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Interface probe for antiferromagnets using geometric curvature
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We propose that geometric curvature and torsion may be used to probe the quality of an uncompensated
antiferromagnetic interface, using the proximity effect. We study a helix of antiferromagnetic wire coupled
to a conventional superconductor, and show that a density of states measurement can give information about
the quality of an uncompensated interface, crucial for many recently predicted antiferromagnetic proximity
effects. Furthermore, we show that geometric curvature alone can result in long-ranged superconducting triplet
correlations in the antiferromagnet, and we discuss the impact curvature and torsion can have on the future
development of superconducting spintronic devices.
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I. INTRODUCTION

Superconducting spintronics combines the dissipationless
spin and charge transport of superconductivity with the infor-
mation processing capabilities of magnetic heterostructures,
reducing energy consumption for some processes, and en-
abling new ways of performing of computations [1,2]. With
their majority spin-polarized structure addressable with exter-
nal magnetic fields, ferromagnets (F) have historically been
the primary magnetic element in most spintronic architec-
tures. Antiferromagnets (AF), with a lattice of alternating
spin orientations, are now becoming serious contenders to
replace or supplement traditional ferromagnetic elements due
to their robustness in magnetic fields, lack of stray fields, and
fast terahertz dynamics [3–5]. A plethora of recent studies
have emphasized the importance of interface characteristics
when using antiferromagnetic elements in superconducting
spintronic structures, and in particular the importance of
a finite interface magnetization via an uncompensated in-
terface [6–12]. However, manufacturing and characterizing
the quality of proximity-coupled uncompensated interfaces
is extremely experimentally challenging. In this paper, we
show that geometric curvature can be used to probe the
interface characteristics, and control proximity effects in
superconductor-antiferromagnet structures.

AF terahertz dynamics can enable ultrafast information
processing and storage, e.g., in writing [13], and driving spin-
lattice coupling [14], which can for example induce emission
of terahertz coherent magnons [15]. However, a standing
issue in manipulating any magnetic element in spintronics
is a limited number of external control mechanisms. Some
manipulation of the AF order parameter has been shown
in experiment [16–19], including isothermal AF switching
with pulsed gate voltages, enabling all-electrical readout in
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AF-based magnetic random access memories (MRAM) [20].
In AF spin valves and tunnel junctions, the spin transfer
torque can manipulate the AF order parameter [21,22], poten-
tially switching the Néel vector and representing the writing
operation in AF-MRAMs, and the direction of spins at an
uncompensated edge can be manipulated using a spin-orbit
torque [23–25]. Moreover, exchange-biased bilayers com-
posed by F and uncompensated AF layers have been used as a
platform to investigate the interface magnetization of the AF
layer [26], map its motion [27], and probe its temperature and
magnetic field dependence [28].

Geometric curvature has recently emerged as a novel way
to design and control spin dynamics using real-space manipu-
lation, with a range of interesting and unexpected phenomena
at the nanoscale [29–44]. For instance, geometric curva-
ture can promote topological superconductivity in Rashba
nanowires [36] and two-dimensional (2D) topological insu-
lators [41], and allows for independent geometrical control
of spin and charge resistances [45], as well as control of the
spin phase of electrons [38,39,43,44]. Geometric curvature in
a magnet provides an effective spin-orbit coupling due to a
changing spin quantization axis [46,47], and is addressable in
situ via, for example, dynamical strain, photostriction, piezo-
electrics, thermoelectrics, or tuning the surface chemistry
[48–50], broadening the experimental toolbox for magnetic
order manipulation in spintronic structures. The curvature in a
ferromagnetic weak link of a Josephson junction can directly
control the direction of current flow through the junction [46],
and can even control the superconducting transition, creating
a large spin-valve effect [47].

Manufacturing curved nanostructures has come a long way
from the first examples of using chemical etching to roll up
nanotubes in the early 2000s [51,52]. Since then, many new
processes and fabrication techniques allow for a range of
intricately curved geometries at the nanoscale, for instance,
via electron-beam lithography [37], two-photon lithography
[53], glancing angle deposition [54], and focused-electron
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FIG. 1. (a) Bulk superconductor coupled to antiferromagnetic
helical nanowire, showing the orthonormal unit vectors T̂ , N̂ , and
B̂ parametrizing the curvilinear coordinate system. (b) Characteristic
parameters of a helix, with radius R, arc length s, pitch 2cπ , and
azimuthal angle φ.

beam-induced deposition [55–57]. While for curved fer-
romagnets there have been plenty of experimental and
theoretical investigations, the field of curvilinear antiferro-
magnets is still in its infancy, with only a few recent studies
of curvature in AF spin chains [58–62]. It has been shown
that a curvilinear AF helix has chiral helimagnetic behavior,
and that the geometric curvature and torsion can control both
the orientation of the Néel vector in the ground state and
the strength of the Dzyaloshinskii-Moriya interaction (DMI),
resulting in the hybridization of spin-wave modes [59]. In this
paper, we will consider such a AF helix, proximity coupled to
a bulk, conventional superconductor, as illustrated in Fig. 1.

The proximity effect in diffusive superconductor-
ferromagnet heterostructures allows the conversion of s-wave
singlet superconducting correlations, which rapidly decohere
in the F, into so-called long-ranged, spin-polarized triplet
correlations, which persist in longer magnetic samples. This
conversion can be achieved through the presence of magnetic
inhomogeneities [63–65], spin-orbit coupling [66,67], or
geometric curvature [46,47]. Theoretical studies combining
superconductors with AFs have typically considered clean
systems [68–71] or modeled the AF as a normal metal
[72–74], but very recently a theory for incorporating
AF insulators [75] and AF metals (AFMs) [12,76] into
the quasiclassical theory for diffusive transport has been
developed. In this paper, we will use this quasiclassical
approach, in which the AFM behaves as a normal metal
with magnetic impurities, to derive the diffusive transport
equations for curved AFM wires proximity coupled to
bulk conventional superconductors. We will show that the
curvature and torsion alone control the conversion between
singlet and long-ranged triplet superconducting correlations,
giving a long-ranged proximity effect, as well as a large
qualitative change in the local density of states from gap to
peak, which can be used to characterize the quality of the
uncompensated interface.

The paper is organized as follows. In Sec. II we
briefly discuss the newly developed quasiclassical theory
for AFMs [76]. We then generalize this theory in Sec. III,
to include geometric curvature in a proximity-coupled an-
tiferromagnet. In Sec. IV we discuss analytic limits of
the equations, and present numerical results for the den-
sity of states and long-range spin correlation functions in a

superconducting-antiferromagnetic helix hybrid nanowire.
We conclude in Sec. V with a summary of the results and a
discussion of the impact of geometric curvature on the future
development of superconducting spintronic devices.

II. DIFFUSIVE THEORY
OF ANTIFERROMAGNETIC METALS

The general approach used to derive the quasiclassical
theory in normal metals, superconductors, and ferromagnetic
metals is modified when treating antiferromagnetic metals, to
account for their alternating magnetization on the two differ-
ent sublattices. Recently, a quasiclassical theory for AFMs in
the dirty limit has been developed in Ref. [76], where they
use a square lattice with two sublattices, one for each spin
direction. The AFM term enters the Usadel equation in a
similar way to magnetic spin-flip impurities in normal metals.
This is because the impurities in an antiferromagnet behave
as if they were magnetic due to the hybridized spin-sublattice
conduction states coupling differently to impurities on
the two sublattices [76]. This theory has been applied to the
study of the proximity effect in a superconductor-AFM hybrid
structure, showing the appearance of long-ranged triplets [12].
We note that a quasiclassical theory for AF insulators with
superconductivity has also been developed recently [75]. The
approaches in Refs. [12,76] and [75] differ in that they assume
different sizes for the chemical potential. In the former it
is assumed large, meaning that only two of the four AFM
bands contribute significantly to the dynamics of the system.
Therefore, only two AFM bands are included in the quasi-
classical theory, resulting in a Usadel equation with the same
matrix structure as for ferromagnetic metals. By employing
this model for our system, the role of the chemical potential is
simply to control the effective impurity strength. In the latter
approach [75], the chemical potential is assumed to be close
to zero. This allows for interband effects, necessitating the
inclusion of all four AF bands. The difference between the
two cases, as well as the crossover between them, is discussed
in Ref. [77].

Below we introduce the Usadel equation for straight anti-
ferromagnets, before we extend the quasiclassical theory of
AFMs developed in Ref. [76] to include geometric curvature
in Sec. III.

Usadel equation for straight antiferromagnets

The Usadel equation for a time-independent
superconductor-AFM hybrid structure, with Néel vector
parallel to the z axis, is [76]

i∇̃ · ĵ +
[
ρ̂3ε − V̂s + iJ2

2τimpμ2
σ̂zĝσ̂z, ĝ

]
= 0, (1)

where ĵ is the matrix current

ĵ = −ĝ∇̃(Dĝ) − ĝ

[
J2

2μ2
σ̂zĝσ̂z, ĵ

]
, (2)

Here, ĝ is the retarded, isotropic quasiclassical Green’s
function, a 4 × 4 matrix in Nambu × spin space, and ∇̃ is
the covariant derivative defined as ∇̃ĝ = ∇ĝ − i[Â, ĝ] where
Â = diag(A,−A∗) with A being a vector field due to

094508-2



INTERFACE PROBE FOR ANTIFERROMAGNETS USING … PHYSICAL REVIEW B 109, 094508 (2024)

electromagnetic fields or spin-orbit coupling. ρ̂3 =
diag(1, 1,−1,−1) and σ̂z = diag(σz, σ

∗
z ) are matrices in

Nambu × spin space, while σz is the third Pauli matrix in
spin space. We note that the complex conjugation in σ̂z has
no effect on the third Pauli matrix, but we include it in
the notation to maintain notational consistency with other
matrices defined below. Furthermore, ε is the energy, V̂s

the isotropic part of the various potential terms, such as
the superconducting pair potential, τimp the elastic impurity
scattering time, and J is the exchange energy. The parameter
μ is the chemical potential [12].

The Green’s function is found by writing it in the band
basis, and then using the Green’s function associated with the
energy band which crosses the Fermi surface [76].

In Eqs. (1) and (2) we have chosen a different basis from
Ref. [76], where the basis vector was defined with a minus
sign multiplying the hole operator with spin up, while in our
basis choice the minus sign is absent and the order of the spin-
up and -down hole operators is inverted. To go from our form
of Eqs. (1) and (2) to those presented in Ref. [76], one needs
to substitute σ̂z → σ̂zρ̂3. Explicitly, our basis choice reads as

ψ† = (c†
↑, c†

↓, c↑, c↓), (3)

where the operator c(†)
σ , with σ =↑,↓, annihilates (creates) an

electron with spin σ .
A simpler expression for the matrix current can be found

if one assumes that (J/μ)2[σ̂z, ĝ] � 1, which is valid in the
limit of small J/μ or vanishing [σ̂z, ĝ]. The matrix current then
becomes [76]

ĵ ≈ −[1 + (J/μ)2]−1Dĝ∇̃ĝ. (4)

For a system in equilibrium, the approximated Usadel equa-
tion becomes

iD̃∇̃ · (ĝ∇̃ĝ) =
[
ρ3ε − V̂s + iJ2

2τimpμ2
σ̂zĝσ̂zĝ

]
, (5)

where D̃ = D[1 + (J/μ)2]−1 is the renormalized diffusion
constant.

III. GEOMETRIC CURVATURE
IN THE DIFFUSIVE TRANSPORT THEORY

FOR ANTIFERROMAGNETIC METALS

We extend the Usadel equation (5) to apply to curvilinear
antiferromagnets by transforming into the Frenet-Serret frame
in Sec. III A. We discuss compensated and uncompensated
interfaces, and introduce boundary conditions in Sec. III B.
We parametrize the equations in Riccati form in Sec. III C, in
order to later solve the equations numerically.

A. Usadel equation for curved antiferromagnets
in Frenet-Serret frame

The three-dimensional space around the helix in Fig. 1
can be parametrized as R(s, n, b) = r(s) + N̂ (s)n + B̂(s)b,
where r(s) is the parametrization of the curve along the arc
length s, and n and b are the normal and binormal coordi-
nates, respectively. The geometry of the system is therefore
determined by the set of orthogonal unit vectors T̂ (s) =
∂sr(s), N̂ (s) = ∂sT̂ (s)/|∂sT̂ (s)|, and B̂(s) = T̂ (s) × N̂ (s)

in the tangential, normal, and binormal curvilinear directions,
respectively. These vectors allow to identify the curvature
and torsion of the structure as κ (s) = |∂sT̂ (s)| and τ (s) =
|∂sB̂(s)|, respectively, and are connected through the Frenet-
Serret formulas [78]⎛

⎝∂sT̂ (s)
∂sN̂ (s)
∂sB̂(s)

⎞
⎠ =

⎛
⎝ 0 κ (s) 0

−κ (s) 0 τ (s)
0 −τ (s) 0

⎞
⎠

⎛
⎝T̂ (s)
N̂ (s)
B̂(s)

⎞
⎠. (6)

The metric tensor of this system is given as

Gμν =
⎛
⎝η(s, n)2 + τ (s)2(n2 + b2) −τ (s)b τ (s)n

−τ (s)b 1 0
τ (s)n 0 1

⎞
⎠,

(7)
where η(s, n) = 1 − κ (s)n.

Using tensor notation, the Usadel equation in (5), for a
general orientation of the Néel vector n, is written as

iD̃GλμD̃λ(ĝD̃μĝ)

=
[
ρ̂3ε−�̂+ iJ2

2τimpμ2
(n·σ̂ )ĝ(n·σ̂ ), ĝ

]
,

(8)

where σ̂ = diag(σ, σ∗) with the Pauli vector expressed
in curvilinear coordinates σ = (σT , σN , σB), and �̂ =
antidiag(�,−�,�∗,−�∗), with � the superconducting or-
der parameter as the potential, which is zero inside the AFM.
We also defined the space gauge-covariant derivative as

D̃λvμ = ∂̃λvμ − �ν
λμvν, (9)

where the gauge-only-covariant derivative term is defined as
∂̃λvμ = ∂λvμ − i[Âλ, vμ], with Âλ = diag(Aλ,−A∗

λ), and �ν
λμ

are the Christoffel symbols relating derivatives of basis vec-
tors to the basis vectors themselves at position R [47,79].

We will now look at the case of a nanowire, taking the
limit n, b → 0. With this simplification it can be shown that
all Christoffel symbols are zero, such that the left-hand side
of Eq. (8) reduces to the same form as in Ref. [47]. Therefore,
the Usadel equation takes the form

iD̃∂̃s(ĝ∂̃sĝ)=
[
ερ̂3−�̂+ iJ2

2τimpμ2
(n·σ̂)ĝ(n·σ̂ ), ĝ

]
. (10)

This generalized form includes the possibility for
both superconductivity and antiferromagnetism to be
simultaneously present. In the following sections,
we consider instead an antiferromagnet where su-
perconductivity is included through the proximity
effect only, i.e., via the boundary conditions. The ef-
fect of the curvature now enters the equations through the
Pauli matrices depending on the direction of the Néel vector
n. As shown in Ref. [59] for the case of an antiferromagnetic
helix, the Néel vector orientation of the equilibrium state in
the curvilinear coordinate system can either be homogeneous,
i.e., constant orientation with respect to the curved reference
frame, or periodic, i.e., varying as a function of the arc-length
coordinate along the geometry of the structure, depending on
the strength of the DMI. In what follows, we will assume the
AFM to be in the homogeneous state, and we will consider
the Néel vector to be directed along the binormal direction,
i.e., n ≡ B̂.
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A helical nanowire like the one depicted in Fig. 1, having
radius R and 2cπ pitch, i.e., the height of a complete helix
turn, can be defined in cylindrical coordinates as [78]

x = R cos φ, (11a)

y = R sin φ, (11b)

z = cφ, (11c)

where φ = [0, 2nπ ] is the azimuthal angle as shown in Fig. 1,
and n defines the number of turns. The value of c determines
how much the nanowire is tilted out of plane. Curvature and
torsion are, respectively, given by

κ = R/(R2 + c2), (12a)

τ = c/(R2 + c2). (12b)

The arc-length coordinate is given by s = φ
√

R2 + c2. This
parametrization leads to the following set of three unit vectors:

T̂ (s) = − cos α sin φêx + cos α cos φêy + sin αêz, (13a)

N̂ (s) = − cos φêx − sin φêy, (13b)

B̂(s) = sin α sin φêx − sin α cos φêy + cos αêz, (13c)

where α = arctan (τ/κ ). Having derived the form of the three
curvilinear unit vectors, the curvilinear Pauli matrices are
calculated from

σT = σ · T̂ (s), σN = σ · N̂ (s), σB = σ · B̂(s). (14)

This form of the Pauli matrices allows for introducing the
dependence on the geometry of the system in the model.

B. Boundary conditions: Compensated
and uncompensated interfaces

To include AFMs in hybrid structures, suitable bound-
ary conditions are needed. These have been derived in the
diffusive regime in Ref. [76], for a S-AF interface. The
boundary condition for the matrix current going from material
a = {S, AF} to material b = {S, AF} is [12,76]

en · ĵa = [T̂abĝbT̂ba + iR̂a, ĝa], (15)

where en is the outward unit vector normal to the interface,
T̂ab is the tunneling matrix and R̂a is the reflection matrix.
We note that the above equation is valid only for a �= b. This
equation coincides with the generalization of the Kupriyanov-
Lukichev boundary conditions for spin-active interfaces [80].

In the case of compensated interfaces, T̂ab = t and R̂a are
scalars and the boundary conditions of Eq. (15) reduce to
the usual Kupriyanov-Lukichev boundary conditions [81]. For
uncompensated interfaces, assuming that the tunneling occurs
between the superconductor and one sublattice, the tunneling
matrix is [12]

T̂S,AF = 1
2 (t0 + t1m · σ̂), (16)

where t0 = t (
√

1 + J/|μ| + √
1 − J/|μ|) and t1 =

t (
√

1 + J/|μ| − √
1 − J/|μ|). The unit vector m identifies

the direction of the interface magnetization. The reflection
matrix can be set equal at both sides of the interface, taking
the value [12] R̂S = R̂AF = Gϕm · σ̂. The factor Gϕ represents

an interfacial phase shift acquired during reflection, like
the phase shift picked up at ferromagnetic interfaces [1],
and is a key ingredient in determining the quality of an
uncompensated interface, which we will discuss further in
Sec. IV.

C. Riccati parametrization

To solve the curvilinear Usadel equation with antifer-
romagnetic coupling (10) numerically, we use the Riccati
parametrization of the quasiclassical Green’s function [82,83]

ĝ =
(

N 0
0 −Ñ

)(
1 + γ γ̃ 2γ

2γ̃ 1 + γ̃ γ

)
, (17)

where N is a 2 × 2 normalization matrix defined as N = (1 −
γ γ̃ )−1. The tilde operation is defined as γ̃ (s, ε) = γ ∗(s,−ε).
Inserting Eq. (17) into (10), we get the Riccati parametrized
Usadel equation of the system:

D̃
[(

∂2
s γ

) + 2(∂sγ )Ñ γ̃ (∂sγ )
]

= −2iεγ + 2ζ [σBNσBγ + γ σ ∗
B Ñσ ∗

B − σBNγ σ ∗
B

− γ σ ∗
B Ñ γ̃ σBγ − γ ], (18)

where ζ ≡ J2/2τimpμ
2 is the effective magnetic impurity

strength.
Regarding the boundary conditions, we model the resultant

interfacial magnetization of an uncompensated interface via
the spin-active boundary conditions of Eq. (15). The equa-
tion for the AF side of the interface, with the use of the Riccati
parametrization of Eq. (17), can be written as

1

1 + (J/μ)2
∂IγAF = t

4
(1 − γAFγ̃AF)(I1γAF + I2), (19)

where the terms I1 and I2 are

I1 = −(gAFgS − fAF f̃S)
(
t2
0 + t0t1m · σ

)
+ (

t2
0 + t0t1m · σ

)
(gSgAF − fS f̃AF)

− (gAFm · σgS − fAFm · σ∗ f̃S)
(
t0t1 + t2

1 m · σ
)

+ (
t0t1 + t2

1 m · σ
)
(gSm · σgAF − fSm · σ∗ f̃AF)

+ iGϕ (m · σgAF − gAFm · σ ), (20a)

I2 = −(gAF fS − fAFg̃S)
(
t2
0 + t0t1m · σ∗)

+ (
t2
0 + t0t1m · σ

)
(gS fAF − fSg̃AF)

− (gAFm · σ fS − fAFm · σ∗g̃S)
(
t0t1 + t2

1 m · σ∗)
+ (

t0t1 + t2
1 m · σ

)
(gSm · σ fAF − fSm · σ∗g̃AF)

+ iGϕ ( fAFm · σ∗ − m · σ fAF), (20b)

and ga = 2Na − 1, fa = 2Naγa are the 2 × 2 normal and
anomalous Green’s functions.

IV. RESULTS

We consider a hybrid structure, formed by a bulk, conven-
tional s-wave superconductor coupled to an antiferromagnetic
helix, as illustrated in Fig. 1. We solve the Usadel equa-
tion (18) in the antiferromagnet using a bulk solution for
the superconductor, given by γBCS = sinh θ/(1 + cosh θ )iσy,
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with θ = �0/ε, and �0 being the bulk gap. We will assume
the Néel vector to be oriented along the binormal direction
and the AF to be uncompensated. In that case, the S-AF
interface is described by the spin-active boundary conditions
of Eq. (19) with interface magnetization parallel to the bi-
normal direction. We choose the elastic impurity scattering
time τimp�0 = 0.01 and the interface parameter t/

√
�0ξS =

2, with ξS superconducting coherence length of the bulk
superconductor.

In the following we will present results for the density of
states and pair correlation in the antiferromagnet. We note
that when presenting the results we will always consider a
fixed length of the antiferromagnetic helix, imposing a one-
to-one correspondence between curvature and torsion. This
relationship is obtained by considering that the total length
of the helix having n number of turns, radius R, and pitch 2πc
is given by LAF = 2πn

√
R2 + c2. With the use of Eqs. (12a)

and (12b) we get R2 + c2 = 1/(κ2 + τ 2), and the length can
be expressed as LAF = 2πn/

√
κ2 + τ 2. For instance, if we

fix the length and curvature of the helix, the torsion is given
by τ =

√
(2πn/LAF)2 − κ2, with κ � 2πn/LAF, giving the

one-to-one correspondence between κ and τ . For the remain-
der of this section, we will consider an AF helix with a single
turn n = 1, length LAF = 2ξS , and impurity scattering time
τimp�0 = 0.01.

A. Weak proximity equations

To understand how curvature affects the AFM, we will first
examine the limit of a weak proximity effect. In this limit
the components of the γ matrix are expected to be small,
i.e., |γi j | � 1, which means we may neglect terms of the
order O(γ 2). Therefore, N ≈ 1, and the anomalous Green’s
function given in the upper right block of Eq. (17) reduces to
f = 2γ . The anomalous Green’s function is then reduced to
singlet and triplet components, where the singlet component
is described by a scalar function f0, and the triplet components
are encapsulated in the so-called d vector,

f = ( f0 + d · σ )iτ2, (21)

where d = (dT , dN , dB), and τ2 = antidiag(−i, i).
Using the Pauli spin components in (14), the anomalous

Green’s function takes the form

f =
(

i cos(α)e−is/LdT + e−is/LdN − i sin(α)e−is/LdB fs + sin(α)dT + cos(α)dB

− fs + sin(α)dT + cos(α)dB i cos(α)eis/LdT − eis/LdN − i sin(α)eis/LdB

)
, (22)

where L = √
R2 + c2 = 1/

√
κ2 + τ 2, with c and R defined in

Fig. 1. Solving Eq. (18) in the weak proximity limit inside
the AFM, where � = 0, and ignoring any intrinsic spin-orbit
coupling, we get four coupled differential equations for the
curvilinear components of the d vector and singlet f0:

iD̃

2

(
∂2

s dT −2κ∂sdN
) =

(
ε+ i

2
D̃κ2

)
dT − i

2
D̃κτdB, (23a)

iD̃

2

(
∂2

s dN +2κ∂sdT − 2τ∂sdB
) =

(
ε+ i

2
D̃(κ2+τ 2)

)
dN ,

(23b)
iD̃

2

(
∂2

s dB+2τ∂sdN
) =

[
ε+ i

2
(D̃τ 2+4ζ )

]
dB − i

2
D̃κτdT ,

(23c)
iD̃

2
∂2

s f0 = (ε + 2iζ ) f0. (23d)

We notice first that there is no conversion from singlets to
triplets due to geometric curvature terms. For a ferromagnet,
such conversion is provided by the exchange field, and the
curvature mixes triplet components [46,47]. Here, singlets
experience instead an additional decay term due to the effec-
tive magnetic impurities, represented by the imaginary energy
contribution of ζ , which produces a decay rate proportional
to J2/μ2. An effective interface magnetization via an un-
compensated interface is therefore needed for singlet-triplet
conversion. The role of curvature and torsion is to cause spin
precession and spin relaxation of the triplet components, and
it is instructive to study their relationship. Spin precession
is identified by the terms multiplying first derivatives of any
triplet component, and is responsible for conversion between

the different triplet components. Spin relaxation is identified
by an additional imaginary component of the triplet energy
and represents a loss of spin information, with the additional
effective impurity term appearing only for the binormal triplet
component.

Using the d-vector formalism of (21), short-range triplet
(SRT) correlations correspond to spins aligning perpendic-
ularly to the Néel vector n (or parallel with the d vector),
i.e., d‖ = d · n/|n|, and long-range triplets (LRT) are paral-
lel to the Néel vector: d⊥ = d × n/|n|. The weak proximity
equations also allow to distinguish between SRTs and LRTs
by analyzing the imaginary contributions to the energy for
each component, describing spin relaxation. Singlets have
a spin-relaxation contribution due to the effective magnetic
impurities, and binormal triplets have the same contribution
as well as an additional one due to the torsion. Therefore, it is
clear that the dB component decays at a rate even higher than
the singlets and can be identified as the SRT component. On
the other hand, for tangential and normal triplets, the spin-
relaxation contribution, and thus their decay rate along the
helix, depends only on κ and τ , so that they can be identified
as LRTs depending on the value of curvature and torsion.

Analyzing the weak proximity effect equations, in combi-
nation with the triplet generation happening at the spin-active
interface between a superconductor and an uncompensated
antiferromagnet, gives insights on the role of κ and τ in
this process. At the S-AF interface, the uncompensated an-
tiferromagnet generates triplet correlations with spin along
the binormal direction, having a spin-relaxation prefactor
εB

r ∼ τ 2/2 + 2ζ , thus having a higher decay rate compared
to the singlet correlations, whose spin-relaxation prefactor
is ε0

r ∼ 2ζ . Looking at Eqs. (23a) to (23c), we see that for
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κ = 0, τ > 0 there is conversion of the binormal triplets only
into normal triplets via the first derivative terms, causing
precession between the binormal and normal components of
the d vector. Even though the effective magnetic impurities
do not directly cause the normal component to decay, the
decay of dB indirectly leads to decay also of dN , along with
the decay caused by finite torsion. However, if κ �= 0, bi-
normal triplets are converted into both tangential and normal
components, whose spin-relaxation prefactor is εr ∼ κ2/2 and
∼(κ2 + τ 2)/2, respectively. Therefore, κ allows to generate
LRT components and at the same time is responsible for their
decay. Moreover, a finite curvature also leads to precession
between dT and dN , reducing the decay indirectly caused by
the decay of dB. This means that κ needs to be finite but not too
big, in order to have a robust presence of LRT in the system.

B. Pair correlation: Long-ranged triplets from curvature only

It has recently been shown that a spin-active interface
with polarization aligned perpendicular to the Néel vector of
a dirty antiferromagnet can induce long-ranged correlations
[76]. Here, we show that parallel spin polarizations also gen-
erate LRTs, in curved geometries. Such interfaces naturally
arise as uncompensated edges of the antiferromagnet. Hence,
in the system here proposed, geometric curvature acts as a
mediator for LRT conversion, so that no separate interfacial
features are required.

To see this, consider the singlet and induced triplet pair
correlations as a function of the position in the AF, which are
defined as

�s(s) = N0λ

∫ �0 cosh(1/N0λ)

0
dε f0(ε, s) tanh

(
π

2eγ

ε/�0

T/Tc0

)
,

(24a)

�t
μ(s) = N0λ

∫ �0 cosh(1/N0λ)

0
dε dμ(ε, s) tanh

(
π

2eγ

ε/�0

T/Tc0

)
,

(24b)

where �s is the singlet pair correlation and �t
μ is the triplet

pair correlation with spin along μ, for μ = T, N, B. In the
above equations, λ is the coupling constant between electrons,
N0 is the density of states at the Fermi level, γ � 0.577 is the
Euler-Mascheroni constant, and T is the temperature. �0 and
Tc0 are the superconducting gap and critical temperature of the
bulk superconductor, respectively. Considering a conventional
s-wave superconductor, we choose the material parameter
N0λ = 0.2.

We demonstrate the presence of LRT correlations by first
grouping the long-ranged components in a combined pair
correlation order parameter:

�LRT =
√(

�t
T

)2 + (
�t

N

)2
. (25)

In Fig. 2 we plot the LRT pair correlation as a function
of the position in the AF, for J2/μ2 = 0.05, temperature
T = 0.005Tc0, and various κ, τ pairs. As expected from the
argument presented in Sec. IV A, for κ = 0 the LRT pair cor-
relation is zero since there is no SRT-LRT conversion in this
case. When κ �= 0, LRT correlations appear in the AF with a
maximum in the conversion close to the S-AF interface since

FIG. 2. LRT pair correlation as a function of the position in the
antiferromagnetic helix for J2/μ2 = 0.05 and different curvature and
torsion pairs, with interface parameters t/

√
�0ξS = 2, Gϕ/�0ξS = 1,

and temperature T = 0.005Tc0.

the SRTs needed for their conversion decay exponentially
away from the interface. After this maximum, the correlations
decay until they reach a nonzero value at the vacuum interface.
This value is higher in the case κLAF/π ∼ 0.7 with respect to
the other cases; we explore the system dependence on κ and
τ further in the following section. For κ = 0 and τLAF/π = 2
the binormal component dB couples only to the normal com-
ponent dN via a spin-precession term, as seen from Eq. (23),
while the tangential component dT is completely uncoupled
and therefore always zero. Hence, the LRT pair correlation
oscillates due to the spin rotation between dB and dN in this
case. This precession is visible also in the SRT pair correlation
(Fig. 3).

To confirm that singlet and SRT pair correlations decay
completely and that LRT dominate, we plot singlet and SRT
(binormal) pair correlations as a function of the position in
the AF in Fig. 3, taking κLAF/π ≈ 0.7, τLAF/π ≈ 1.9, and
different values of J2/μ2. We note that the singlet pair cor-
relations do not decay completely at the vacuum edge for
J2/μ2 � 0.02, while for J2/μ2 > 0.02 they completely die
off at about halfway inside the AF. The SRT correlations do
not decay as fast as the singlets for J2/μ2 > 0.02. This can
be explained by observing that curvature and torsion cause a
small degree of conversion from LRT back to SRT, slightly
increasing the characteristic decay length for the SRT cor-
relations. However, comparing Figs. 2 and 3, it is clear that
the SRT decay length is significantly smaller than LRT decay
length, confirming LRT dominance.

C. Density of states and curvature as an interface probe

The normalized density of states N (ε) can be expressed in
terms of the Riccati matrices as [82]

N (ε) = 1
2 Tr{N (1 + γ γ̃ )}. (26)
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FIG. 3. Singlet (left) and binormal (right) pair correlation as a
function of the position in the antiferromagnetic helix for κLAF/π ≈
0.7, τLAF/π ≈ 1.9, and different values of J2/μ2, with inter-
face parameters t/

√
�0ξS = 2, Gϕ/�0ξS = 1, and temperature T =

0.005Tc0.

In the weak proximity limit the zero-energy term N (0) can be
written in terms of singlet and triplet components:

N (0) = 1 − | f0|2
2

+ 1

2

∑
i

|di|2, (27)

with i = {T, N, B}. This expression shows that singlets ( f0)
contribute to lowering the density of states from the normal-
state value of one at zero energy, while triplets (di) contribute
to increasing it. Therefore, the appearance of a gap in N (0) is
a signature of a singlet-dominated regime and a zero-energy
peak is a signature of a triplet-dominated regime [82,84].

In Fig. 4, we plot the density of states N (ε) at the vacuum
edge of an antiferromagnetic helix with an uncompensated
interface at the superconducting edge. We choose curvature
κLAF/π ≈ 0.9 and torsion τLAF/π ≈ 1.8, motivated by their
roles in the weak proximity equations, in combination with the
triplet generation taking place at the spin-active, uncompen-
sated interface. As discussed at the end of Sec. IV A, both κ

and τ lead to generation of LRT components, but their effects
differ in that κ and τ lead to the decay of mostly the LRT or
SRT, respectively. Hence, the triplets can dominate over the
singlets for a wide range of κ and τ values, but with varying
relative strength between the LRT and SRT components. This
is clear from Fig. 5, where we explore the importance of
the curvature κ for the zero-energy features at the vacuum
edge of the AF wire, for different values of J2/μ2. Given the
one-to-one correspondence with the torsion τ when keeping
the length fixed, it can be also seen as a function of τ .

The density of states is plotted for different values of the
antiferromagnetic exchange J in Fig. 4. In the inset of the
figure we plot the case of J = 0 corresponding to the nor-
mal metal case, showing that the system presents a minigap
even away from the interface due to the absence of triplet

FIG. 4. Density of states as a function of the energy at
the vacuum edge of the antiferromagnetic helix, for differ-
ent values of J2/μ2 and a fixed curvature and torsion pair
κLAF/π ≈ 0.9, τLAF/π ≈ 1.8 with interface parameters t/

√
�0ξS =

2, Gϕ/�0ξS = 1. The case of J2/μ2 = 0 is plotted in the inset in red.

correlations. In contrast, when J �= 0 we note that the gap
progressively closes when increasing J , and at the same time
a peak in the density of states at zero energy starts appear-
ing. For J2/μ2 = 0.02, we note a fully formed peak, a clear
signal of the presence of triplet correlations in the system
[see Eq. (27)]. When J is further increased the value of the
peak slowly decreases, due to the increased decay of SRT

FIG. 5. Density of states at zero energy, at the vacuum interface
of the antiferromagnetic helix as a function of the curvature κ (a) for
different values of J2/μ2 with Gϕ/�0ξS = 1, and (b) for different
values of Gϕ/�0ξS with J2/μ2 = 0.02. In each case, the interface
parameter is t/

√
�0ξS = 2.
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correlations. Zero-energy peaks of this order are easily de-
tectable in differential conductance measurements [85].

In Fig. 5(a) we note that when J2/μ2 = 0.01, varying the
curvature does not remove the singlet-induced suppression of
the density of states. In contrast, for J2/μ2 = 0.02 increasing
the curvature from 0 produces the appearance of a peak in the
density of states with a maximum reached for κLAF/π � 1.
For higher values of J2/μ2 we note a similar behavior, but
with progressively smaller peaks, until for J2/μ2 � 0.2 and
beyond the density of states tends to that of a normal metal
with unitary value. This is due to the decay of the SRT
(and singlet) correlations caused by the antiferromagnetic ex-
change through the effective magnetic impurities. When the
antiferromagnetic exchange is too high the SRT correlations
decay in a very short distance, not long enough for them to
feel the effects of geometric curvature and be converted into
LRT correlations.

The density of states can now be used to probe the quality
of a weakly uncompensated interface. We suggest that the end
of the antiferromagnetic wire is the most accessible position
for a differential conductance measurement, but the signal
strength is greater closer to the superconducting edge. When
measuring the density of states, the presence of a minigap
would be a signature of a compensated interface, or infinites-
imal antiferromagnetic exchange ordering, while a dip or a
peak at zero energy would correspond to an uncompensated
interface. A higher peak signals greater triplet conversion, and
corresponds to a higher quality of the uncompensated inter-
face. When the exchange interaction is very high, the normal
metal behavior dominates and we get no triplet survival at the
end of the wire.

The results in Fig. 5(a) indicate optimal curvatures for
detecting zero-bias peaks in the density of states for differ-
ent values of the exchange interaction, which gives a useful
measure of the efficiency with which the interface converts
singlets to triplets. However, this does not directly probe the
phase Gϕ accumulated at the interface due to the uncompen-
sated spins. In Fig. 5(b), we show that, although the strength
of Gϕ also affects the magnitude of the zero-energy enhance-
ment, the geometric profile remains qualitatively the same.
That is, the curvature-controlled maximal peak occurs for the
same parameter range, indicating that the same κ , τ values
will be optimal for probing the degree of compensation at the
interface, regardless of the phase picked up due to the mag-
netization. In experiments, Gϕ is generally treated as a fitting
parameter, and we can see from Fig. 5(b) that it can greatly
enhance the detectable signal. However, since an uncompen-
sated edge is a spin-polarized monolayer at the interface, it
is to be expected that its value is rather small. Suggestions,
such as the one presented here, for how to probe proximity-
coupled uncompensated edges are therefore important in
establishing the feasibility of using such edges in spintronic
devices.

V. DISCUSSION

We have developed a quasiclassical theory for diffu-
sive transport in antiferromagnetic helices, using curvilinear
coordinates, and studied proximity effects when this is cou-
pled to a conventional superconductor. For a conventional

superconductor coupled to a straight antiferromagnet, it has
been theorized that a misaligned spin-active interface can
induce long-ranged triplet superconducting correlations in the
antiferromagnet [76]. In that case, there would need to be
an intrinsic inhomogeneity, such as a domain wall, at the
interface, or an additional layer between the AF and super-
conductor with a magnetic misalignment to the AF, which can
both be problematic, just as in the case for superconductor-
ferromagnet systems. In contrast, we find that when the
interface is uncompensated, geometric curvature alone can
induce long-ranged triplet superconducting correlations in the
antiferromagnet, with a decay length tunable by the curvature-
torsion relationship, thereby eliminating the need for any
additional materials or intrinsic structures.

In general, curvilinear magnetism offers a large, nonrel-
ativistic origin of effective spin-orbit coupling, which can be
designed and altered within a single sample, and has consider-
able potential to be harnessed in superconducting spintronics.
Real-space misalignment can be controlled using a range of
new tools not yet explored in this context. In this paper, we
considered a homogeneous AF ground state, and it would be
interesting to explore the periodic alternative [59].

To the best of our knowledge there are not yet experi-
mental proposals for curvilinear antiferromagnets, although
the prospect has been highlighted as a promising one for
future development in curvilinear magnetism reviews (see,
e.g., [62]). Curvilinear AFM spin-chain helices have been
studied in Ref. [59], with the suggestion that copper-based and
metal-organic materials may be suitable for testing predictions
in that limit. In Ref. [86], the value of J is estimated to be
|J| = 0.8 cm−1 for copper-based materials, while Ref. [87]
estimates |J| to be in the range (0.39–15.11) cm−1 for anti-
ferromagnetic materials in the DNA metal-organic category.
In our work, only the ratio J/μ enters the calculations, with
neither J nor μ being set explicitly. The calculations should
therefore be valid for antiferromagnetic metals with ratios
between the antiferromagnetic coupling and chemical poten-
tial comparable to what is used here, provided that J and μ

are both sufficiently larger than all other energy scales in the
system (cf. [76]).

The finite magnetization of an uncompensated antiferro-
magnetic interface converts singlets to nonpolarized triplet
pairs, and these are rotated into spin-polarized pairs in the
antiferromagnet in a process combining spin precession and
diffusion as determined by the relationship between the cur-
vature κ and the torsion τ . For a broad range of parameters,
there can be considerable triplet conversion, which in turn
governs the behavior of the density of states. We show that the
density of states changes from a dip to a peak as a function of
the antiferromagnetic exchange interaction, and we therefore
propose that a differential conductance measurement at the
end of the antiferromagnetic wire can be used to quantify the
quality of the uncompensated interface, which is otherwise
difficult to characterize in multilayer heterostructures. We pro-
vide analysis of the relationship between the curvature-
torsion parameters for different antiferromagnetic exchange
strengths. For implementing this probe, static helices can be
manufactured near the maximal peak, or the curvature varia-
tions can be probed in situ by the application of strain. The
strength of signal achievable in experiments will ultimately
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determine the feasibility of the use of uncompensated inter-
faces in superconducting spintronics.
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