this subclass of Hamiltonians, the correlation
inequality can be further strengthened using an indepen-
dent graphical representation, known as the (random) current
representation. In fact, the current representation provides
important insight into the underlying reason behind why only
a single phase transition is observed at the critical regime6

�∞. However, due to its complexity and limited use for the
general parameter regime, we leave the proof in Appendix D.
Section VI then generalizes the proof to the full class of
Hamiltonians Ō∞, i.e., Theorem 3 (see also Fig. 4).

A. Digression to the generalized XY model

It is worth mentioning that the techniques developed in
this paper can also be used to understand an entirely different
class of U(1) × Z2 Hamiltonian, commonly known as the
generalized XY model [30,31], i.e.,

H (θ ) = −
∑
e=i j

[� cos(∇eθ ) + (1 − �) cos(2∇eθ )], (1)

where the summation is over nearest-neighbors (edges
e = i j), 0 � � � 1 and ∇eθ = θi − θ j . In fact, the proof
nearly follows directly from Ref. [32] and thus will only be
mentioned as a digression.

For example, the d + ig state [2] breaks TRS but has nodal points
along the diagonals.

6Moreover, if we make the further arbitrary simplification of re-
placing the U(1) XY spins with Z2 or Z4 clock spins, it can be
proven rigorously that there exists only a single phase transition. See
Appendix E for details
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On a 2D square lattice Z2, the model has been studied
extensively [33–36], all of which reaching a consistent phase
diagram shown in Fig. 2. From numerics [33], it is expected
that there exists a critical �c ≈ 0.33 such that if � � �c, then
only a single phase transition occurs Tnem = Tferro, while for
� < �c, a split transition occurs Tferro < Tnem, i.e., an analog
of a floating phase.7 Extension of the model to 3D has also
been tentatively explored [37].

Though we lack comments on the split transition regime,
we can show that if 4/5 � � � 1,8 then a similar correlation
inequality can be proven and thus implying that Tferro � Tnem

on any lattice structure. Since in this regime, the system is
expected to have a single phase transition Tferro = Tnem on Z2,
our previous argument regarding diverging correlation lengths
also holds and thus the transition cannot be of first order, con-
sistent with numerics [33]. We postpone the exact statement to
Sec. IV, after introducing the cluster representation in Sec. III.

II. MODEL

For the majority of this paper, we shall consider the fol-
lowing classical statistical U(1) × Z2 Hamiltonian (critical
regime �∞ in Fig. 1)

H (σ, τ ) = −
∑
e=i j

κe(1 + τiτ j ) cos ∇eθ (2)

Where the summation is over all nearest neighbors (edges
e = i j) of an arbitrary graph, κe > 0 denote ferromagnetic
coupling constants on each edge e, and ∇eθ = θi − θ j . Note
τi, θi denote the Z2 Ising spins and U(1) XY spins correspond-
ing to TRSB and SC, respectively. For the general parameter
regime Ō∞ (see Fig. 1), the Hamiltonian is further modified
so that

Hλ,α (σ, τ ) = H −
∑
e=i j

[λeτiτ j + αe cos(2∇eθ )], (3)

where λe � αe � 0 for all edges e.9

A. Motivation: the strong coupling limit

Let us first consider the critical subclass �∞ of Hamiltoni-
ans in Eq. (2). When κe = 1 is constant, the critical subclass
�∞ describes the strong coupling regime of numerous physical
motivations. For example, the derivation for the case of a frus-
trated (n � 3)-band superconductor can be found in Ref. [7];
our critical Hamiltonian corresponds to Eq. (8) of Ref. [7]
at the critical point of (K1, K2) = (1, 0). Alternatively, in the
scenario of TRSB induced in twisted bilayer systems [12,13],
one can model the 2D layers via identical standard XY models

7Since there is only one component in this system, the term “float-
ing” is less meaningful.

8This is not surprising, since the Hamiltonian does not become
metastable (local minimum) at ∇eθ = π until � < 4/5.

9Heuristically, λ and α are correlated to TTRSB and Tc, respectively.
Since the critical Hamiltonian in Eq. (2) is conjectured to have a
single phase transition, it is expected that if λ � α, then TTRSB � Tc.
One of the main results of the paper is to make this statement exact.

(so that κ = 1 is the in-plane superfluid stiffness), coupled by
a second-order Josephson coupling J2 > 0, i.e.,

HJ2 (φ±) =
∑
s=±

HXY(φs) + J2

∑
i

cos 2φi, (4)

where φ± denotes the phases of the XY spins in each
layer and φ ≡ φ+ − φ− denotes the phase difference across
the junction. In this model, it is clear that for any J2 > 0,
the Hamiltonian is minimized when the phase difference φ

chooses between ±π/2 and thus the Z2 Ising order cor-
responds to TRSB TTRSB. Moreover, if we take the strong
coupling limit J2 → ∞ [38], the phase difference φ is forced
to choose between ±π/2 at each lattice site i and thus induces
an explicit Z2 Ising order, i.e., φi = τi × π/2 where τi = ±1.
On the other hand, the average phase θ = (φ+ + φ−)/2 is
unrestricted and thus induces a U(1) XY spin σi = eiθi cor-
responding to the superconducting transition Tc. By change of
variables,10 the Hamiltonian in Eq. (4) reduces to Eq. (2) in
the strong coupling limit J2 → ∞.

One may wonder why we should study the strong coupling
limit �∞, since it “appears” to be a singular point. Apart from
simplifying the problem, one reason is that the strong coupling
limit is not singular; rather, it is continuously connected to
large but finite coupling strengths11 in the sense of correlation
functions as argued previously [38]. Moreover, the authors
of Ref. [7] numerically studied the strong coupling limit on
the 3D cubic lattice and showed that the phase diagram does
not change qualitatively compared to finite coupling. Similar
numerical results [17,25] were also performed in 2D, in which
it was shown that the phase diagram is insensitive to the
actual values of the coupling strength J2 (though they did
not investigate the strong coupling limit). In higher dimension
d � 4, mean-field theory predicts a similar behavior [6,12],
and thus we believe that studying the strong coupling limit
can reflect the properties of the finite coupling model, though
admittedly, this is not determined definitively.

Let us now consider the general class Ō∞ of Hamiltonians
in Eq. (3). As described in Eq. (15) of Ref. [17], the general
Hamiltonian of a twisted bilayer system can be written as

HJ2,λ,α = HJ2 − λ
∑
e=i j

cos(∇eφ
+ − ∇eφ

−)

− α
∑
e=i j

cos(∇eφ
+ + ∇eφ

−), (5)

where φ, θ are the phase difference and average phase of
each layer φ± as before and HJ2 is defined in Eq. (4). Note
that by expanding the cos terms up to quadratic order, the
Hamiltonian obtains a current-current interaction −ν∇eφ

+ ·
∇eφ

− where ν = λ − α [39] (in comparison with Eq. (1) of
Ref. [18]). We then repeat the previous construction by taking
J2 → ∞ so that Eq. (5) reduces to Eq. (3).

10A short proof of why φ± → φ, θ is well-regulated can be found
in Lemma 1 in the Appendix.

11And thus warrants the notation J2 → ∞ instead of J2 = ∞.
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B. Regularization and the thermodynamic limit

We note that the Hamiltonians in Eqs. (2) and (3) are only
well-defined on a finite graph G = (V, E ) where V denotes the
finite number of lattice sites and E denotes the possible edges.
To take the thermodynamic limit, the convention is to

(a) fix an infinite graph G∞ = (V∞, E∞), e.g., the standard
Zd , with edge couplings κ : E∞ → [0,∞);

(b) study systems on finite subgraphs G = (V, E )
with thermal averages 〈· · · 〉G, e.g., finite boxes �L =
{−L, . . . , L}d ⊆ Zd ;

(c) and take the limit as G ↗ G∞ exhausts the infinite
graph (e.g., L → ∞), where the existence of the limit also
needs to be proved.12

In the case of the U(1) × Z2 Hamiltonians in Eqs. (2) and
(3), the system is fully ferromagnetic (κe, λe, αe � 0 for all
edges e) and thus Ginibre’s inequality can be applied [40], so
that correlation functions

〈τ0τR〉G, 〈cos 2(θ0 − θR)〉G (6)

are monotonically increasing as the subgraph G increases, and
thus their thermodynamic limits G ↗ G∞ are well-defined.

Note that, in this paper, we shall study the high-order U(1)
correlations 〈cos 2(θ0 − θR)〉 rather than the conventional cor-
relations 〈cos(θ0 − θR)〉. Apart from our inability to produce
useful inequalities regarding the latter correlations, there is a
physically relevant reason towards this perspective.13 Indeed,
θ is physically related to the average phase, i.e., θ = (φ+ +
φ−)/2. However, note that cos θ is not invariant under rota-
tion φ+ �→ φ+ + 2π , and thus, in this sense, the 2π -invariant
higher order term cos(2θ ) is the physically relevant term to
consider.

III. RANDOM CLUSTER REPRESENTATION

The cluster representation dates back to Fortuin and Kaste-
leyn [41], where it was originally developed to study the
Ising and more generally, the q-state Potts model. The cor-
respondence between phase transitions in spin models and
percolation in the corresponding cluster representation has
proven useful in numerous occasions in obtaining rigorous
results [42–46]. Numerically, the correspondence has allowed
the closely related Wolff algorithm to take advantage of non-
local cluster spin updates, in contrast to local spin flips as in
the METROPOLIS-Hasting algorithm [47]. In some sense, the
Wolff algorithm provides an alternative (and possibly more
familiar) perspective in constructing the cluster representation
and thus we will provide a short review using the example of
the standard Ising model.

12Notice that this usually corresponds to free/open boundary con-
ditions.

13Note that the Hamiltonian in Eqs. (2) and (3) is well-defined,
independent of its physical motivations, and thus should also warrant
the study of the conventional correlations 〈cos(θ0 − θR )〉. Hence, the
argument provided should be regarded as heuristics.

(a) (b)

(c)

FIG. 3. Cluster Representation on Z2. (a). Some Ising spin con-
figuration chosen from the Ising Gibbs state. (b). A constructed
subgraph ω based on the Ising spin configuration in Fig. 3(a). Note
that not all ordered edges are included in ω, since an edge e is
included with some probability. However, all disordered edges are
not included [based on the edge probability defined in Eq. (9)]. (c).
The subgraph after integrating over all possible spin configurations.

A. Short review of the Wolff algorithm

The standard Ising model on a finite graph G,

H Is(τ ) = −
∑
e=i j

τiτ j (7)

defines a probability distribution over Ising spin configura-
tions, i.e.,

P Is[τ ] ∝
∏
e=i j

wIs
e (τ ), wIs

e (τ ) = eβτiτ j , (8)

where the product is over all edges with a weight wIs
e that

depends on the spin configuration τ implicitly through its
values on the endpoints i, j of edge e.

Given a fixed spin configuration τ [see Fig. 3(a)], the Wolff
algorithm then generates a subgraph ω : E → {0, 1} in the
following manner.14 Let

pIs
e (τ ) =

[
1 − wIs

e (τ i )

wIs
e (τ )

]
1{τiτ j = +1}, (9)

where τ i is the spin configuration derived from τ by flipping
τi �→ −τi (where i is an endpoint of edge e) and keeping all

14In practice, the Wolff algorithm starts from a random lattice
site, and constructs a cluster by adding edges inductively until the
cluster stops growing. However, the following process is equivalent
since each edge is included/excluded independently of other edges
(conditionally independent with respect to a fixed spin configuration
τ ).
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other spins the same. As shown in Fig. 3(b), each edge e
is included in the subgraph ω, i.e., ωe = 1 with probability
pIs

e (τ ) (otherwise, set ωe = 0). Note that the procedure for
each edge e is independent of each other (conditionally in-
dependent with respect to the fixed spin configuration τ ) and
thus defines a probability distribution15 on subgraphs ω and
spin configurations τ , i.e.,

P Is[ω|τ ] =
∏
e∈ω

pIs
e (τ )

∏
e/∈ω

(
1 − pIs

e (τ )
)
, (10)

P Is[(ω, τ )] = P Is[ω|τ ]P Is[τ ]. (11)

By integrating over all spin configurations τ , one then obtains
the cluster representation, i.e., a probability distribution over
subgraphs of the system [see Fig. 3(c)]

P Is[ω] =
∑

τ

P Is[(ω, τ )]. (12)

In language of the Wolff algorithm and Monte Carlo [47],
the edge probabilities pIs

e (τ ) are chosen to satisfy detailed bal-
ance. In language of probability theory, the edge probabilities
are chosen so that the operation of flipping all spins in a cluster
keeps the probability distribution invariant [32,42], i.e.,

P Is[(ω, τ )] = P Is[(ω, τC(ω) )], (13)

where C(ω) is some cluster in ω that has been chosen to be
flipped16 and τC(ω) is obtained from the original spin config-
uration τ via flipping all spins in C(ω), i.e., τi �→ −τi for all
i ∈ C(ω), and keep all remaining spins the same.

The property of cluster-flip invariance allows us to further
prove that the correlation functions are in 1-1 correspondence
with percolation events in the cluster representation [32,42],
i.e.,

〈τ0τR〉Is
G,β = P Is

G,β [0 ↔ω R], (14)

where {0 ↔ω R} is the event of all subgraphs ω which connect
lattice sites 0, R, and we have added the subscripts to denote
dependence of inverse temperature β and graph G. Indeed, the
argument is quite straightforward. Note that

〈τ0τR〉Is = EIs[τ0τR(1{0 ↔ω R} + 1{0 �↔ω R})]. (15)

If {0 ↔ω R}, then by the definition of the edge probability
pIs

e (if an edge is included, the edge is ordered), we see that
τ0τR = 1. Conversely, if {0 �↔ω R}, then we can flip the spins
τ in the cluster of ω containing lattice site 0, so that τ0 �→
−τ0 but τR �→ τR. Since this operation leaves the probability

15This is often referred to as the Edwards-Sokal coupling [42]. Note
that we are slightly abusing notation since P Is was originally defined
on over spin configurations; now, it is used for (ω, τ ).

16To be concrete, one can define Cv (ω) as the unique cluster in ω

intersecting an arbitrarily chosen site v ∈ V .

invariant, we see that

EIs[τ0τR1{0 �↔ω R}] = −EIs[τ0τR1{0 �↔ω R}] = 0. (16)

The correlation-percolation correspondence is thus estab-
lished.

IV. DIGRESSION TO THE GENERALIZED XY MODEL

In this section, let us digress from the main model defined
in Eqs. (2) and (3), and consider the generalized XY model
[30,31] on an arbitrary lattice. As discussed in Ref. [33],
the correlation functions 〈cos(θ0 − θR)〉, 〈cos 2(θ0 − θR)〉 de-
termine the phase transitions Tferro, Tnem, respectively. Hence,
it is essential to extend the correlation-percolation corre-
spondence discussed in Sec. III A to the generalized XY
model.

Indeed, the cluster representation was generalized to the
standard XY model (and more generally to O(n) models) [48]
roughly two decades ago. By noticing that the sign ξ of the x-
component cos θ of the XY spins can be used as a “substitute”
of the Ising spin in the cluster representation, the author estab-
lished the correspondence between conventional correlations
〈cos(θ0 − θR)〉XY and percolation [analogous to Eq. (14)].17

However, despite the straightforward generalization of the
Wolff algorithm to the standard XY model, it was not until
recently [32] was there significant progress on establishing
a similar correspondence for the higher-order correlation18

〈cos 2(θ0 − θR)〉XY.
The philosophy and techniques developed for the standard

Ising and XY models can thus be straightforwardly extended
to the generalized XY model. Following Ref. [32], we can
prove the following.

Theorem 1. Consider the following generalized XY model
on any finite graph G with 4/5 � �e < 1 for all edges e

H (θ ) = −
∑
e=i j

[�e cos(∇eθ ) + (1 − �e) cos(2∇eθ )]. (17)

Then for any temperature β and lattice sites 0, R in G, there
exists a constant C > 0 depending only on β and the number
of edges adjacent to lattice sites 0, R, respectively, such that

〈cos 2(θ0 − θR)〉G,β � C〈cos(θ0 − θR)〉G,β . (18)

We note that if the standard correlations 〈cos(θ0 − θR)〉
spins are disordered (exponentially decaying with respect to
R) at some temperature T , then so must the higher order
correlations 〈cos 2(θ0 − θR)〉. Hence, Theorem 1 implies that
Tferro � Tnem provided that �e � 4/5 for all edges e.

17Since 〈cos(θ0 − θR )〉XY = 2〈cos θ0 cos θR〉XY, the spin-spin corre-
lations are schematically similar to ∼〈ξ0ξR〉XY.

18In fact, the authors were only able to extend the correspondence
to k = 2 in 〈cos k(θ0 − θR )〉XY. We refer to reader to their paper
[32] for their reasoning why higher order terms are more
difficult. Alternatively, we provide the following argument.
Note that 〈cos 2(θ0 − θR )〉XY = 8〈sin θ0 cos θ0 sin θR cos θR〉XY ∼
〈ξ0η0ξRηR〉XY where ξ, η = ±1 are the signs of the x, y components
cos θ, sin θ of the XY spins and can be treated as independent Ising
spins. For higher order terms, there are not enough independent
Ising spins that can derived from the original XY spins.
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Sketch of Proof The Hamiltonian defines a probability dis-
tribution over spin configurations, i.e.,

P [θ ] ∝
∏
e=i j

we(θ ), (19)

we(θ ) ≡ ρe(cos ∇eθ )

= exp

[
2β(1 − �e)

[
cos ∇eθ + �e

4(1 − �e)

]2
]
. (20)

Since 4/5 � �e < 1, the map x �→ ρe(x) is convex and
strictly increasing, and thus satisfies the sufficient conditions
[32] to establish the correlation-percolation correspondence
with respect to the higher order correlations 〈cos 2(θ0 − θR)〉.
In particular, we can define a probability distribution P over
subgraphs ξ̂ , η̂ : E → {0, 1} such that

〈cos 2(θ0 − θR)〉 � 2P [0 ↔ξ̂ η̂ R], (21)

CP [0 ↔ξ̂ R] � 〈cos(θ0 − θR)〉, (22)

where C depends only on β and the number of edges adjacent
to lattice sites 0, R, respectively, and ξ̂ η̂ is the intersection of
the graphs ξ̂ , η̂ [32]. Since the event {0 ↔ξ̂ η̂ R} is included in
{0 ↔ξ̂ R}, it is clear that

P [0 ↔ξ̂ η̂ R] � P [0 ↔ξ̂ R], (23)

and thus the statement follows. �

V. CRITICAL REGIME λ, α = 0

A. Correlation inequality

The philosophy and techniques developed for the standard
Ising and XY models can thus be straightforwardly extended
to the critical Hamiltonian in Eq. (2) (see Appendix B). The
only difficulty lies in finding a relation (inequality) between
the percolation events so that

Theorem 2 (see Appendix B). Let the critical Hamiltonian
H in Eq. (2) be defined on a finite graph G. Then for any
temperature

〈cos 2(θ0 − θR)〉G,β � 2〈τ0τR〉G,β . (24)

It should be noted that for the subclass of Hamiltonians
in Eq. (2), the correlation inequality in Theorem 2 can be
improved slightly so that the factor of 2 can be removed, i.e.,

〈cos 2(θ0 − θR)〉G,β � 〈τ0τR〉G,β . (25)

The proof is independent of the cluster representation and
relies on a distinct representation called the (random) current
representation.19 In any case, we see that if the Z2 Ising spins
are disordered (exponentially decaying with respect to R) at
some temperature T , then so must the U(1) XY spins, and
thus there cannot be a floating phase, i.e.,

TTRSB � Tc (26)

19As discussed in the introduction, the current representation pro-
vides important insight into why only a single phase transition is
observed at the critical regime �∞. See Appendix D.

Sketch of proof. To be concrete, the Hamiltonian in Eq. (2)
defines a probability distribution over spin configurations, i.e.,

P [(σ, τ )] ∝
∏
e=i j

we(σ, τ ), (27)

we(σ, τ ) = eβκe(1+τiτ j ) cos(∇eθ ). (28)

Given a fixed spin configuration σ, τ , we can generate a
subgraph τ̂ : E → {0, 1} using the edge probabilities [see also
explicit form in Eq. (B61)]

pτ
e (σ, τ ) =

[
1 − we(σ, τ i )

we(σ, τ )

]
1{we(σ, τ i ) < we(σ, τ )} (29)

We then define a probability distribution P [(τ̂ , σ, τ )] as dis-
cussed in Sec. III, and establish the correspondence between
correlations 〈τ0τR〉 and percolation P [0 ↔τ̂ R], analogous to
Eq. (14).

Similarly, we can generate a subgraph σ̂ using the edge
probabilities [32] [see also explicit form in Eq. (B62)]

pσ
e (σ, τ ) =

[
1 + we(σ ξη,i, τ )

we(σ, τ )

−we(σ ξ,i, τ )

we(σ, τ )
− we(ση,i, τ )

we(σ, τ )

]
× 1{we(σ ξ,i, τ ),we(ση,i, τ ) < we(σ, τ )}, (30)

where ξ, η = ±1 denote the signs of the x, y components
of the XY spin σ = eiθ , and σ ξ,i denotes the spin config-
uration derived from σ by flipping the spin at site i along
the x-component, i.e., ξi �→ −ξi or θi �→ π − θi, and keep-
ing all other sites the same. We similarly define ση,i (via
θi �→ −θi) and σ ξη,i (via θi �→ θi + π ). We then define a
probability distribution P [(σ̂ , σ, τ )] as before, and establish
the correspondence between correlations 〈cos 2(θ0 − θR)〉 and
percolation P [0 ↔τ̂ R].

Note that in our construction, we extended the probabil-
ity distribution P over spin configurations to either that of
(τ̂ , σ, τ ) or (σ̂ , σ, τ ). However, if we wish to compare the
percolation events P [0 ↔τ̂ R] and P [0 ↔σ̂ R], it is necessary
to extend the probability distribution P to that of (σ̂ , τ̂ , σ, τ ),
or simply that of (σ̂ , τ̂ ) after integrating over all spin (σ, τ )
configurations.20

One way that has turned out to be useful is to consider
the conditional probability with respect to fixed spin config-
uration σ, τ . Since each edge e is constructed independently,
we shall consider a fixed edge e = i j so that τ̂e, σ̂e = 0, 1
correspond to Bernoulli random variables. To extend the
conditional probability to both (σ̂ , τ̂ ), we must define a corre-
lation ce(σ, τ ) between the two variables so that the following
probability is well-defined, i.e., the following probabilities are

20More specifically, if we did not abuse notation and use P for
simplicity, the correlation 〈τ0τR〉 would correspond to P τ [0 ↔τ̂ R]
where P τ is the probability defined over (τ̂ , σ, τ ). Similarly, the
correlation 〈cos 2(θ0 − θR )〉 would correspond to P σ [0 ↔σ̂ R] where
P σ is the probability defined over (σ̂ , σ, τ ). The relation between
P τ ,P σ is not yet clear.
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all � 0

P [σ̂e = 1, τ̂e = 1|σ, τ ] = ce, (31)

P [σ̂e = 0, τ̂e = 1|σ, τ ] = pτ
e − ce, (32)

P [σ̂e = 1, τ̂e = 0|σ, τ ] = pσ
e − ce, (33)

P [σ̂e = 0, τ̂e = 0|σ, τ ] = 1 − pτ
e − pσ

e + ce. (34)

If such a condition is satisfied by choosing the correlation
ce appropriately, then by integrating over say, τ̂e = 0, 1, the
conditional probability of σ̂e [with respect to the fixed spin
configuration (σ, τ )] will be exactly what was required, i.e.,
pσ

e .
Indeed, the key observation is to notice that21 pτ

e � pσ
e

regardless of the spin (σ, τ ) configuration (see Theorem 7 in
Appendix B) and thus we can choose the correlation ce ≡ pσ

e
so that the previous conditions in Eqs. (31)–(34) are satis-
fied. In particular, Eq. (33) is always zero and thus within
this setup, we have defined a probability distribution P over
(σ̂ , τ̂ , σ, τ ) such that σ̂ is always (with probability = 1) a
subgraph of τ̂ . Therefore, if lattice sites 0, R are connected
within σ̂ , it must also be connected within τ̂ , i.e.,

P [0 ↔σ̂ R] � P [0 ↔τ̂ R]. (35)

The statement then follows (the extra factor of 2 is due to the
fact that the correlation 〈cos 2(θ0 − θR)〉 is not strictly equal
to P [0 ↔σ̂ R]. See Appendix B for details.) �

B. Order of transition

Another interesting question is the nature (first order or
higher) of the transition, provided that the conjectured single
phase transition exists, i.e., TTRSB = Tc. We shall provide the
discussion for the critical regime �∞, though the argument
extends straightforwardly to the boundary ∂O∞. Indeed, from
mean-field theory [6,12], we know that the transition is of
second order for all � : J2 > 0 (and not just the strong cou-
pling limit �∞ : J2 → ∞) and thus should hold true for d � 4
dimensions in Zd . In Ref. [7], the authors numerically found
that the transition is first order in d = 3 dimensions (regard-
less of the coupling strength), and thus brings into question
whether there is a change in behavior between d = 3, 4 di-
mensions. Although we do not have a definitive answer for
this question, the following discussion may prove insightful.

Consider d = 2 dimensions. For the standard XY model,
it is usually argued that the transition is continuous (higher
than first order) due to the absence of spontaneous symmetry
breaking by Mermin-Wagner.22 For the critical Hamiltonian
with constant κe = 1, recent 2D numerical results suggest that

21This is the main reason why we chose to use the higher order cor-
relation 〈cos 2(θ0 − θR )〉, since the edge probability corresponding
to the conventional correlation 〈cos(θ0 − θR )〉 has no simple relation
with pτ

e .
22More rigorously, the transition for the standard XY model can

be proven to be continuous in any dimension d by using the Lieb-
Simon-Rivasseau inequality [49–51] (see also Ref. [52] using the
Lebowitz inequality).

the U(1) correlations undergo a BKT phase transition [25],
and thus one would can argue that U(1) correlation length
diverges as T ↘ Tc. If so, the inequalities in Theorem 2 would
imply that the Z2 correlation length also diverges (again as-
suming that Tc = TTRSB). Hence, the conjectured single phase
transition is presumably continuous in d = 2 dimensions.
With that in mind, the transition is continuous in d = 2 and
d � 4 dimension, what reason could cause the transition to
become discontinuous in d = 3 dimensions?

Admittedly, the previous argument is not definitive, and
one may attempt to circumvent it. For example, Mermin-
Wagner by itself does not imply that the transition is BKT or
continuous. Indeed, in Refs. [53–55], the authors constructed
a counter example in which the system has a continuous
symmetry (thus obeying Mermin-Wagner) and yet exhibited
long-range order in d = 2 dimension, i.e., even though the
magnetization is = 0, the spin-spin correlation functions do
not decay to zero. More specifically, they proved that the
counterexample exhibited a first order phase transition in
d = 2. However, we argue the above counter example does
not apply to our system.

(a) The constructed example is quite unphysical since they
require to take a parameter p → ∞, in which the phase tran-
sition changes from being higher order at p = 1 to first order
as p → ∞. In comparison, although our model corresponds
to the strong coupling limit J2 → ∞, it has been consistently
shown (in 2D [25] and 3D [7,18]) that the transition is quali-
tatively independent of the coupling strength.

(b) 2D numerics [25] suggest that at arbitrary finite cou-
pling J2 > 0 (though they did not go to the strong coupling
limit), the U(1) spin-spin correlations decay algebraically be-
low the critical temperature and thus exhibit a BKT transition.
This is in contrast to the counter example constructed in
Refs. [53–55].

VI. GENERAL REGIME λ � α � 0

Using similar techniques as discussed previously in Sec. V,
we can prove the following.

Theorem 3 (see Appendix C). Consider the general Hamil-
tonian Hλ,α in Eq. (3) on a finite graph G, such that λe � αe �
0 and αe/κe � 1/2 for all edges e. Then for any temperature,

〈cos 2(θ0 − θR)〉G,β � 2〈τ0τR〉G,β . (36)

Before sketching the proof, let us discuss the implications.
By Theorem 3, we see that if λe � αe � 0 and αe � κe/2
for all edges e on the lattice, then the system cannot have
a floating phase. As shown in Fig. 4, the origin λ = α = 0
corresponds to the critical regime �∞ [39] in Eq. (2). Since
the current-current coupling (see Fig. 1) is characterized by
ν = λ − α (up to quadratic orders as argued in Sec. II), the
region λ � α corresponds to the general parameter regime
Ō∞ in Fig. 1.

It should be noted that the restriction αe � κe/2 is not
merely technical. Indeed, if we compare the considered
Hamiltonian Eq. (3) with the generalized XY model in Eq. (1),
we that if αe > κe/2, the system becomes metastable at ∇eθ =
π (in the sector τiτ j = +1) and thus the SC transition Tc can
possibly split into a nematic Tnem and a ferromagnetic Tferro

transition, each characterized by the correlation functions
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FIG. 4. Absence of floating phase. The x, y axes denote the α, λ

coupling described in Eq. (3) (where we have omitted the edge
subscript). The red dot denotes the critical Hamiltonian λ = α = 0
defined in Eq. (2) while the diagonal lines describes λ = α. Within
the green region, there exists no floating phase on any lattice struc-
ture. Within the blue region, if one compares Eq. (3) with the
generalized XY model in Eq. (1), the SC transition Tc may further
split into a nematic Tnem and Tferro transition and thus the order of
transitions among TTRSB, Tnem, Tferro is unclear.

〈cos(θ0 − θR)〉, 〈cos 2(θ0 − θR)〉, respectively. The order be-
tween the three possible transitions TTRSB, Tnem, Tferro is then
unclear. However, in practice, the extra restriction is unimpor-
tant, since the in-plane superfluid stiffness κ is usually much
larger than any intercomponent coupling λ, α. Therefore, for
a large class of Hamiltonians, high-Tc TRSB is guaranteed.

Sketch of proof. The Hamiltonian in Eq. (3) defines a prob-
ability distribution over spin configurations, i.e.,

P [(σ, τ )] ∝
∏
e=i j

we(σ, τ ) (37)

we(σ, τ ) = eβ[κe(1+τiτ j ) cos(∇eθ )+λeτiτ j+αe cos(2∇eθ )]. (38)

Given a fixed spin configuration σ, τ , we can generate a
subgraph τ̂ : E → {0, 1} using the edge probabilities [see also
explicit form in Eq. (C21)]

pτ
e (σ, τ ) =

[
1 − we(σ, τ i )

we(σ, τ )

]
1{we(σ, τ i ) < we(σ, τ )}. (39)

We can then define a probability distribution P [(τ̂ , σ, τ )] as
previously discussed in Sec. III, and establish the correspon-
dence between correlations 〈τ0τR〉 and percolation P [0 ↔τ̂

R], analogous to Eq. (14).
Similarly, we can generate a subgraph σ̂ using the edge

probabilities [32] [see also explicit form in Eq. (C22)]

pσ
e (σ, τ ) =

[
1 + we(σ ξη,i, τ )

we(σ, τ )
− we(σ ξ,i, τ )

we(σ, τ )
− we(ση,i, τ )

we(σ, τ )

]
× 1{we(σ ξ,i, τ ),we(ση,i, τ ) < we(σ, τ )}
× 1{τiτ j = +1}. (40)

Note that compared to Eq. (30), we require an extra condition
τiτ j = +1. The reasoning is of twofold. (1) Without the extra

condition, it becomes possible for τiτ j = −1 so that pσ
e < 0

and thus inducing a sign problem (probabilities cannot be
negative). (2). To establish the correspondence between corre-
lations 〈cos 2(θ0 − θR)〉 and percolation P [0 ↔τ̂ R], we only
require reflecting the XY spins [analogous to the argument in
Eqs. (15) and (16)] and thus we are free to choose a sector of
τiτ j = ±1 (see Appendix C 2).

Note that once we choose the section τiτ j = +1, the edge
probability reduces to

pσ
e (σ, τ ) =

[
1 + w̃e(σ ξη,i )

w̃e(σ )
− w̃e(σ ξ,i )

w̃e(σ )
− w̃e(ση,i )

w̃e(σ )

]
× 1{w̃e(σ ξ,i ), w̃e(ση,i ) < w̃e(σ ), τiτ j = +1},

(41)

where the effective edge weight w̃e now satisfy the convexity
and monotonically increasing condition described in Ref. [32]
(also see Appendix C 2) provided that αe/κe � 1/2. As in the
proof of Theorem 2, we note that pτ

e � pσ
e for all possible spin

(σ, τ ) configurations (see Theorem 11 in Appendix C) and
thus the statement follows. �

VII. SUMMARY AND DISCUSSION

As discussed in the main text, we have rigorously proven
that the class of U(1) × Z2 Hamiltonian in Eq. (3) does
not exhibit a floating phase on any lattice structure, i.e.,
TTRSB � Tc (which includes the boundary cases where the
transition temperature is possibly = 0,∞). The model is
physically motivated by the either twisted bilayer systems
with dominant second-order interlayer Josephson coupling
J2 or (n � 3)-band superconductors with frustrated 1st order
interband Josephson coupling. In fact, it corresponds to the
strong coupling regime (J2 → ∞), which we have shown
to be continuously connected to finite but large J2 values
[38]. From numerical simulations in 2D [17,25], 3D [7,18]
and exact mean-field understanding (for d � 4) [12,27], it
is believed that the qualitative properties of the systems are
insensitive to the coupling strength and thus our result on the
strong coupling limit sheds light onto the phase diagram (see
Fig. 1).

The technique developed regarding the cluster represen-
tation in this paper may also be used to quickly check if
other classes of Hamiltonians possess the same property,
i.e., TTRSB � Tc. Indeed, the proof (ignoring technical details)
ultimately relies on the relation between the edge weights
corresponding to the TRSB pIs

e and SC transition pXY
e , i.e.,

pIs
e � pXY

e , as constructed via the Wolff algorithm. Therefore
we believe that our proof can be useful when consider other
types of interactions in multicomponent systems. It’s also
worth mentioning that the cluster representation can be easily
extended to finite coupling J2 < ∞ so that a correlation-
percolation corresponce can be established [analogous to
Eq. (14)]. However, the difficulty there is that the relation
between the percolation events corresponding to the SC and
TRSB transition is less clear, i.e., the analogous pτ

e � pσ
e

used in Theorems 2 and 3 is no longer true [56]. Hence,
further developments are necessary to determine the order of
transitions.
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As a tangent, we have also shown that generalized XY
model [30,31], though falling into an entirely distinct class
of U(1) × Z2 Hamiltonian, possesses a similar property, i.e.,
Tferro � Tnem, on any lattice structure provided that � � 4/5.
In this regime, it is believed that there is only a single
phase transition Tferro = Tnem as least for the 2D square lattice
[33,34]. This is expected since the Hamiltonian in Eq. (1) does
not develop a metastable (local min) state at ∇eθ = π unless
� < 4/5.
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APPENDIX A: CHANGE OF VARIABLES

Lemma 1. Let f : S1 × S1 �→ R be bounded. Then∫
(−π,π )2

dφ+
2π

dφ−
2π

f (φ+, φ−)

=
∫

(−π,π )2

dθ

2π

dφ

2π
f (θ + φ/2, θ − φ/2), (A1)

where θ = (φ+ + φ−)/2 is the average phase and φ = φ+ −
φ− is the phase difference.

Proof. For simplicity, we will drop the normalization
1/2π . Indeed, notice that∫

(−π,π )2
dφ± f (φ+, φ−)

=
∫ π

−π

dφ−
∫ 2π−φ−

−φ−
dφ f (φ− + φ, φ−),

φ = φ+ − φ− (A2)

=
∫ π

−π

dφ−
∫ π−

−π−
dφ f (φ− + φ, φ−) (A3)

=
∫ π

−π

dφ

∫ π

−π

dφ− f (φ− + φ, φ−) (A4)

=
∫ π

−π

dφ

∫ π+φ/2

−π+φ/2
dθ f (θ + φ/2, θ − φ/2),

θ = φ− + φ/2 (A5)

=
∫

(−π,π )2
dθdφ f (θ + φ/2, θ − φ/2), (A6)

where the second and ifth equalities use the fact that φ± �→ f
is 2π -periodic, and thus the integration limits can be an arbi-
trarily chosen 2π interval. �

APPENDIX B: (RANDOM) CLUSTER
REPRESENTATION - CRITICAL REGIME

In the main text, we have claimed that by choosing the edge
probabilities pτ

e , pσ
e appropriately and defining the subgraphs

τ̂ , σ̂ , the Z2 and U(1) spin-spin correlations can be mapped to
percolation events. By comparing the edge probabilities pτ

e �

pσ
e , the ordering of percolation events (and thus correlations)

becomes apparent. Therefore, in this section, we will follow
Ref. [32] and prove our claim of the correlation-percolation
correspondence of the critical U(1) × Z2 Hamiltonian in
Eq. (2). As discussed in the main text, let P [σ, τ ] be the
probability distribution of the spin configurations defined by
the U(1) × Z2 Hamiltonian in Eq. (2), i.e.,

P [(σ, τ )] ∝
∏
e=i j

we(σ, τ ), (B1)

we(σ, τ ) = eβκe(1+τiτ j ) cos(θi−θ j ). (B2)

1. Z2 correlations

Similar to that discussed in the main text for the standard
Ising model (see Fig. 3), for a fixed spin configuration (σ, τ ),
define a random variable of subgraphs τ̂ : E → {0, 1} via the
edge probability

pτ
e (σ, τ ) =

[
1 − we(σ, τ i )

we(σ, τ )

]
1{we(σ, τ i ) < we(σ, τ )} (B3)

= [1 − e−2βκeτiτ j cos(θi−θ j )]1{τiτ j cos(θi − θ j ) > 0}.
(B4)

So that

P [τ̂ |σ, τ ] =
∏
e∈τ̂

pτ
e (σ, τ )

∏
e/∈τ̂

(
1 − pτ

e (σ, τ )
)
, (B5)

P [τ̂ , σ, τ ] = P [τ̂ |σ, τ ]P [σ, τ ]. (B6)

Theorem 4 (Ccluster-flip invariance). Let PG,β be the
probability distribution on (τ̂ , σ, τ ) as befined previously on
a finite graph G. Then P is invariant under cluster flips with
respect to τ , i.e.,

PG,β[(τ̂ , σ, τ )] = PG,β [(τ̂ , σ, τC0(τ̂ ) )], (B7)

where C0(τ̂ ) is the cluster in τ̂ intersecting the lattice site 0
and τC0(τ̂ ) denotes flipping the spins of τ only in C0(τ̂ ). In
particular, the Z2 correlation-percolation is established, i.e.,

〈τ0τR〉G,β = PG,β [0 ↔τ̂ R]. (B8)

Proof. For notation simplicity, we shall omit the subscripts
G, β. Notice that

P [(τ̂ , σ, τC0(τ̂ ) )]

P [(τ̂ , σ, τ )]
= P [τ̂ |σ, τC0(τ̂ )]

P [τ̂ |σ, τ ]
× P [σ, τC0(τ̂ )]

P [σ, τ ]
. (B9)

Note that the ratios only depends on edge e on the boundary of
C0(τ̂ ) since we(σ, τ ) is invariant if both endpoints are flipped,
i.e., τi, τ j �→ −τiτ j where e = i j. More specifically,

P [(τ̂ , σ, τC0(τ̂ ) )]

P [(τ̂ , σ, τ )]
=

∏
e=i j∈∂C0 (τ̂ )

i∈C0 (τ̂ ), j /∈C0 (τ̂ )

pτ
e (σ, τ i )we(σ, τ i )

pτ
e (σ, τ )we(σ, τ )

. (B10)

By definition of pτ
e , it is straightforward to check that each

term in the product is = 1. The statement then follows. �

2. U(1) correlations

The U(1) correlation-percolation correspondence for the
higher order term 〈cos 2(θ0 − θR)〉 is much more difficult to

094509-9



ANDREW C. YUAN PHYSICAL REVIEW B 109, 094509 (2024)

establish than Z2 correlation.; in fact, it relies on first estab-
lishing a correspondence for the conventional term 〈cos(θ0 −
θR)〉. In this section, we shall follow Ref. [32] (with slight
modifications) in establishing the correspondence for the
U(1) × Z2 model in Eq. (2). Similar to the Z2 subgraph τ̂ ,
let ξ̂ : E → {0, 1} be constructed with edge probability

pξ
e (σ, τ ) =

[
1 − we(σ ξ,i, τ )

we(σ, τ )

]
1{we(σ ξ,i, τ ) < we(σ, τ )}

(B11)

= [1 − e−4βκe cos θi cos θ j ]1{τiτ j = ξiξ j = 1}, (B12)

where ξ is the sign of the x component of σ (cos θ ), and σ ξ,i

denotes flipping the spin only at the lattice site i along the x
direction, i.e., ξi �→ −ξi or θi �→ π − θi. As before, this de-
fines a probability distribution on (ξ̂ , σ, τ ). Similarly, define
the subgraph σ̂ η : E → {0, 1} by using the sign η = ±1 of the
y component of σ (sin θ ), i.e., the edge probability is

pη
e (σ, τ ) =

[
1 − we(ση,i, τ )

we(σ, τ )

]
1{we(ση,i, τ ) < we(σ, τ )},

(B13)
and thus this defines a probability on (η̂, σ, τ ).

As mentioned in the main text, to establish the correspon-
dence for 〈cos 2(θ0 − θR)〉, we require both ξ̂ , η̂ and thus the
first question is then whether we can define a joint probability
on (ξ̂ , η̂, σ, τ ). Since each edge is independently established
(conditional with respect to the fixed spin configuration σ, τ ),
ξ̂e, η̂e are Bernoulli random variables and thus whether we can
define a joint distribution depends on choosing the appropriate
correlation ce(σ, τ ) so that the following values are � 0, i.e.,

P [ξ̂e = 1, η̂e = 1|σ, τ ] = ce, (B14)

P [ξ̂e = 0, η̂e = 1|σ, τ ] = pη
e − ce, (B15)

P [ξ̂e = 1, η̂e = 0|σ, τ ] = pξ
e − ce, (B16)

P [ξ̂e = 0, η̂e = 0|σ, τ ] = 1 − pξ
e − pη

e + ce. (B17)

Moreover, we wish to choose the correlation ce so that a
analogous cluster-flip invariance property is satisfied. Hence,
it turns out that we should choose the correlation ce = pσ

e as
defined in the proof of the main result, Theorem 2, i.e.,

pσ
e (σ, τ ) =

[
1 + we(σ ξη,i, τ )

we(σ, τ )
− we(σ ξ,i, τ )

we(σ, τ )
− we(ση,i, τ )

we(σ, τ )

]
×1{we(σ ξ,i, τ ),we(ση,i, τ ) < we(σ, τ )}. (B18)

Indeed, let us verify that this choice of correlation satisfies the
necessary properties.

Theorem 5 (cluster-flip invariance). Let PG,β denote the
joint probability on (ξ̂ , η̂, σ, τ ) on a finite graph G defined
previously. Then PG,β is well-defined and satisfies the cluster-
flip invariance with respect to ξ, η, i.e.,

PG,β[(ξ̂ , η̂, σ, τ )] = PG,β [(ξ̂ , η̂, σ ξ,C0(ξ̂ ), τ )], (B19)

PG,β [(ξ̂ , η̂, σ, τ )] = PG,β[(ξ̂ , η̂, σ η,C0(η̂), τ )], (B20)

where C0(ξ̂ ) is the cluster in ξ̂ intersecting the lattice site 0
and σ ξ,C0(ξ̂ ) denotes flipping the spin configuration σ only at

lattice sites within the cluster C0(ξ̂ ) along the x component,
i.e., ξi �→ −ξi or θi �→ π − θi for i ∈ C0(ξ̂ ). The notation is
similar for ξ �→ η.

Proof. The proof follows that given in Ref. [32], though
we simplify/modify some parts to illuminate some of the
situation. For the U(1) × Z2 Hamiltonian in Eq. (2), the ap-
propriate probability pσ

e happens to satisfy

pσ
e = pξ

e × pη
e . (B21)

And thus conditions (B14)–(B17) are easily seen to sat-
isfy. For general weights we (as we will see for the general
regime in Appendix C), this is not as simple [32]. Let us
now show that the cluster flip invariance holds true along
ξ . The proof is similarly applied to that along η. Notice
that

P [(ξ̂ , η̂, σ ξ,C0(ξ̂ ), τ )]

P [(ξ̂ , η̂, σ, τ )]
= P [ξ̂ , η̂|σ ξ,C0(ξ̂ ), τ ]

P [ξ̂ , η̂|σ, τ ]
× P [σ ξ,C0(ξ̂ ), τ ]

P [σ, τ ]
.

(B22)

Similar to the proof in Theorem 4, we see that if
an edge e = i j has endpoints i, j entirely in C0(ξ̂ ) or
entirely outside of the cluster, then the edge weights
we(σ, τ ),we(σ ξ,i, τ ),we(ση,i, τ ) and we(σ ξη,i, τ ) are all in-
variant under σ �→ σ ξ,C0(ξ̂ ). Therefore we only need to
consider edges in the boundary of C0(ξ̂ ) so that e = i j with
i ∈ C0(ξ̂ ) and j /∈ C0(ξ̂ ), i.e.,

P [(ξ̂ , η̂, σ ξ,C0(ξ̂ ), τ )]

P [(ξ̂ , η̂, σ, τ )]

=
∏

e=i j∈∂C0 (ξ̂ )
i∈C0 (ξ̂ ), j /∈C0 (ξ̂ )

P [ξ̂e = 0, η̂e|σ ξ,C0(ξ̂ ), τ ]

P [ξ̂e = 0, η̂e|σ, τ ]

we(σ ξ,i, τ )

we(σ, τ )
, (B23)

where we used the fact that since e ∈ ∂C0(ξ̂ ), it cannot be in ξ̂

(the cluster C0(ξ̂ ) stops growing at its boundary). However,
the value of η̂e could be either 0 or 1 and thus we must
consider all possible cases, i.e., those described by Eqs. (B15)
and (B17). More specifically, it is sufficient to prove that the
following term,

we(σ, τ )P [ξ̂e = 0, η̂e|σ, τ ], (B24)

is invariant under spin-flip σ �→ σ ξ,i where i is an endpoint of
the edge e ∈ ∂C0(ξ̂ ).

For notation simplicity, let me fix an edge e = i j in the
boundary for the remainder of this proof so that we can omit
the subscript. We shall also write

w ≡ we(σ, τ ), (B25)

wξ ≡ we(σ ξ,i, τ ), (B26)

wη ≡ we(σ ξ,i, τ ), (B27)

wξη ≡ we(σ ξη,i, τ ). (B28)
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And similarly for pξ , pη, pσ so that

wpξ = [w − wξ ]1{wξ < w}, (B29)

wpη = [w − wη]1{wη < w}, (B30)

wpσ = [w + wξη − wξ − wη]1{wξ ,wη < w}. (B31)

In fact, it is more illuminating if we write the previous equa-
tions in the following form:

w(1 − pξ ) = min(w,wξ ), (B32)

w(1 − pη ) = min(w,wη ). (B33)

Note that under spin flip σ �→ σ ξ,i (where i is one endpoint of
the fixed edge e), we have

w,wξ ,wη,wξη �→ wξ ,w,wξη,wη. (B34)

And thus w(1 − pξ ) is invariant under the spin-flip. If we
compare the two possible cases (corresponding to η̂ = 1, 0) in
Eqs. (B15) and (B17), we see that they differ by the invariant
variable w(1 − pξ ) and thus we only need to consider one of
the two cases, say that corresponding to Eq. (B15), i.e.,

w(pη − pσ ) = [w − wη]1{wη < w < wξ }
+ [wξ − wξη]1{wξ ,wη < w}. (B35)

Under spin flip σ �→ σ ξ,i, we have

w(pη − pσ ) �→ [wξ − wξη]1{wξη < wξ < w}
+ [w − wη]1{w,wξη < wξ }. (B36)

Note that the condition wξη < wξ is equivalent to wη < w and
thus we can write

w(pη − pσ ) �→ [wξ − wξη]1{wξ ,wη < w}
+ [w − wη]1{wη < w < wξ } (B37)

= w(pη − pσ ). (B38)

Hence, the term w(pη − pσ ) is invariant under spin flip σ �→
σ ξ,i, and thus the statement follows. �

Theorem 6. Let PG,β denote the joint probability on
(ξ̂ , η̂, σ, τ ) on a finite graph G defined previously. Then there
exists constants c > 0 depending only on β and the degree
(number of nearest neighbors) of the lattice sites 0, R in G
such that

cPG,β [0 ↔ξ̂ η̂ R] � 〈cos 2(θ0 − θR)〉G,β � 2PG,β[0 ↔ξ̂ η̂ R],
(B39)

where ξ̂ η̂ is the intersection of the two subgraphs ξ̂ , η̂ (edge-
wise multiplication when viewed as a map E �→ {0, 1}).
Moreover, if ξ, η denote the sign of the x, y components of
the XY spins σ = eiθ , then

〈ξ0η0ξRηR〉G,β = PG,β[0 ↔ξ̂ η̂ R]. (B40)

Before starting the proof, we remark that the percolation
event {0 ↔ξ̂ η̂ R} only depends on each subgraph ξ̂ , η̂ implic-
itly through their intersection, and thus if we were to fix a
given subgraph σ̂ and integrate the probability P over all
ξ̂ , η̂ which have an intersection ξ̂ η̂ = σ̂ , we would obtain a

probability distribution on (σ̂ , σ, τ ). This is equal to that con-
structed by using the edge probability pσ

e as done in the main
text. The “hidden” parameters ξ̂ , η̂ were necessary to establish
the cluster-flip property (and thus the correlation-percolation
correspondence) but is not necessary in defining P [0 ↔σ̂ R].
Hence,

〈cos 2(θ0 − θR)〉G,β
∼= PG,β [0 ↔σ̂ R] (B41)

We also note that for the intent of this paper (in which
we prove the absence of a floating phase) the upper bound
is sufficient and much simpler. However, for the sake of com-
pleteness, we will also prove the lower bound.

Proof of Upper Bound. The proof follows that given in
Ref. [32], though we modify it to fit our consideration of free
boundary conditions (where as the proof in Ref. [32] consid-
ered fixed boundary conditions). For notation simplicity, we
shall omit the subscripts G, β unless otherwise stated. For the
U(1) × Z2 Hamiltonian in Eq. (2), we have

〈cos 2(θ0 − θR)〉 = 〈cos 2θ0 cos 2θR〉 + 〈sin 2θ0 sin 2θR〉
(B42)

= 2〈sin 2θ0 sin 2θR〉 (B43)

= 23〈sin θ0 cos θ0 sin θR cos θR〉. (B44)

Using our constructed joint probability P , we find that

〈sin θ0 cos θ0 sin θR cos θR〉
= E[sin θ0 cos θ0 sin θR cos θR(1{0 ↔ξ̂ R}+1{0 �↔ξ̂ R})]

(B45)

= E[sin θ0 cos θ0 sin θR cos θR1{0 ↔ξ̂ R}], (B46)

where we used the fact that P is invariant under cluster-
spin flip and thus the second term is invariant under cos0 �→
− cos θ0 (and keep the other terms invariant). Hence, the sec-
ond term must be = 0. Similarly, we have

E[sin θ0 cos θ0 sin θR cos θR1{0 ↔ξ̂ R}]
= E[sin θ0 cos θ0 sin θR cos θR1{0 ↔ξ̂ R}

× (1{0 ↔η̂ R} + 1{0 �↔η̂ R})] (B47)

= E[sin θ0 cos θ0 sin θR cos θR1{0 ↔ξ̂ η̂ R}]. (B48)

Since the term sin θ0 cos θ0 sin θR cos θR � 1/4, the upper
bounded with the extra factor of 2 follows. Note that the same
argument shows that

〈ξ0η0ξRηR〉 = P [0 ↔ξ̂ η̂ R]. (B49)

�
Proof of lower bound. Continuing the process in the proof

of the upper bound, let N0 denote the neighboring lattice sites
of site 0 and let S0 ⊆ N0 denote the subset of lattice sites i ∈
N0 which are connected to lattice site R in σ̂ , if we remove all
the edge adjacent to 0. Since S0 only depends on σ̂ implicitly
through its value on edges not adjacent to 0, we write S0(σ̂�∼0).
Note that 0 ↔σ̂ R if and only if there exist nonempty ∅ �= S ⊆
N0 such that S0(σ̂ ) = S and that 0 is connected to S within
σ̂ , restricted on edges e adjacent to ∼0 (which we denote by
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0 ↔σ̂ |∼0 R). Therefore

E[sin θ0 cos θ0 sin θR cos θR1{0 ↔σ̂ R}] =
∑

∅�=S⊆N0

E[sin θ0 cos θ0 sin θR cos θR1{S0(σ̂�∼0) = S}1{0 ↔σ̂ |∼0 S}] (B50)

�
∑

∅�=S⊆N0

E[sin θ0 cos θ0 sin θR cos θR1{S0(σ̂�∼0) = S}1{0 ↔σ̂ |∼0 S} (B51)

× 1{π/8 < θ0, θR < 3π/8}] (B52)

� 1/8
∑

∅�=S⊆N0

P [S0(σ̂�∼0) = S, 0 ↔σ̂ |∼0 S, π/8 < θ0, θR < 3π/8]. (B53)

Notice that if we fix the spin values on N0, then we have effectively partitioned the graph structure into decoupled systems
consisting of edges adjacent to ∼0 and those not adjacent ∼0 (the fixed spin value act as boundary conditions of the two
partitions). Therefore the conditional probability of fixing spins on Nx is given by

P
[
S0(σ̂�∼0) = S, 0 ↔σ̂ |∼0 S, π/8 < θ0, θR < 3π/8|θN0

] = P
[
S0(σ̂�∼0) = S, π/8 < θR < 3π/8|θN0

]
(B54)

×P
[
0 ↔σ̂ |∼0 S, π/8 < θ0 < 3π/8|θN0

]
. (B55)

It is straightforward [32] to check that there exists some constant δ(β, deg 0) > 0 depending on β and the degree of site 0 such
that

P
[
0 ↔σ̂ |∼0 S, π/8 < θ0 < 3π/8|θN0

]
� δ(β, deg 0). (B56)

Indeed, this probability corresponds to the finite system consisting of edges e adjacent to site 0 with boundary conditions θN0 .
Therefore

P
[
S0(σ̂�∼0) = S, 0 ↔σ̂ |∼0 S, π/8 < θ0, θR < 3π/8|θN0

]
� δ(β, deg 0) × P

[
S0(σ̂�∼0) = S, π/8 < θR < 3π/8|θN0

]
. (B57)

Integrating over all fixed spins θN0 and substituting back, we find that

E[sin θ0 cos θ0 sin θR cos θR1{0 ↔σ̂ R}] � 1
8δ(β, deg 0) × P [0 ↔σ̂ R, π/8 < θR < 3π/8]. (B58)

Repeat the argument for the lattice site R to obtain

E[sin θ0 cos θ0 sin θR cos θR1{0 ↔σ̂ R}] � 1
8δ(β, deg 0)δ(β, deg R) × P [0 ↔σ̂ R]. (B59)

Hence, the lower bound follows. �

3. Relation between percolation events

In the proof of Theorem 2, we noted that the key observation is that pτ
e (σ, τ ) � pσ

e (σ, τ ) for all spin configurations (σ, τ ).
Here we provide a short proof of the statement.

Theorem 7. Let pτ
e , pσ

e be defined with respect to the critical U(1) × Z2 Hamiltonian in Eq. (2) as shown in Appendices B 2
and B 1. Then

pτ
e (σ, τ ) � pσ

e (σ, τ ). (B60)

For all spin configurations (σ, τ ).
Proof. Note we can rewrite the edge probabilities as

pτ
e = [1 − e−2βκe cos(θi−θ j )]1{τiτ j cos(θi − θ j ) > 0}, (B61)

pσ
e = [1 + e4βκe cos(θi−θ j ) − e−4βκe sin θi sin θ j − e−4βκe cos θi cos θ j ]1{τiτ j = ξiξ j = ηiη j = +1}, (B62)

where ξ, η = ±1 are the signs of the x, y components of the spin σ . Notice that if the condition in pσ
e is not satisfied, i.e., we do

not have τiτ j = ξiξ j = ηiη j = 1, then pσ
e = 0 and must be trivially � pτ

e . Hence, we shall consider the case where the condition
is satisfied. In this case, we see that the condition for pτ

e is also satisfied, i.e., τiτ j cos(θi − θ j ) > 0. Hence,

pτ
e − pσ

e = [e−4βκe sin θi sin θ j + e−4βκe cos θi cos θ j ] − e−2βκe cos(θi−θ j )[1 + e−2βκe cos(θi−θ j )] (B63)

= e−2βκe cos(θi−θ j )[2 cosh(2βκe cos(θi + θ j )) − 1 − e−2βκe cos(θi−θ j )] (B64)

� 0, (B65)

where we used the fact that cos(θi − θ j ) > 0 and that cosh � 1. �
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APPENDIX C: (RANDOM) CLUSTER
REPRESENTATION - GENERAL REGIME

In the section, we will extend the arguments of Appendix B
to the general U(1) × Z2 Hamiltonian in Eq. (3). As discussed
in the main text, let P [σ, τ ] be the probability distribution of
the spin configurations defined by the U(1) × Z2 Hamiltonian
in Eq. (2), i.e.,

P [(σ, τ )] ∝
∏
e=i j

we(σ, τ ), (C1)

we(σ, τ ) = eβ[κe(1+τiτ j ) cos(∇eθ )+λeτiτ j+αe cos(2∇eθ )]. (C2)

1. Z2 correlations

Similar to that discussed in the main text for the standard
Ising model (see Fig. 3) and the critical regime in Appendix B,
for a fixed spin configuration (σ, τ ), define a random variable
of subgraphs τ̂ : E → {0, 1} via the edge probability

pτ
e (σ, τ ) =

[
1 − we(σ, τ i )

we(σ, τ )

]
1{we(σ, τ i ) < we(σ, τ )}

(C3)

= [1 − e−2βτiτ j (κe cos(∇eθ )+λe )]

× 1{τiτ j (κe cos(∇eθ ) + λe) > 0}. (C4)

So that

P [τ̂ |σ, τ ] =
∏
e∈τ̂

pτ
e (σ, τ )

∏
e/∈τ̂

(
1 − pτ

e (σ, τ )
)
, (C5)

P [τ̂ , σ, τ ] = P [τ̂ |σ, τ ]P [σ, τ ]. (C6)

Theorem 8 (Ccluster-flip invariance). Let PG,β be the
probability distribution on (τ̂ , σ, τ ) as befined previously on
a finite graph G. Then P is invariant under cluster flips with
respect to τ , i.e.,

PG,β [(τ̂ , σ, τ )] = PG,β[(τ̂ , σ, τC0(τ̂ ) )], (C7)

where C0(τ̂ ) is the cluster in τ̂ intersecting the lattice site 0
and τC0(τ̂ ) denotes flipping the spins of τ only in C0(τ̂ ). In
particular, the Z2 correlation-percolation is established, i.e.,

〈τ0τR〉G,β = PG,β[0 ↔τ̂ R]. (C8)

Proof. Same as that in Theorem 4. �

2. U(1) correlations

Similar to Appendix B 2, we can define pξ
e, pη

e, pσ
e . How-

ever, this time (as discussed in the main text in Sec. VI), we
shall choose the sector where τiτ j = +1, so that effectively,
the edge weights in Eq. (C2) become

w̃e(σ ) = exp

[
2βαe

(
cos ∇eθ + κe

2αe

)2

+ conste

]

≡ ρe(cos ∇eθ ). (C9)

In the parameter regime where κe � 2αe, we see that x �→
ρe(x) is convex and increasing within the interval [−1, 1].
Note that this is the exact condition used in Ref. [32] (albeit
they are considering a model with only XY spins), and thus
theorems analogous to those in Appendix B of the critical
regime can also be proven.

To be concrete, let us define

pξ
e (σ, τ ) =

[
1 − w̃e(σ ξ,i )

w̃e(σ )

]
1{w̃e(σ ξ,i ) < w̃e(σ ), τiτ j = +1},

(C10)

pη
e (σ, τ ) =

[
1 − w̃e(ηξ,i )

w̃e(σ )

]
1{w̃e(ση,i ) < w̃e(σ ), τiτ j = +1},

(C11)

pσ
e (σ, τ ) =

[
1 + w̃e(σ ξη,i )

w̃e(σ )
− w̃e(σ ξ,i )

w̃e(σ )
− w̃e(ση,i )

w̃e(σ )

]
× 1{w̃e(σ ξ,i ), w̃e(ση,i ) < w̃e(σ ), τiτ j = +1}.

(C12)

Then define the probability distribution P [(ξ̂ , η̂, σ, τ )] as
done in Eqs. (B14)–(B17).

Theorem 9 (cluster-flip invariance). Let PG,β denote the
joint probability on (ξ̂ , η̂, σ, τ ) on a finite graph G defined
previously. Then PG,β is well-defined and satisfies the cluster-
flip invariance with respect to ξ, η, i.e.,

PG,β [(ξ̂ , η̂, σ, τ )] = PG,β[(ξ̂ , η̂, σ ξ,C0(ξ̂ ), τ )], (C13)

PG,β [(ξ̂ , η̂, σ, τ )] = PG,β[(ξ̂ , η̂, σ η,C0(η̂), τ )], (C14)

where C0(ξ̂ ) is the cluster in ξ̂ intersecting the lattice site 0
and σ ξ,C0(ξ̂ ) denotes flipping the spin configuration σ only at
lattice sites within the cluster C0(ξ̂ ) along the x component,
i.e., ξi �→ −ξi or θi �→ π − θi for i ∈ C0(ξ̂ ). The notation is
similar for ξ �→ η.

Proof. The proof is similar to that of Theorem 5, and
thus we will only outline the differences. Using the fact that
x �→ ρe(x) is convex and increasing in the parameter regime
κe � 2αe, we see that P [(ξ̂ , η̂, σ, τ )] is well-defined [32]. As
before, it is sufficient to prove that the following term,

we(σ, τ )P [ξ̂e = 0, η̂e|σ, τ ], (C15)

is invariant under spin-flip σ �→ σ ξ,i where i is an endpoint
of the edge e ∈ ∂C0(ξ̂ ). Note that since we defined pξ

e, pη
e, pσ

e
to be nonzero only in the sector τiτ j = +1, we see that we
can assume τiτ j = +1 without loss of generality. Hence, it is
sufficient to show that

w̃e(σ )P [ξ̂e = 0, η̂e|σ, τiτ j = +1] (C16)

is invariant under spin-flip σ �→ σ ξ,i where i is an endpoint of
the edge e = i j ∈ ∂C0(ξ̂ ).

We also note that in the proof of Theorem 5, we used the
fact that wξη < wξ is equivalent to wη < w. In our case, this
is equivalent to stating that the following 2 are equivalent, i.e.,

ρe(−X − Y ) < ρe(−X + Y ) ⇔ ρe(X − Y ) < ρe(X + Y ).
(C17)

This follows from the fact that ρe is a strictly increasing
function. Indeed, if ρe(−X − Y ) < ρe(−X + Y ), then −X −
Y < −X + Y and thus X − Y < X + Y , which further implies
ρe(X − Y ) < ρe(X + Y ). The converse is similarly shown.
The remainder of the proof is exactly the same as in Theorem
5. �

Theorem 10. Let PG,β denote the joint probability on
(ξ̂ , η̂, σ, τ ) on a finite graph G defined previously. Then there
exists constants c > 0 depending only on β and the degree
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(number of nearest neighbors) of the lattice sites 0, R in G
such that

cPG,β [0 ↔ξ̂ η̂ R] � 〈cos 2(θ0 − θR)〉G,β � 2PG,β[0 ↔ξ̂ η̂ R],
(C18)

where ξ̂ η̂ is the intersection of the two subgraphs ξ̂ , η̂ (edge-
wise multiplication when viewed as a map E �→ {0, 1}).
Moreover, if ξ, η denote the sign of the x, y components of
the XY spins σ = eiθ , then

〈ξ0η0ξRηR〉G,β = PG,β[0 ↔ξ̂ η̂ R]. (C19)

Proof. The proof is exactly the same as Theorem 6 �

3. Relation between percolation events

In the proof of Theorem 3, we noted that the key obser-
vation is that pτ

e (σ, τ ) � pσ
e (σ, τ ) for all spin configurations

(σ, τ ). Here we provide a short proof of the statement.
Theorem 11. Let pτ

e , pσ
e be defined with respect to the

general U(1) × Z2 Hamiltonian in Eq. (3) as shown in Ap-
pendices C 2 and C 1. Then

pτ
e (σ, τ ) � pσ

e (σ, τ ) (C20)

for all spin configurations (σ, τ ).
Proof. Note we can rewrite the edge probabilities as

pτ
e = [1 − e−2β(κe cos(∇eθ )+λe )]1{τiτ j (κe cos(∇eθ ) + λe) > 0},

(C21)

pσ
e = [1 + e−4βκe cos(∇eθ ) − (e−4βκe sin θi sin θ j

+ e−4βκe cos θi cos θ j )e−2βα sin 2θi sin 2θ j ]

× 1{τiτ j = ξiξ j = ηiη j = +1}, (C22)

where ξ, η = ±1 are the signs of the x, y components of the
spin σ . Notice that if the condition in pσ

e is not satisfied, i.e.,
we do not have τiτ j = ξiξ j = ηiη j = 1, then pσ

e = 0 and must
be trivially � pτ

e . Hence, we shall consider the case where the
condition is satisfied. In this case, we see that the condition
for pτ

e is also satisfied, i.e., τi(κe cos(∇eθ ) + λe) > 0.
For notation simplicity, let us omit the edge e = i j sub-

script and also write |X | = cos θi cos θ j and |Y | = sin θi sin θ j

(where 1 � |X |, |Y | � 0 due to the condition ξiξ j = ηiη j =
+1). Then we have

pτ
e − pσ

e = (e−4βκ|X | + e−4βκ|Y |)e−2βα4|X ||Y | − e−2βκ (|X |+|Y |)

×[e−2βλ + e−2βκ (|X |+|Y |)] (C23)

= e−2βκ (|X |+|Y |)[2 cosh(2βκ (|X | − |Y |))e−2βα4|X ||Y |

− e−2βλ − e−2βκ (|X |+|Y |)]. (C24)

Note that α � λ and thus we have

cosh(2βκ (|X | − |Y |))e−2βα4|X ||Y |

� e−2βα4|X ||Y | (C25)

� e−2βλ, 4|X ||Y | = sin 2θi sin 2θ j � 1 (C26)

Note that κ � 2α and thus we have

cosh(2βκ (|X | − |Y |))e−2βα4|X ||Y |

� e−2βα4|X ||Y | (C27)

� e−2βκ (|X |+|Y |), (C28)

where we used the fact that

|X | + |Y | − 2α

κ
2|X ||Y | � |X |2 + |Y |2 − 2|X ||Y |,

× |X |, |Y | � 1 (C29)

� 0. (C30)

Combining everything together, we get pτ
e � pσ

e . �

APPENDIX D: (RANDOM) CURRENT REPRESENTATION:
CRITICAL REGIME

The current representation dates back to Griffith et al. [57]
and Aizenman [58], where it was developed to study the Ising
model. Similar to the cluster representation, the current repre-
sentation establishes a correlation-percolation correspondence
in the Ising model. This representation has proven useful in
numerous occasions in obtaining rigorous results regarding
the standard Ising model [42,59–61]. However, unlike the
cluster representation, the current representation has been
mostly limited to the Ising model. Only until recently has the
representation been extended to the standard XY model [62].
Therefore, in this section, we will provide a short review by
considering the standard Ising and XY models. The developed
techniques will be used towards improving the correlation
inequality in Theorem 2 and proving Theorem 12 for the
critical Hamiltonian in Eq. (2).

1. A short review of the Ising model

Consider the standard Ising model on a finite graph G,

H Is(τ ) = −
∑
e=i j

τiτ j, (D1)

so that the partition function is given by

Z Is =
∑

τ

∏
e=i j

eβτiτ j . (D2)

For each edge e = i j, we can expand the Boltzmann weight
eβτiτJ via Taylor series. This introduces an extra N degree of
freedom on each edge e corresponding to the order of the
Taylor series expansion, and thus a current configuration on
the edges n : E → N [42]. Integrating over all spin configura-
tions τ induces an interaction between the currents on distinct
edges. More specifically, we have

Z Is =
∑

n

βn

n!
× 1{∂n = ∅}, (D3)

where βn ≡∏e βne and n! ≡∏e ne!. Note that ∂n denote the
endpoints of the current configuration n, that is, the set of
vertices i with an odd parity of neighboring edges in n, i.e.,
δin =∑e∼i ne. A typical current configuration is shown in
Fig. 5(a). Due to the restriction that ∂n = ∅, we see that each
vertex must be adjacent to an even (possibly 0) number of
edges in n.

One can perform a similar expansion for the unnormalized
correlation function

Z Is〈τ0τR〉Is =
∑

n

βn

n!
× 1{∂n = 0, R}, (D4)
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(a) (b)

(c) (d)

FIG. 5. Current representation of the Ising model on Z2. (a) A
current configuration n : E → N contributing to the partition func-
tion Z Is. (b) A current configuration contributing to the unnormalized
correlation function Z Is〈τ0τR〉Is where the large dots denote the lattice
sites 0, R. (c). A double current representation, where the red and
green lines representation distinct configurations n1, n2 contributing
to the unnormalized correlation function (Z Is〈τ0τR〉Is )2. The large
dots denote the lattice sites 0, R. (d) A double current representation,
where only the trace n̂ [compared to Fig. 5(c)] is shown.

where the only difference is that the summation only includes
current configurations with endpoints at lattice sites 0, R [see
Fig. 5(b) for a typical configuration].

Notice that the partition function and unnormalized cor-
relation functions are written over different sums of current
configurations, and thus cannot define a probability distribu-
tion. Mathematicians have realized that one can circumvent
this problem by applying a double current representation
[42,60]: create two identical copies of the same Hamiltonian
so that one can compute the square of the unnormalized cor-
relation functions, i.e.,

(Z Is〈τ0τR〉Is )2 =
∑
n1,n2

2∏
i=1

βni

ni!
1{∂ni = 0, R}. (D5)

The key observation is to note that while each (duplicated)
current configuration n1, n2 must have endpoints at lattice site
0, R, their sum23 n ≡ n1 + n2 does not have any endpoints, as
shown in Fig. 5(c). The switching Lemma [42,58] formalizes

23Performed over each edge e.

this intuition so that one can rewrite

(Z Is〈τ0τR〉Is )2 =
∑
n1,n2

1
{
0 ↔

n1+n2

R
}
(μIs )⊗2[n1, n2], (D6)

(μIs )⊗2[n1, n2] =
2∏

i=1

βni

ni!
1{∂ni = ∅}, (D7)

where {0 ↔n1+n2 R} denotes the percolation event where lat-
tice sites 0, R are connected in a cluster of n1 + n2. Since the
partition functions (Z Is )2 is the normalization factor of the
weights (μIs )⊗2[n1, n2], we find that the correlation function
can be written as the probability of a percolation event, i.e.,

(〈τ0τR〉Is )2 = (P Is )⊗2
[
0 ↔

n1+n2

R
]
, (D8)

(P Is )⊗2[n1, n2] = (μIs )⊗2[n1, n2]

(Z Is )2
. (D9)

We emphasize that the percolation event {0 ↔n1+n2 R} is
only dependent on the sum n ≡ n1 + n2 of the two indi-
vidual configurations; in fact, it only depends on the trace
[see Fig. 5(d)], which is a subgraph n̂ : E → {0, 1} defined
by including an edge e in n̂ if ne > 0, i.e., n̂ = 1{n > 0}.
Therefore we simplify our notation and write

(〈τ0τR〉Is )2 = (P Is )⊗2[0 ↔n̂ R]. (D10)

2. A short review of the XY model

Similar to the Ising model in the previous subsection, we
can write the correlation functions of the standard XY model
as percolation events in corresponding current representation.
Here, we shall outline the main argument and refer the reader
to Ref. [62] for details [see Appendix D 5 for its application
to the U(1) × Z2 Hamiltonian]. Consider the standard XY
model on a finite graph G,

HXY = −
∑
e=i j

σi · σ j = −1

2

∑
e=i→ j

σ̄iσ j, (D11)

where σi = eiθi ∈ S1 ∼= C. Notice that in contrast to the Ising
model, the summation is over directed edges e ∈ E and thus
when computing the partition function ZXY, the induced cur-
rent is a directed configuration, i.e., n : E → N and

ZXY =
∑

n

· · · × 1{δn = 0}, (D12)

where we have omitted the corresponding weights · · · and
chosen to focus on the interaction term induced by integrating
over all XY spins. More concretely, δin is the flow of the
current out of the lattice site i, defined by δin =∑ j∼i(ni→ j −
n j→i ) so that the condition δn = 0 requires δin = 0 at all
lattice sites i. A typical directed configuration satisfying this
condition24 is shown in Fig. 6(a).

24Note there is a subtlety regarding which edge copies should be
pointing from i → j and which j → i. Indeed, the directed current n
only specifies the number of directed edge copies pointing from i →
j (and j → i), but not the stacking order. For example, in Fig. 6(a),
there are 5 edge copies on the upper-left most horizontal edge, of
which 2 are point to the right and 3 to the left. Out of the 5 edge
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(a) (b)

(c)

FIG. 6. Current representation of the XY model on Z2. (a) A
directed current configuration n contributing to the partition function,
i.e., with zero flow δn = 0. (b) A possible pairing of incoming and
outgoing edges of the boxed vertex in (a). (c) A possible cyclic
decomposition C of the direct current n in (a). Distinct colors denote
distinct loops and the numbers denote the ordering, e.g., 1 → 2 →
3 → 4 → 5 → 6 → 1 for the orange cycle. Large black dots denote
lattice site 0, R.

It would then appear that we can repeat the procedure out-
lined for the Ising model and write the correlation functions as
a percolation event of the direct currents n. However, as first
noticed by Ref. [62], a further degree of freedom is required.
As shown in Fig. 6(a), the zero flow requirement implies
that we can decompose the directed current configuration
into distinct cycles. More concretely, as shown in Fig. 6(b)
[which corresponds to the boxed vertex in Fig. 5(a)], we can
pair up the incoming- and outgoing-edges in any manner. By
performing this decomposition at each vertex, we obtain a
collection of directed cycles25 C. A typical configuration of
C is shown in Fig. 6(c), where each distinct color denotes a
distinct directed loop and the numbers specify the ordering,
e.g., 1 → 2 → 3 → 4 → 5 → 6 → 1 for the orange cycle.

copies, we could’ve arranged the right and left arrows in any order.
See Appendix D 5 c for explicit treatment on U(1) × Z2 model.

25Since there are multiple ways of decomposition a given directed
current n, the mapping n �→ C is multivalued, i.e., the well-defined
map C �→ n is not 1-1.

By using an analog of the switching Lemma [42,58] for the
Ising model, the following correspondence26 was established

〈cos 2(θ0 − θR)〉XY ∼= PXY[0 ↔C R], (D13)

where ∼= denotes that the ratio of the two values are bounded
above and below by constants,27 and {0 ↔C R} denotes the
percolation event in which there exists a directed loop in the
collection C which connects lattice sites 0, R [e.g., orange
cycle in Fig. 6(c)]. Similar to the Ising model, we emphasize
that the percolation event {0 ↔C R} is independent of the
direction of each cycle28 in C and thus warrants the notation
C instead of C.

3. Application to the critical regime

Similar to the cluster representation, the correlation-
percolation correspondence in the current representation
extends to the critical subclass in Eq. (2) and that the difficulty
lies in finding the relation between two percolation event so
that

Theorem 12 (see Appendix D 5). Let the U(1) × Z2

Hamiltonian H in Eq. (2) be defined on a finite graph G. Then
for any temperature,

〈cos 2(θ0 − θR)〉G,β � 〈τ0τR〉G,β . (D14)

Sketch of proof. If we repeat the procedure for the stan-
dard XY models and define directed cyclic decomposition
C, we see that the U(1) correlations are related to the per-
colation events {0 ↔C R} (see Appendix D 5 b). Since every
directed cyclic decomposition corresponds to a directed cur-
rent, i.e., C → n, and each directed current corresponds to
an undirected current, i.e., n → n (remove the directions),
we see that we can also establish a correspondence between
the Z2 correlations and the percolation event {0 ↔n̂ R} (see
Appendix D 5 a). It’s then clear that if C percolates between
lattice sites 0, R, then its induced undirected current configu-
ration n must also percolate, i.e.,

{0 ↔C R} ⊆ {0 ↔n̂ R}, (D15)

P [0 ↔C R] � P [0 ↔n̂ R]. (D16)

The statement then follows. �
One natural question that may arise is why not compare

the conventional U(1) correlations 〈cos(θ0 − θR)〉 with the Z2

correlations 〈τ0τR〉 since, schematically, both require a dou-
ble current representation. In short, the U(1) × Z2 model is
(heuristically) “already” a double current representation, since
it is physically motivated by identical layers (e.g., twisted
bilayer BSCCO). More concretely, note that in the standard
Ising model, the correlations are obtained by considering two

26A similar correspondence for the conventional correlations
〈cos(θ0 − θR )〉XY was also established using a corresponding double
current representation [62].

27In this case, the ratio of the left-hand side and the right-hand side
is bounded between 1/2 � · · · � 1.

28Also independent of the stacking order as defined previously.
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identical copies of the same Hamiltonian, i.e.,

H Is(σ ) + H Is(τ ) = −
∑
e=i j

(1 + (τiσi )(τ jσ j ))σiσ j, (D17)

where we need to sum over all Ising spin configuration (σ, τ ).
Note, however, that (σ, τ ) �→ (σ, τσ ) (where τσ denotes
sitewise multiplication), is a bijective mapping between spin
configurations, and thus the duplicated Ising Hamiltonian is
equivalent to

−
∑
e=i j

(1 + τiτ j )σiσ j . (D18)

This has the same form as the U(1) × Z2 Hamiltonian in
Eq. (2) with constant κe = 1, except that the U(1) spins in the
latter are replaced by the simpler Z2 spins, i.e., U(1) �→ Z2.
Therefore, heuristically, the U(1) × Z2 model is “already”
duplicated with respect to the Ising spins τ .

4. Suggestive evidence of a single phase transition

Apart from providing a stronger inequality over Theorem
2, the current representation in Theorem 12 also provides
suggestive insight into why only a single phase transition is
observed for the critical regime �∞ (at least for the constant
κe = 1 scenario on a regular lattice such as Zd ), as suggested
by mean-field theory [6,12] and numerics [7,18,25]. More
specifically, we have shown that

〈cos 2(θ0 − θR)〉 ∼= P [0 ↔C R], (D19)

〈τ0τR〉 ∼= P [0 ↔n̂ R], (D20)

where the cyclic decomposition C induces the undirected cur-
rent n as argued previously, i.e., C → n → n. It is thus worth
mentioning that the constructed current representation P for
the U(1) × Z2 Hamiltonian with constant κe = 1 is related to
that of the standard XY model PXY via the following relation:

P [C] ∝ 2C(n̂)PXY[C], (D21)

where C(n̂) denote the number of clusters in the induced trace
n̂ [e.g., C(n̂) = 6 in the example of Fig. 5(d), where isolated
vertices are also counted]. Note the two percolation events
{0 ↔C R} and {0 ↔n̂ R} also occur in the standard XY model.
However, since it is well-known that the standard XY model
only has a single phase transition on Zd , the two percolation
events are expected to coincide in the XY model.29 The extra
factor 2C(n̂) is not expected to change this behavior, though it
may change the critical temperature.30

29This is not yet proven. However, such a conjecture was made
in Ref. [62], by comparing the cyclic decomposition C to simple
random walks. More concretely, they consider the dimensional de-
pendence of the XY phase transition (BKT or long-range order) and
relate it to that of recurrence/transient property of the simple random
walk on Zd .

30One can compare this situation to the cluster representation of the
q states Potts model [42], in which each probability distribution only
differ by qC(ω).

5. Technical details of the current representation

In this section, we shall derive some of the technical de-
tails for the random current representation given in previous
sections of Sec. D for the U(1) × Z2 Hamiltonian in Eq. (2).

a. Z2 correlations

Theorem 13. Let H be that given in Eq. (2). Then the
partition function ZG,β on a finite graph G is given by

ZG,β = 1

2V

∑
n:E→N

2C(n̂) (βκ )|n|

n!
1{δn = 0}, (D22)

where |n| is the (undirected) current induced by n, i.e., |n|i j =
ni→ j + n j→i, and

(βκ )|n| ≡
∏

e

(βκe)|n|e, n! ≡
∏

e

ne. (D23)

C( ˆ|n|) is the number of clusters in the trace ˆ|n| and δn is the
flow of n as defined in the main text.

Proof. Notice that

Z =
∑

τ

∫
θ

∏
e=i→ j∈E

exp

(
βκe

2
(1 + τiτ j )σ̄iσ j

)
(D24)

=
∑

τ

∫
θ

∏
e=i→ j∈E

∞∑
ne=0

1

ne!

(
βκe

2

)ne

(1 + τiτ j )
ne e−i(θi−θ j )

(D25)

=
∑

n:E→N

1

n!

(
βκ

2

)|n|
⎡
⎣∑

τ

∏
e=i j∈E

(1 + τiτ j )
|n|e

⎤
⎦

×
[∫

θ

∏
i∈V

e−iθiδin

]
, (D26)

where |n| is the (undirected) current induced by n, i.e., |n|i j =
ni→ j + n j→i, and(

βκ

2

)|n|
=
∏

e

(
βκe

2

)|n|e
. (D27)

Note that by Lemma 2, we have∑
τ

∏
e=i j

(1 + τiτ j )
|n|e =

∑
m:E→N,m�|n|

( |n|
m

)
1{∂m = ∅} (D28)

= 2|n|−V +C( ˆ|n|), (D29)

where ( |n|
m

)
=
∏

e

( |n|e
me

)
(D30)

and C( ˆ|n|) is the number of clusters in the trace ˆ|n| as defined
in the main text. Also notice that∫

θ

∏
i∈V

e−iθiδin = 1{δn = 0}, (D31)

where δn is the flow of the current as defined in the main text.
Hence, the statement follows. �

094509-17



ANDREW C. YUAN PHYSICAL REVIEW B 109, 094509 (2024)

Theorem 14. Let PG,β be the probability distribution on
directed currents n defined on a finite graph G with weights

PG,β [n] ∝ 2C(n̂) (βκ )|n|

n!
1{δn = 0}, (D32)

where the notation is as in the previous Theorem 13, and let
〈· · · 〉G,β be the thermal average with respect to the U(1) × Z2

Hamiltonian in Eq. (2). Then

〈τ0τR〉G,β = PG,β [0 ↔ ˆ|n| R]. (D33)

Proof. For notation simplicity, let us omit the subscripts
G, β. Notice that we can repeat the proof in obtaining the
previous Theorem 13 so that

Z〈τ0τR〉 =
∑

n:E→N

1

n!

(
βκ

2

)|n|
⎡
⎣∑

τ

τ0τR

∏
e=i j∈E

(1 + τiτ j )
|n|e

⎤
⎦[∫

θ

∏
i∈V

e−iθiδin

]
(D34)

=
∑

n:E→N

1

n!

(
βκ

2

)|n|
⎡
⎣ ∑

m:E→N,m�n

( |n|
m

)
1{∂m = 0, R}

⎤
⎦1{δn = 0}. (D35)

By the switching Lemma [42] states that∑
m:E→N,m�n

( |n|
m

)
1{∂m = 0, R} = 1{0 ↔ ˆ|n| R}

∑
m:E→N,m�n

( |n|
m

)
1{∂m = ∅}. (D36)

Therefore

Z〈τ0τR〉 =
∑

n:E→N

1{0 ↔ ˆ|n| R} × 2C(n̂) (βκ )|n|

n!
1{δn = 0},

(D37)

〈τ0τR〉G = P [0 ↔ ˆ|n| R]. (D38)

�
Lemma 2. Let G = (V, E ) denote a finite graph with

vertices V and edges E . Let n : E → N be a current configu-
ration on G with trace n̂ as defined in the main text. Then∑

m:E→N,m�n

(
n
m

)
1{∂m = ∅} = 2n−V +C(n̂), (D39)

where C(n̂) denotes the number of clusters in the subgraph n̂,
and m � n denote me � ne for all edges e and(

n
m

)
=
∏
e∈E

(
ne

me

)
. (D40)

Proof. For a given n : E → N, construct a multigraph N
as in Fig. 5(a), i.e., each edge e is duplicated ne times. Note
that if m : E → N is such that m � n, then we can construct
a sub-multigraph M of N by choosing me edge copies of the
total ne edge copies. Since for each edge e, there are exactly(

ne

me

)
(D41)

many ways to select me edges, we see that the summation
computes the number of sub-multigraphs M of N without
endpoints, i.e.,∑

m:E→N,m�n

(
n
m

)
1{∂m = ∅} =

∑
M⊆N

1{∂M = ∅}, (D42)

where ∂M is defined similarly as ∂m. Since the summation
counts the number of loops, by Theorem 1.9.5. of Ref. [63],
the statement follows. �

b. U(1) correlations

Similar to the standard XY model as discussed in the
main text, the directed currents n are insufficient to estab-
lish a correspondence between the U(1) spin-spin correlation
and percolation events in the corresponding current repre-
sentation. Extra degrees of freedom correspond to cyclic
decompositions C is required. More specifically, we have

Theorem 15. Let H be that given in Eq. (2). Then the
partition function ZG,β on a finite graph G is given by

ZG,β = 1

2V

∑
C

2C(n̂) (βκ )n

n!

1

λn
1{C �→ n}, (D43)

where n is the directed current induced by C (unpair all the
directed edges at each vertex as discussed in the main text,
see Fig. 6) and n is the undirected current induced by n, i.e.,
C �→ n �→ n and

λn =
∏
i∈V

(δin/2)!. (D44)

Proof. For notation simplicity, we shall omit the subscripts
G, β. From Theorem 13, we see that

Z = 1

2V

∑
n:E→N

2C(n̂) (βκ )|n|

n!
1{δn = 0}. (D45)

Let us rewrite this as

Z =
∑

n:E→N

2C(n̂) (βκ )n

n!

[ ∑
n:E→N

n!

n!
1{|n| = n}1{δn = 0}

]
︸ ︷︷ ︸

In

.

(D46)

Let us now attempt to compute In in terms of cycle collec-
tions C. Indeed, given an undirected current n : E → N [see
Fig. 5(a)] and a directed current n which induces n, for each
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edge e = i j, there are
ne!

ni→ j!n j→i
. (D47)

Many ways to assign ni→ j edge copies with the direction
i → j and the rest with j → i (see Fig. 6(a). Since this can
be done independently for each edge, there are exactly n!/n!
many ways to assign directions to the undirected current n
so that it is consistent with the directed current n (we refer
to this as the stacking order). As discussed in the main text, at
each vertex, we can then pair up incoming and outgoing edges
in any manner [see Fig. 6(b)]. Since the flow δn = 0 for all
vertices, we see that there are an equal number of incoming
and outgoing edges and thus (δin/2)! many ways to pair up
edges. Since each vertex is independent, we see that there are
exactly λn many ways to pair up edges. Then the mapping
from C → n (reversing the decomposition from n to n and
then to C) must be (n!/n! × λn)-to-1. Hence, we have

Z =
∑

n:E→N

2C(n̂) (βκ )n

n!
× 1

λn

[∑
C

1{C �→ n}
]
. (D48)

Hence, the statement follows. �
Theorem 16. Let PG,β be the probability distribution on

directed cycle collections C defined on a finite graph G with
weights

PG,β [C] ∝ 2C(n̂) (βκ )n

n!

1

λn
1{C �→ n}, (D49)

where the notation is as in the previous Theorem 15, and let
〈· · · 〉G,β be the thermal average with respect to the U(1) × Z2

Hamiltonian in Eq. (2). Then
1
2PG,β[0 ↔C R] � 〈cos 2(θ0 − θR)〉G,β � PG,β[0 ↔C R].

(D50)
Proof. The proof follows that given in Ref. [62], in which

the U(1) spin-spin correlation (but for the standard XY model)
was related to a percolation event by reversing one of the 2
“paths” from 0 → R, and thus forming a new cycle. Since
path reversal does not change the undirected current n, the
proof can be applied to our model, which only differs from
the XY model by a extra weight of 2C(n̂). Indeed, we provide
the details here for the U(1) × Z2 Hamiltonian, in a way
that (the author feels) is more physically motivated (though
ultimately the same as in Ref. [62], which focuses a bit more
on rigorous definitions).

As before, we shall omit the subscripts G, β for notation
simplicity. Notice that we can repeat the proof of Theorem 13
and obtain

Z
〈
σ 2

R σ̄ 2
0

〉 = ∑
n:E→N

2C( ˆ|n|) (βκ )|n|

n!
1{δn = 2δ0 − 2δR}, (D51)

where the flow δn of the current is zero everywhere except
at the latice sites 0,R, at which δin = ±2, respectively. It’s
then evident that the unnormalized correlation Z〈σ 2

R σ̄ 2
0 〉 is

equal to a summation over currents n which have two “paths”
from 0 → R; instead of loop configurations as in the partition
function Z . Therefore the intuition is to reverse one of the two
“paths” from 0 → R so that the resulting configuration is a
loop configuration. The definition of a “path” in its current
form, however, is a bit ambiguous to achieve this, and thus

(a) (b)

FIG. 7. Current representation on Z2. (a) Some cycle/path de-
composition with cut at lattice sites 0, R, wich are denoted by
the large black dots. Distinct colors denote distinct loops/paths,
while the numbers indicate the order of edges. Note, for example,
the purple path start and ends at one of the cuts, and thus should be
regarded as a path rather than a loop (the numbers are not modulo
the length of the path, e.g., 4). (b) The cycle/path decomposition of
Fig. 7(a), but with the brown path reversed, i.e., (C, γ ) �→ (C′, γ̄ ),
where C′ = C�{γ, γ̄} (where � denotes the symmetric difference).

warrants us to pair up incoming & outgoing edges at each
lattice site as done for the partition function in Theorem 15.
More concretely, rewrite the unnormalized correlation as such

Z
〈
σ 2

R σ̄ 2
0

〉 = ∑
n:E→N

2C(n̂) 1

n!

(
β

2

)n

×
[ ∑

n:E→N

n!

n!
1{|n| = n}1{δn = f (2)}

]
︸ ︷︷ ︸

I (2)
n

, (D52)

where we have introduced an extra degree of freedom corre-
sponding to undirected currents n : E → N and f (2) = 2δ0 −
2δR. The summation I (2)

n is regulated by the condition 1{|n| =
n}, i.e., only sum over direct currents n which induce n. As
before in Theorem 15, given a fixed undirect current n, for
each edge e = i j ∈ E , there are exactly n!/n! ways to assign
directions so that it is consistent with n [see Fig. 6(a)]. To
generalize the notion of cycle decompositions C used in the
previous Theorem, let us define the following.

(1) A cycle/path decomposition C of the undirected cur-
rent n is a partition of n into directed paths and directed loops
(loosely speaking, uses up all the edge copies in n exactly
once). See Fig. 7(a).

(2) C has a cut at lattice sites S ⊆ V if every directed
path/loop in C is segmented at lattice sites in S. See Fig. 7(a).

(3) Denote LS
n ( f ) to be the collection of all cycle/path

decompositions C on n with cuts S and satisfies the flow
equation δn = f , where C �→ n. In the case where f = 0 ev-
erywhere and S = ∅, we denote Ln ≡ L∅

n ( f ≡ 0), and denote
L ≡⊔n Ln be the union of all possible cycle/path decom-
positions with no cuts and zero flow. The elements in L are
exactly the cycle decomposition we defined previously for the
partition function.

Based on our previous observation, it is then clear that
I (2)

n = |LV
n ( f (2) )|. Moreover, notice that given cycle/path
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decomposition C ∈ LV
n ( f (2) ) [since we cut at every lattice

site, C can be regarded as the collection of directed edge
(copies)], and a lattice site i ∈ V, i �= 0, R, there are exactly
δin/2 incoming & outgoing edges, respectively. Therefore
there are exactly (δin/2)! many ways to pair up incoming &
outgoing edges at i, in which each pairing induces a distinct
cycle decomposition C′ ∈ LV −i

n ( f (2) ). Conversely, every cycle
decomposition C′ ∈ LV −i

n ( f (2) ) (with i �= 0, R) induces a cy-
cle decomposition in LV

n ( f (2) ) (by segmenting at i). Therefore
the mapping is (δin/2)!-to-1 from LV −i

n ( f (2) ) → LV
n ( f (2) ),

i.e., given fixed C ∈ LV
n ( f (2) ), we have∑

C′∈LV −i
n ( f (2) )

1{C′ �→ C} = (δin/2)!. (D53)

And in particular, ∣∣LV −i
n ( f (2) )

∣∣∣∣LV
n ( f (2) )

∣∣ = (δin/2)!. (D54)

We can repeat this argument inductively on all lattice sites
i �= 0, R to obtain

∑
C′∈L0,R

n ( f (2) )

1{C′ �→ C} =
∣∣L0,R

n ( f (2) )
∣∣∣∣LV

n ( f (2) )
∣∣ = λ0,R

n , (D55)

where we use λS
n to denote

λS
n ≡

∏
i/∈S

(δin/2)!, λn = λ∅
n . (D56)

Therefore

I (2)
n = 1

λ0,R
n

∣∣L0,R
n ( f (2) )

∣∣ = 1

λ0,R
n

∑
C∈L0,R

n ( f (2) )

1. (D57)

Notice that for every C ∈ L0,R
n ( f (2) ) [see Fig. 7(a)], the

number of directed paths from 0 → R in the collection C
must be 2 more than that from R → 0, i.e., |P0→R(C)| =
|PR→0(C)| + 2 � 2, where Pa→b(C) is the subset of C con-
sisting of directed path from a → b. For every directed path
γ ∈ P0→R(C), we can reverse the direction to obtain γ̄ , and
replace γ �→ γ̄ within the collection C to obtain the new de-
composition, i.e., C′ = C�{γ, γ̄} (where � is the symmetric
difference). See Fig. 7(b) for an example. The induced cycle
decomposition satisfies C′ ∈ L0,R

n ( f ≡ 0) and γ̄ ∈ PR→0(C′),
and thus we obtain a mapping (C, γ ) �→ (C′, γ̄ ). A similar
argument shows that the mapping is injective (1-to-1), and
thus ∑

C∈L0,R
n ( f (2) )

1 =
∑

C∈L0,R
n ( f (2) )

∑
γ∈P0→R (C)

1

|P0→R(C)| (D58)

=
∑
(C,γ )

1

|P0→R(C)| (D59)

=
∑

(C′,γ ′ )

1

|P0→R(C′)| + 1
(D60)

=
∑

C′∈L0,R
n ( f ≡0)

|P0→R(C′)|
|P0→R(C′)| + 1

. (D61)

Notice that by a similar argument, we have

∑
C∈L0,R

n ( f ≡0)

1{C �→ C′} = |Ln|∣∣L0,R
n ( f (2) )

∣∣ =
∏

i=0,R

(δin/2)!.

(D62)
Therefore

1

λ0,R
n

∑
C∈L0,R

n ( f (2) )

1 = 1

λn

∑
C∈Ln

|P0→R(C)|
|P0→R(C)| + 1

, (D63)

where we have abused notation and also use P0→R(C) to de-
note the collection of directed paths from 0 → R after cutting
C at 0, R. In particular, we find that

Z
〈
σ 2

R σ̄ 2
0

〉 = ∑
n:E→N

2C(n̂) 1

n!

(
β

2

)n 1

λn

∑
C∈Ln

|P0→R(C)|
|P0→R(C)| + 1

(D64)

=
∑
C∈L

2C(n̂) 1

n!

(
β

2

)n 1

λn
× |P0→R(C)|

|P0→R(C)| + 1
,

(D65)

where it is understood that n : E → N the current obtained
from C ∈ L, i.e., C �→ n �→ n. Therefore

〈
σ 2

R σ̄ 2
0

〉 = E

[ |P0→R(C)|
|P0→R(C)| + 1

]
. (D66)

Notice, however, that

1

2
1{|P0→R(C)| � 1} � |P0→R(C)|

|P0→R(C)| + 1

� 1{|P0→R(C)| � 1}. (D67)

Therefore

1
2P [|P0→R(C)| � 1] �

〈
σ 2

R σ̄ 2
0

〉
� P [|P0→R(C)| � 1].

(D68)

Notice that the event {|P0→R(C)| � 1} is exactly the event
{0 ↔C R}. Therefore the statement follows. �

c. Redundancies in the percolation event {0 ↔C R}
As discussed in the main text, there are redundancies when

considering the percolation event {0 ↔C R}.
(1) The event {0 ↔C R} does not depend on the direction

of each directed cycle γ i ∈ C in the cycle decomposition C =
{γ1, . . . , γ�}, and thus there exists a 2� degeneracy.

(2) Since C is a cycle decomposition of a unique current
n : E → N, there is a n! ≡∏e∈E ne! redundancy of which
edge (copy) of e = i j ∈ E the cycle traverses (referred to
as the stacking order). Since the percolation event {0 ↔C R}
does not depend on the stacking order, we can integrate over
this redundancy to obtain a factor of n!.

After removing the direction and stacking order, the re-
sulting equivalence class is a collection C = {γ1, . . . , γ�} of
undirected closed random walks Ci on G, i.e., C �→ C is a
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2�n!-to-1 mapping. In particular, we find that

P [C] ∝ 2C(ωC )

⎡
⎣∏

γ∈C
2

(
β

2

)|γ |
⎤
⎦ 1

λC
1{C ∈ L} ∝ 2C(ωC )PXY

G [C],

(D69)
where |γ | is the length of the closed random walk γ ∈ C,
while L is the collection of all possible sets of closed random
walks. We also denote ωC : E → {0, 1} to be the subgraph
consisting of edges traversed by the random walks γ ∈ C, so
that C(ωC ) is the number of clusters in ωC . Similarly, λC is
defined to be

λC =
∏
i∈V

Ni(C)!, Ni(C) ≡
∑
γ∈C

Ni(γ ), (D70)

where Ni(γ ) is the number of times the closed random walk
visits site i ∈ V . Therefore we find that

PG[0 ↔n̂ R] = PG[0 ↔ωC R], (D71)

PG[0 ↔C R] = PG[0 ↔C R], (D72)

where the percolation event {0 ↔C R} corresponds to the
event in which a random walk γ ∈ C visits both lattice sites
0, R.

APPENDIX E: SIMPLIFIED MODELS: CRITICAL REGIME

So far, we have shown that the system in Eq. (2) cannot
have a floating phase, i.e., must satisfy TTRSB � Tc on any
lattice. Since it corresponds to the critical regime �∞ in the
strong coupling limit, it is expected to have a single phase
transition and thus the converse inequality TTRSB � Tc should
also hold, albeit being much more difficult to prove. There-
fore, in this section, we will attempt to provide insight by
studying two simplified models, i.e., replacing the U(1) degree
of freedom σ in Eq. (2) with Z4 and Z2 clock models. In fact,
with this simplification, we are capable of studying a larger
class of U(1) × Z2 Hamiltonian, i.e., before simplification,

Hρ (σ, τ ) = −
∑
e=i j

κe(ρ+ + ρ−τiτ j )σi · σ j, (E1)

where ρ ∈ [0, 1] and ρ± = 1 ± ρ. Note that ρ = 0 corre-
sponds to the Hamiltonian in Eq. (2). The simplifications
U(1) �→ Z2,Z4 can then be regarded as adding an arbitrary
interaction −λ2

∑
i cos(2θi ) and −λ4

∑
i cos(4θi ) and taking

the limit λ2, λ4 → ∞, respectively.
Similar to Eq. (2), the larger class Hρ with constant κe = 1

can be mapped to the strong coupling limit of twisted bilayer
BSCCO and frustrated n � 3-band superconductors. Indeed,
the latter was derived in Eq. (8) of Ref. [7]. The former corre-
sponds to the case where there is nonzero 1st order Josephson
coupling J1 between the two layers, i.e., in addition to Eq. (4),
we have

HJ1,J2 (φ±) = HJ2 (φ±) − J1

∑
i

cos φi. (E2)

In this case, Hρ corresponds to the Hamiltonian HJ1,J2 with
ρ = J1/4J2 kept fixed while we take J2 → ∞.

Due to the correspondence, it is conjectured that the two
transitions Tc, TTRSB coincide at ρ = 0 and split for ρ �= 0,

i.e., TTRSB < Tc. Indeed, an exact understanding of HJ1,J2 is
known within the context of mean-field theory [6] without
the need for simplifications. Therefore the simplifications
U(1) �→ Z4,Z2 are to probe the behavior of the system in
low dimensions (though we will prove the statements for any
lattice).

1. U(1) �→ Z2

Consider the simplification

HZ2
ρ (σ, τ ) = −

∑
e=i j

κe(ρ+ + ρ−τiτ j )σiσ j, (E3)

where σi = ±1. Since (σ, τ ) �→ (σ, τσ ) (where τσ denotes
sitewise multiplication) is a bijective mapping between spin
configurations, we see that HZ2

ρ is equivalent to decoupled
Ising models, and thus we have the following statement.

Theorem 17. Let G be any finite graph, and 〈· · · 〉Is
β denotes

the thermal average with respect to the Ising model (with si =
±1) on G with edge coupling κe and inverse temperature β.
Then

〈σ0σR〉Z2
ρ,β = 〈s0sR〉Is

βρ+ , (E4)

〈τ0τR〉Z2
ρ,β = 〈s0sR〉Is

βρ+〈s0sR〉Is
βρ− . (E5)

Proof. Notice that the Hamiltonian is given by

HZ2
ρ = −

∑
e=i j∈E

κe(ρ+ + ρ−τiτ j )σiσ j, (E6)

when computing the partition function, we need to sum over
all spin configurations (τ, σ ). Notice, however, that (τ, σ ) �→
(τσ, σ ) is a bijective map, and thus we have

ZZ2
ρ,β =

∑
τ,σ

exp

⎡
⎣β

∑
e=i j∈E

κe(ρ+ + ρ−τiτ j )σiσ j

⎤
⎦ (E7)

=
∑
τ ′,σ

exp

⎡
⎣β

∑
e=i j∈E

κe(ρ+ + ρ−τ ′
i τ

′
jσiσ j )σiσ j

⎤
⎦,

τ ′ = τσ (E8)

=
⎡
⎣∑

σ

exp

⎛
⎝βρ+

∑
e=i j

κeσiσ j

⎞
⎠
⎤
⎦

×
⎡
⎣∑

τ ′
exp

⎛
⎝βρ−

∑
e=i j

κeτ
′
i τ

′
j

⎞
⎠
⎤
⎦ (E9)

= Z Is
βρ+ × Z Is

βρ−. (E10)

A similar transform can be applied to the correlation func-
tions, and thus the statement follows. �

The previous correspondence then implies that

“Tc” = ρ+T Is
c � TTRSB = ρ−T Is

c , (E11)

where equality only holds at ρ = 0. Here, T Is
c is the critical

temperature of the corresponding Ising model and we write
“Tc” since the original U(1) spins are replaced by Z2 spins.
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2. U(1) �→ Z4

Note that the previous simplification U(1) �→ Z2 was triv-
ial in the sense that the system is can be exactly mapped to
decoupled Ising models. In this section, we shall consider
the slightly more general case where U(1) �→ Z4, i.e., σi =
(1, 0), (0, 1), (−1, 0), (0,−1) at each lattice site i. It should
be noted that the Z4 clock model is special in the sense that the
(X,Y ) degree of freedom can be replaced by 2 independent
Ising degrees of freedom, i.e., ξ, η = X ± Y . Therefore the
Hamiltonian can be rewritten as

HZ4
ρ = −1

2

∑
e=i j

κe(ρ+ + ρ−τiτ j )(ξiξ j + ηiη j ). (E12)

To simplify notation, let 〈ψ〉 be shorthand for the cor-
relation 〈ψ0ψR〉Z4

ρ,β where ψ can be any of the 7 options
ψ = τ, ξ , η, τξ, τη, ξη, τξη, each of which can (in princi-
ple) define a separate transition temperature Tψ . However,
using the symmetries of the Hamiltonian in Eq. (E12) and
the corresponding FKG inequalities [40,42,64], the following
(in)equalities can be shown.

Theorem 18. For any 0 � ρ � 1,

〈ξ 〉 = 〈η〉, 〈τξ 〉 = 〈τη〉, (E13)

〈τ 〉 = 〈τξη〉 � 〈τξ 〉〈ξ 〉, (E14)

〈ξ 〉 � 〈τξ 〉 � 〈τ 〉〈ξ 〉, (E15)

〈ξ 〉 � 〈ξη〉 � 〈ξ 〉2. (E16)

Moreover,

〈ξη〉 � 〈τ 〉, (E17)

where equality holds if ρ = 0.
Proof. From the Hamiltonian in Eq. (E12), it is clear that

〈ξ 〉 = 〈η〉 and 〈τξ 〉 = 〈τη〉 due to the symmetry ξ ↔ η. Also
notice that when summing over the configuration (τ, ξ , η),
the mapping τ �→ τξη is a bijective transformation which
keeps the Hamiltonian invariant. Therefore 〈τ 〉 = 〈τξη〉. By
Ginibre’s/FKG inequality (propositions 3, 5 and example 4 of
Ref. [40]), we see that

〈τξη〉 � 〈τξ 〉〈η〉 = 〈τξ 〉〈ξ 〉, (E18)

〈τξ 〉 � 〈τ 〉〈ξ 〉, (E19)

〈ξη〉 � 〈ξ 〉〈η〉 = 〈ξ 〉2. (E20)

It should be noted that the conditional expectation 〈ξ 〉τ
(i.e., computing the thermal average of ξ0ξR if the Z2 con-

figuration τ were fixed) is equal to that of an Ising model
−∑e κ ′

eξiξ j with edge coupling

κ ′
e = 1

2κe(ρ+ + ρ−τiτ j ) � 0, e = i j. (E21)

Therefore, by Griffiths first inequality [40,42,64], we see that
〈ξ 〉τ = 〈ξ 〉Is′ � 0, and thus

〈τξ 〉 = 〈τ 〈ξ 〉τ 〉 � 〈〈ξ 〉τ 〉 = 〈ξ 〉, (E22)

where the first equality can be understood as first averaging
over ξ, η, then averaging over τ . The inequality uses the trivial
fact τ0τR � 1. Similarly, we have

〈ξη〉 = 〈ξ 〈η〉ξ,τ 〉 � 〈〈η〉ξ,τ 〉 = 〈η〉 = 〈ξ 〉, (E23)

where 〈η〉ξ,τ is the conditional expectation with respect to
fixing ξ, τ .

For the last inequality, note that 〈τ 〉 = 〈τξη〉 and as before,
the conditional expectation 〈ξη〉τ = 〈ξ 〉Is′ 〈η〉Is′

(fixing the Z2

spin configuration τ ) is equal to two independent Ising models
with edge couplings κ ′

e. Therefore, by Griffiths first inequality
[40,42,64], we see that 〈ξ 〉Is′

, 〈η〉Is′ � 0 and thus

〈τ 〉 = 〈τξη〉 (E24)

= 〈τ 〈ξη〉τ 〉 (E25)

� 〈〈ξη〉τ 〉, τ0τR � 1 (E26)

= 〈ξη〉. (E27)

In the case where ρ = 0, we see that τ ↔ ξη is a bijective
transform which leaves the Hamiltonian invariant and thus we
obtain equality,

〈τ 〉 = 〈ξη〉. (E28)

�
Using the inequalities, it is straightforward to check that

TTRSB ≡ Tτ and “Tc” ≡ Tξη are the only (possibly) indepen-
dent transition temperatures31, i.e.,

Tξ = Tη = Tξη, (E29)

Tτ = Tτξη, (E30)

Tτξ = Tτη = min(Tτ , Tξη ). (E31)

Moreover, the last inequality implies that

TTRSB � “Tc”, (E32)

where equality holds32 at ρ = 0. Hence, we see that the
system cannot exhibit vestigial order on any lattice despite
having short-range interactions (in comparison to claims of
Ref. [28]); at most, the two transitions coincide at the critical
point ρ = 0.

31Due to the transform ξ, η = X ± Y , we see that 〈cos 2(θ0 −
θR )〉 ∼ 2〈cos(2θ0) cos(2θR )〉 ∼ 〈ξη〉, and that 〈cos(θ0 − θR )〉 ∼ 〈ξ〉.

32In contrast to the U(1) → Z2 simplification, we cannot tell
whether the transitions split for ρ �= 0.
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