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The McMillan-Ginzburg-Landau (MGL) model for charge density waves (CDW) is employed in a systematic
phenomenological study of the different phases that have been probed in recent experiments involving transition
metal dichalcogenides. We implemented an efficient imaginary time evolution method to solve the MGL
equations, which enabled us to investigate the role of different coupling parameters on the CDW patterns and to
perform calculations with different energy functionals that lead to several experimentally observed singularities
in the CDW phase profiles. In particular, by choosing the appropriate energy functionals, we were able to obtain
phases that go beyond the well-known periodic phase slips (discommensurations), exhibiting also topological
defects (i.e., vortex-antivortex pairs), domain walls where the CDW order parameter is suppressed, and even
CDW with broken rotational symmetry. Finally, we briefly discuss the effect of these different CDW phases on
the profile and critical temperature of the competing superconducting state.
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I. INTRODUCTION

The competition between different collective phases and
their interplay are of pertinent interest in solid-state physics.
For example, the iron-based materials can exhibit high-
temperature superconductivity in competition with other
collective phenomena, such as nematic order [1–3], an-
tiferromagnetism [4], and charge/spin density waves [5].
In recent studies, atomically thin transition-metal dichalco-
genides (TMDs) have shown emergent superconductivity
when doped [6,7], exhibiting a dome of superconducting (SC)
phase in the low-temperature region of the temperature ver-
sus doping phase diagram. It has been suggested that the
fluctuations of their charge density wave (CDW) order, pos-
sibly in the form of discommensurations (DC), are closely
related to effectively enhancing the superconducting critical
temperature [8–11]. It is therefore of fundamental importance
to develop theoretical models that allow one to capture and
understand the interplay between the SC and CDW order
parameters and provide predictive power about the phase dia-
gram of these materials.

Using a technique based on scanning tunneling microscopy
(STM), Pasztor et al. [12] were able to retrieve images with
high spatial resolution of the CDW phase in VSe2 and NbSe2.
This technique enables one to separately obtain amplitude and
phase maps of the different order parameters that compose
the CDW profile. Their analysis provides evidence that the
charge density wave of these TMDs consists of three indi-
vidual charge modulation order parameters. Moreover, phase
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images revealed not only discommensurations in the nearly
commensurate state, which have been predicted by McMillan
theory [10], but also topological defects and domain walls.

Recently, a McMillan-Ginzburg-Landau model (MGL) [9]
was used to describe the pathway from incommensurate to
commensurate CDW phases in the phase diagram of TMDs,
where the discommensurations in the near-commensurate
phase were observed. A coupling between the CDW and SC
phases was then suggested in the form of a modulation of
the quadratic term on the SC order parameter, within the
Ginzburg-Landau energy functional, that is proportional to the
gradient of the CDW order parameter. With this approach,
the SC dome in the near-commensurate region of the phase
diagram of the TMD could be phenomenologically modelled,
as the SC phase emerges in regions with high variation of the
CDW order parameters, such as in the discommensurations.
Similar ways of coupling the SC, CDW and spin density wave
(SDW) phases have also been proposed in previous theoretical
works [13,14]. However, prediction and control of the profile
of the SC dome in the phase diagram of different TMD-based
systems requires a deeper analysis of the role of different
parameters in the MGL model, as well as on the effect of the
experimentally observed phase domain walls and topological
defects in the CDW spatial configuration.

In this paper, we analyze the effect of different parameters
in the MGL functional on the phase distribution, discommen-
surations, singularities, and critical temperatures of CDW and
SC phases in transition metal dichalcogenides. We employ an
imaginary time evolution method [15] to obtain the lowest
energy solution for the MGL equations in an efficient manner.
We demonstrate that a proper choice of phenomenological
parameters in the MGL energy functional allows one to ob-
tain not only the well-known CDW discommensuration, but
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also topological defects, such as vortex-antivortex pairs, phase
domain walls where the CDW order parameter is locally sup-
pressed, and even the unidirectional CDW profiles in systems
where C6v symmetry is expected otherwise. Finally, we also
use the CDW profile as an input for a calculation of the
critical temperature of a competing SC order parameter, which
emerges in regions where CDW is suppressed. Our results
help to unravel the mechanism behind the formation of the
SC dome in the temperature versus doping phase diagram of
these systems, thus allowing us to propose situations where
the width and maximum critical temperature of such a dome
can be enhanced.

The paper is organized as follows. Section II details the
theoretical formalism and our numerical approach to solving
the McMillan-Ginzburg-Landau equations. The results are
presented in Sec. III, where different subsections are devoted
to the discussion of different CDW features of interest, and
finally the superconducting phase as well. Section IV summa-
rizes our conclusions.

II. THEORETICAL FRAMEWORK

A. Energy functionals

The transition between commensurate and incommensu-
rate states was phenomenologically described in the seminal
work of McMillan [10] in terms of a free-energy functional
with complex order parameters, much like the GL theory for
superconductivity. Within this framework, we use an exten-
sion of the McMillan functional to account for the symmetries
of transition metal dichalcogenides, such as TaSe2, VSe2,
and NbSe2, where such CDW phases were recently observed
[12,16–18]. We start from the density modulation of commen-
surate CDW [9],

ρ(r) =
∑

j

eir·QC
j ψ j + c.c., (1)

where ψ j is the order parameter associated with the commen-
surate wave-vector in the j-th direction QC

j , given as integer,
or half-integer, multiples of the primitive reciprocal vectors
G j of the material. In the case of the transition metal dichalco-
genides investigated here, there are three of such primitive
reciprocal vectors ( j = 1, 2, or 3), rotated 120◦ with respect
to each other.

The complex order parameters can be rewritten in terms
of their amplitude φ j (r) and phase θ j (r) as ψ j (r) =
φ j (r) exp[iθ j (r)], where the phase parameter quantifies the
deviations in comparison to the commensurate wave-vector.
For instance, the incommensurate CDW phase in the jth
direction is characterized by θ j (r) = qI

j · r, where the in-
commensurability vector qI

j ≡ δ jQC
j leads to an effective

wave-vector QC
j (1 + δ j ) in Eq. (1) so that the δ j parameter

quantifies the deviation from the otherwise commensurate
lattice in that direction.

The MGL energy functional for TMDs carries the contribu-
tion of the three order parameters ψ j that generate the CDW,
the energy of the superconducting phase, characterized by the
order parameter �, along with a coupling term between su-
perconductivity and the CDW, characterized by the coupling

parameter γ [1,4,13,14], i.e.,

f = f0 + f1 + fs + γ
∑

j

|ψ j |2|�|2, (2)

where the McMillan functional fM = f0 + f1 is composed of
[10,19]

f0 =
∑

j

[
ατ |ψ j |2 + G|ψ j |4 + B

∣∣(i∇ + qI
j

)
ψ j

∣∣2]
, (3)

with the effective temperature parameter τ = T/Tcdw − 1, and

f1 = − E

2

∑
j

(
ψ2

j + ψ∗
j

2) − 3D

2
(ψ1ψ2ψ3 + c.c.)

+ K

2

∑
i, j>i

|ψiψ j |2 − M

2

∑
j,k �=l �= j

(ψ jψ
∗
k ψ∗

l + c.c.). (4)

While the Ginzburg-Landau-like energy functional f0 ac-
counts simply for a phase transition from normal to CDW
phases at T = Tcdw, the f1 functional accounts for the cou-
plings between different order parameters, as well as for the
energy dependence on the total charge density, via the lock-in
energy E , [10] which is characteristic of McMillan theory of
CDW.

In such a phenomenological energy functional, different
coupling terms between order parameters and their gradients
are possible. However, the resulting CDW built with the ψ j

order parameters as in Eq. (1) must obey certain material-
dependent symmetry properties, which eventually reflects on
the choice of coupling terms. To the lowest order in ψ j ,
the C3v , mirror, and inversion symmetries of the CDW in
transition metal dichalcogenides allow for the coupling terms
presented in f1. For detailed information on these coupling
terms and phenomenological coefficients in Eq. (4), we refer
to the Supplemental Material of Ref. [9].

The superconductor energy density fs is given by

fs = αs|�|2 + β

2
|�|4 + 1

4m

∣∣∣∣ h̄

i
∇�

∣∣∣∣
2

, (5)

where the phenomenological coefficients are the same as in
the usual GL theory of superconductivity. The biquadratic
term we use for coupling CDW profiles and SC, i.e.,
γ

∑
j |ψ j |2|�|2 in Eq. (2), is discussed in detail in Ref. [13].

From f0, it becomes clear that the B term favors the in-
commensurate solution, by yielding lower energy as θ j (r)
approaches qI

j · r. However, the E > 0 term in f1 favors the

commensurate solution: since (ψ2
j + ψ∗

j
2) = 2φ2

j cos(2θ j ),
the energy is minimized as the phase approaches θ j ≡ nπ , for
integer n.

Better physical insight is obtained by using an effective
mass term m∗ to rewrite B = h̄2/2m∗. Three Euler-Lagrange
equations, one for each j direction, are derived from the min-
imization of the McMillan functional:[

ατ + G|ψ j |2 + K

2
(|ψl |2 + |ψk|2) + γ |�|2

]
ψ j

−Eψ∗
j − h̄2

2m∗
(
i∇ + qI

j

)2
ψ j + 3D

2
(ψ∗

l ψ∗
k )

−M

2
(ψlψk + 2R[ψlψk]) = 0, (6)
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where l �= k �= j and l �= j. We define a characteristic length
ξ =

√
h̄2/2m∗α and rescale energies by α. Equation (6) thus

becomes[
τ + G

α
|ψ j |2 + K

2α
(|ψl |2 + |ψk|2) + γ

α
|�|2

]
ψ j

−E

α
ψ∗

j − ξ 2
(
i∇ + qI

j

)2
ψ j + 3D

2α
(ψ∗

l ψ∗
k )

− M

2α
(ψlψk + 2R[ψlψk]) = 0. (7)

For the superconducting order parameter, the Euler-Lagrange
equation that minimizes fs is simply the GL equation, coupled
to the CDW parameter by γ [13]:

(αs + β|�|2)� − 1

4m

(
h̄

i
∇

)2

� + γ�
∑

j

|ψ j |2 = 0. (8)

B. Time evolution technique

The set of coupled Eqs. (7) and (8) is solved by evolv-
ing a set of arbitrary initial wavefunctions ψ j (x, y, t = 0)
and �(x, y, t = 0) in time until convergence is reached,
a technique that has been successfully employed, e.g., in
the mathematically similar case of Gross-Pitaevskii equa-
tions (GPe) in the context of Bose-Einstein condensation
[20–23].

The time evolution of McMillan-Ginzburg-Landau equa-
tions reads[

τ + G

α
|ψ j |2 + K

2α
(|ψl |2 + |ψk|2) + γ

α
|�|2

]
ψ j

−E

α
ψ∗

j − ξ 2(i∇ + qI
j

)2
ψ j + 3D

2α
(ψ∗

l ψ∗
k )

− M

2α
(ψlψk + 2R[ψlψk]) = �M

∂ψ j

∂t
;

(αs + β|�|2)� − 1

4m

(
h̄

i
∇

)2

� + γ�
∑

j

|ψ j |2 = �GL
∂�

∂t
,

(9)

where �M(GL) are damping parameters. The ψ j and � func-
tions that solve Eqs. (7) and (8) are the stationary solutions
of Eq. (9). The case of GPe differs only by the fact that the
time derivative is multiplied by i = √−1, so that the evolution
that leads to stationary functions in GPe must be performed in
imaginary time it , while in the case of MGL equations, this is
done in real time.

We rewrite Eq. (9) as

F̂Mψ j = [T̂M + V̂M (|ψ j |2)]ψ j = �M
∂ψ j

∂t
,

F̂GL� = [T̂GL + V̂GL(|�|2)]� = �GL
∂�

∂t
, (10)

by defining the operators

V̂M (|ψ j |2) =
[
τ + Ḡ|ψ j |2 + K̄

2
(|ψl |2 + |ψk|2) + γ̄ |�|2

]

− Ē
ψ∗

j

ψ j
+ 3D̄

2ψ j
(ψ∗

l ψ∗
k )

− M̄

2ψ j
(ψlψk + 2R[ψlψk]),

T̂M = − (
i∇ + qI

j

)2
, T̂GL = − 1

4m

(
h̄

i
∇

)2

,

V̂GL(|�|2) = (αs + β|�|2) + γ
∑

j

|ψ j |2, (11)

where model parameters Ē , Ḡ, K̄, D̄, γ̄ , and M̄ are all rewrit-
ten in units of α, while lengths are in units of ξ .

To perform the time evolution, we employ a solution of the
form

ψ j (r, t + �t ) = e−�M
∫ t+�t

t F̂M (t )dtψ j (r, t ),

�(r, t + �t ) = e−�GL
∫ t+�t

t F̂GL(t )dt�(r, t ) (12)

and use the numerical time evolution method known as split-
operator technique [15], which consists in splitting the time
evolution operator as [24,25]

e−�M(GL)
∫ t+�t

t F̂M(GL)(t )dt

≈ e− i
2h̄ V̂M(GL)�t e− i

2h̄ T̂M(GL)�t e− i
2h̄ V̂M(GL)�t + O(�t3), (13)

where the O(�t3) error accounts for the noncommutativity
between the V̂M(GL) and T̂M(GL) operators. Notice that the
V̂M(GL) terms in Eq. (11) depend on ψ j (�) itself, thus being
intrinsically time-dependent, which would require a time inte-
gral in the V̂M(GL)-dependent terms in Eq. (13). We circumvent
this problem by approximating V̂M(GL) to be effectively con-
stant within the time interval [t, t + �t], assuming �t/�M(GL)

small enough to produce a converged energy result with � 1%
error. As the initial set of order parameters ψ j (x, y, t = 0)
and �(x, y, t = 0) evolve in time, they eventually converge
to the order parameter profiles that minimize the McMillan-
Ginzburg-Landay energy functional.

Some of the cases we will discuss further require a vector
field qI

j (x, y) as the incommensurability wave-vector, rather
than a constant wave-vector. This may create problems for
the practical application of the exponential of the T̂ term in
Eq. (13), which now includes both derivative operators and
functions in the argument of the exponential. This problem is
overcome by the use of the gauge-invariant finite difference
method proposed in Ref. [26].

III. RESULTS AND DISCUSSION

For the results discussed in this section, we take the choice
of parameters G = K = 2α, M = α, and D = −α, the same
as in Ref. [9], unless otherwise stated. This allows us to
compare our results to previous literature while enabling us
to subsequently change the parameters independently and
observe how they affect the results. As we will discuss in
what follows, the choice M = −D calibrate the relative phases
between order parameters such that they produce a CDW
with a network of discommensurations that is similar to
that experimentally observed for CDW in transition metal
dichalcogenides [27]. The choice G = K is also reasonable, as
both parameters are linked to energy terms that are quadratic
on ψ j . Nevertheless, we verify that numerical results do not
qualitatively depend on this choice. Moreover, while we will
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investigate the effect of the CDW profile on the SC phase, we
will neglect the influence of the SC order parameter back on
the CDW profile. This is a reasonable approximation, since
the CDW is already well settled in place when the critical
temperature for the superconducting phase is reached. This
fact is supported by the phase diagram of several materials,
e.g., cuprates and iron-pnictides [18,28–31].

A. Physical insights from a phase-only approximation

In terms of the amplitude and phase of each order parame-
ter, the McMillan energy functional is rewritten as

Fcdw =
∑

j=1,2,3

{
τφ2

j + Gφ4
j + ξ 2

[(
qI

j − ∇θ j
)2

φ2
j + (∇φ j )

2
]

− Eφ2
j cos(2θ j )

} − φ1φ2φ3

×
⎡
⎣3D cos(�) + M

∑
j=1,2,3

cos(� j )

⎤
⎦ + K

2

∑
i �= j

φ2
i φ

2
j ,

(14)

where � = θ1 + θ2 + θ3 and � j = θ j − θ j+1 − θ j+2.
From this functional, it becomes immediately clear that, in

a phase-only model, i.e., for constant φ j , in the absence of
any coupling term and for E = 0, the solution that minimizes
the energy has ∇θ j = qI

j . This suggests that as E → 0, the
solution must approach the incommensurate case, for which
θ j = qI

j · r and, consequently, the phase simply adds a qI
j

correction to the CDW wave vector QC
j . Moreover, this form

of the functional also clarifies the role of the M and D in
locking relative phases θ j such that the combination of cosine
terms on � and � j minimize the energy. Choosing M = −D,
for instance, leads to a network of discommensurations in
the form of a Kagome lattice, such as the one observed for
1T-TaS2, [27] but other networks can be obtained with differ-
ent choices of M and D.

The Euler-Lagrange equation for θ j that minimize Fcdw

reads

φ j∇2θ j + 2∇φ j∇θ j − 2qI
j · ∇φ j − E

ξ 2
φ j sin(2θ j )

− 3D

2ξ 2
φ j+1φ j+2 sin(�) − M

2ξ 2
φ j+1φ j+2

× [sin(� j ) − sin(� j+1) − sin(� j+2)] = 0. (15)

In this equation, one can verify that the incommensurate phase
θ j = qI

j · r is still a solution of this equation for E = 0 even
at a nonconstant φ j and nonzero coupling D, since the term
involving the latter is zero, as � = (qI

1 + qI
2 + qI

3) · r = 0
in this case. However, a nonzero coupling constant M does
not guarantee the incommensurate solution as the lowest en-
ergy state in the system. Therefore, increasing the coupling
constant M may harness the ability to control the transitions
between commensurate, discommensurate and incommensu-
rate phases of the CDW only through the parameter E . This
strong coupling case will be discussed in more detail in the
next Section.

Furthermore, in the phase-only model in the absence of
couplings and for nonzero E , Eq. (15) reduces to

∇2θ j − E

ξ 2
sin(2θ j ) = 0, (16)

which is easily identified as the sine-Gordon equation, whose
solution takes the form of a soliton. This suggests that in-
creasing E leads to soliton-like solutions for the phase, which
would perfectly mimic the experimentally observed discom-
mensurations in CDW. Since the stationary soliton solution
has the general form θ j (x j ) ∝ tan−1{exp[

√
E (x j − x j0)/ξ ]},

where x j is the coordinate along the jth direction and x j0 is
an offset for the soliton position, the sharpness of the soli-
ton steps is controllable by either E or ξ , which are related
to the total charge density and the deviation parameter δ j ,
respectively.

The analysis of these limits in our model suggests that in
the absence of couplings: (i) E → 0 leads to the incommensu-
rate solution, (ii) moderate values of E lead to a combination
between an incommensurate phase and soliton-like phase-
slips, which can be seen as discommensurations, and (iii)
E → ∞ leads to an infinitely long soliton-like step, which
is eventually interpreted as the commensurate phase. It is now
important to check how the presence of couplings between the
different CDW order parameters changes this scenario, which
will be done further on in this paper.

The prediction that ∇θ j must converge to qI
j to minimize

the energy can be used as a convenient way to modify the
MGL model as to produce different defects in CDW, beyond
the aforementioned discommensurations. For instance, con-
sider a domain wall perpendicular to a given direction G j , at
x j = 0, separating regions where the phase is constant [12,32].
The associated phase θ j can be mathematically described as a
kink function θ j = hi tanh(x j/ai ), where ai and hi control the
width of the interface region and the phase difference across
the interface, respectively. Such a phase distribution is readily
obtained from the imaginary time evolution by defining an
effective incommensurability vector field

qI
j (x j ) = hi

ai
sech2

(
x j

ai

)
x̂ j, (17)

such that ∇θ j = qI
j (x) yields the expected kink profile for

θ j . As another example of the application of this concept, a
vortex-antivortex pair in the CDW along the x axis in θ j is
obtained by an incommensurability vector field [33,34]

qI
j (x, y) =

(−y

r2
v

+ y

r2
av

)
x̂ +

(
x − dvav

2

r2
v

− x + dvav

2

r2
av

)
ŷ, (18)

where rv =
√

(x − dvav/2)2 + y2, rav =√
(x + dvav/2)2 + y2, and dvav is the vortex-antivortex

separation. The profiles of the order parameters obtained
from the MGL theory with constant qI

j , as well as with vector
fields defined by Eqs. (17) and (18), are discussed in what
follows.

B. Discommensurations revisited

Let us first discuss the case of constant qI
j = δ jQC

j , which
leads to discommensurations. For the sake of simplicity, in
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FIG. 1. (a) Phase of the j = 1 order parameter along the x1

direction, assuming different values of lock-in energy E/α = 0, 15,
30, 45, and 60. (b) Length of the discommensuration steps (black
line, left axis), along with the discommensuration steepness (red
line-symbols, right axis), as a function of the lock-in energy E . The
lock-in energy axis is reversed to help the visualization, since the
actual experimentally controllable parameter is the overall charge
density, which is inversely proportional to E .

this Section, we consider the same value δ j in all three di-
rections ( j = 1 − 3). Figure 1(a) shows the phase distribution
along the reciprocal lattice vector direction j = 1, for several
values of the energy parameter E , considering δ j = 0.1. To
facilitate the comparison to experiments, lengths are given in
units of the lattice parameter aL = 2π/G1, which can also be
retrieved from the characteristic length ξ in previous Sec. II A
by aL = 2πδ1ξ . Results and conclusions for the other di-
rections j = 2 and 3 are the same as for 1 and, therefore,
are omitted. For E = 0, the phase is simply θ1(x1) = qI

1x1,
namely, the system is in a perfectly incommensurate phase,
i.e., the effective wave-vector of the CDW in this direction
is QC

1 (1 + δ1) = 1.1QC
1 . As E increases, the soliton-like steps

predicted in the previous section are observed, thus creating
regions where the system is locally commensurate, sepa-
rated by phase slips, i.e., discommensurations. Eventually,
for higher E , the soliton steps are so long that the phase is
virtually constant and, therefore, the effective wave-vector
of the CDW is simply QC

1 , thus yielding the commensurate
phase. By taking the derivative of θ1 and computing the height
and distance between the resulting peaks, one can estimate
the discommensuration steepness and the length of the steps
produced by them, respectively. The former (latter) is shown
as a red line-squares (black line) in Fig. 1(b) as a function of
the lock-in energy E . Since the discommensuration length of
the steps can be effectively measured by current experimental
techniques, see, e.g., Ref. [12], the results provided here allow
one to estimate some of the parameters needed for a proper
theoretical description of an actual CDW phase in a given
TMD. Increasing the lock-in energy (i.e., decreasing the over-
all charge density), the discommensuration step length rapidly
increases, eventually leading to the commensurate phase.

As mentioned in the previous section, the coupling param-
eter M is expected to be the most detrimental one for the
emergence of discommensurations in the CDW phase profile.
The effect of this coupling on the discommensurations, i.e.,
the dependence of the discommensuration step length and
height on M, is shown in Fig. 2. As M increases, the step
lengths become shorter, which results in shorter distances

FIG. 2. The same as described in the caption of Fig. 1, but for
fixed E = 50α, and varied values of the third-order coupling energy
M/α = 0, 20, 40, 60, 80, and 100.

between the discommensurations, see Fig. 2(a). An approx-
imate 30% decrease in the step length is observed as M
increases from zero to 100α. The steepness, however, is not
significantly affected by this parameter, since the oscillations
in Fig. 2(b), with amplitude less than 3% of the average value,
are in the same order of magnitude as the numerical error in
our calculations.

The long and steep steps in the phase profiles observed
in Fig. 1 become significantly smaller as one increases the
incommensurability factor δ j . This is illustrated in Fig. 3,
where we consider δ j = 0.15. In this case, increasing E within
the same range as in Fig. 1, the step length is still two orders
of magnitude shorter than that observed in the δ j = 0.1 case,
while the steepness is ≈30% smaller.

Increasing the lock-in energy E effectively increases the
critical temperature of the CDW, as inferred by Eq. (15),
where one sees that the temperature parameter τ = T/Tcdw −
1, which multiplies φ2

j , is effectively changed to T/Tcdw −
1 − E cos(2θ j ). As E increases and the phase converges to
θ j = 0 as the lowest energy (commensurate) solution, higher
temperatures are required to induce the normal-to-CDW phase
transition. However, how fast θ j converges to zero depends on
the different system parameters: higher discommensuration
factors δ j , for example, lead to a delayed convergence of θ j

to zero at significantly higher E . Therefore, the control of
the CDW critical temperature is expected to depend, e.g., on
δ j , which is confirmed by our numerical results in Fig. 4,
which shows the effective critical temperature as a function
of the lock-in energy E for different values of δ j . The delayed

FIG. 3. Same as described in the caption of Fig. 1, but for δ j =
0.15. Notice that, in this case, a higher value of the lock-in energy is
needed to achieve the soliton solution.
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FIG. 4. Effective critical temperature as a function of the lock-in
energy E for different values of the discommensuration parameter δ j ,
taken the same for all three reciprocal vector directions j = 1 − 3.

convergence of cos(2θ j ) to 1 for higher δ j eventually hinders
the contribution of E to the effective critical temperature, thus
making the control of the CDW critical temperature via E less
efficient.

C. Phase domain walls and topological defects

Figures 5(a) and 5(b) show color maps of CDW profiles,
calculated with Eq. (1), in the presence of a phase domain
wall. Such domain walls are obtained by defining the incom-
mensurability vector fields qI

1(x, y) and qI
2(x, y) as in Eq. (17),

FIG. 5. (a), (b) Color maps of the CDW profile in the presence
of a phase domain wall in the order parameters ψ1 and ψ2, obtained
by defining their incommensurability vector fields as in Eq. (17).
The amplitude of the order parameter ψ1 along the x direction
(solid curve) is superposed on the color map, for comparison. The
amplitude of the order parameter ψ2 is the same in this case. Two
types of domain walls are obtained from the calculations: (a) one
with a 2π -phase slip and (b) the other with a π -phase slip. The
corresponding phase distributions of the CDW order parameter ψ1

in each of these cases are shown in panels (c) and (d), respectively.

FIG. 6. (a) Amplitude and (b) phase of the CDW order parameter
ψ1, obtained by defining the incommensurability vector field as in
Eq. (18).

which leads to the formation of identical domain walls in
the order parameters ψ1 and ψ2, as observed in Ref. [12].
Indeed, the phase slips observed due to these domain walls in
Figs. 5(c) and 5(d) lead to a CDW profile that qualitatively re-
sembles those experimentally observed, e.g., in Refs. [12,32].
The amplitude (squared modulus) of the ψ1 order parameter
is shown as a solid line in Figs. 5(a) and 5(b) and exhibits
a strong suppression at the interface. The |ψ2|2 profile is the
same, and is therefore not shown.

Results in Figs. 5 and 6 were obtained considering E =
40α, but we have verified that changing the value of E from 0
to 100 α does not affect these profiles. Either in the presence
of a domain wall or the vortex-antivortex pair topological
defect, it is clear that along the line where the phase of the
CDW order parameter changes abruptly, its amplitude locally
drops to low values, thus enabling the emergence of a SC
phase, as we will discuss later.

Starting the imaginary time evolution with random ini-
tial functions ψ j , the 2π -phase slip domain wall shown in
Figs. 5(a) and 5(c) is readily obtained. However, experiments
in Ref. [12] actually reveal a π -phase slip, such as the one
shown in Figs. 5(b) and 5(d), which is obtained by our model
as a solution with slightly larger energy as compared to the
2π -phase slip case. It is thus regarded as a metastable state of
the McMillan energy functional presented here, obtained with
an appropriate choice of initial function that already exhibits
such a phase-slip and is then properly converged through the
imaginary time evolution procedure. From Fig. 5(b), one also
observes that the amplitude of the order parameter with a
π -phase slip is different on two sides of the domain wall,
which leads to different amplitudes of the CDW on each
side as well. A full sweep of the parametric space within the
McMillan model presented here, to produce a phase diagram
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and eventually search for a situation where π -phase slips are
energetically favored is outside the scope of the present work
and is left as a future perspective of this study.

Figure 6 illustrates the phase and amplitude obtained from
our calculations defining the incommensurability vector field
qI

1(x, y) as in Eq. (18), which yields the formation of a
vortex-antivortex pair, assuming a separation dvav = 60 ξ . As
expected, the CDW amplitude strongly drops in the cores of
the vortex and the antivortex, with a line of suppressed CDW
amplitude connecting them, in qualitative agreement with the
experimental observations in Ref. [12].

D. CDW with broken rotational symmetry

Recent experiments on NbSe2 have also observed a CDW
phase consisting of a wave with a single direction, for example
QC

3 > 0, while the effective wave vector is zero for the remain-
ing directions, which constitutes the so called unidirectional
charge density wave phase (1q-CDW) [12]. In the model pro-
posed here, a qualitatively similar phase can be achieved by
considering an anisotropic form for the incommensurability
vectors qI

j = δ jQC
j , such that two of the discommensuration

parameters are equal to 1, e.g., δ1 = δ2 = 1, while δ3 may
assume a small value, which we will set to δ3 = 0.1 here
as an example. We have verified that a numerical solution
of Eq. (7) with this set of values for δ j is unstable if the
terms that couple different order parameters in the first order,
namely those proportional to D and M, are nonzero. However,
such one-directional phase is in fact experimentally observed,
suggesting a way to possibly rule out some coupling terms
that, although allowed by symmetry [9], may be negligible in
some physical situations. Therefore, results in this section are
discussed assuming D = M = 0.

Figure 7 shows the CDW profile with this set of parame-
ters, which indeed leads to unidirectional CDW along the QC

3
direction. In the case of zero lock-in energy E = 0, no defect
is observed in the CDW periodicity; see Fig. 7(a). A perfectly
periodic, although incommensurate, CDW profile is obtained
in this case. However, as the lock-in energy is increased to
E = 40α, our model predicts the occurrence of phase slips in
the CDW profile, due to discommensurations; see Fig. 7(b).
Such discommensurations in the 1q-CDW predicted here for
intermediate values of E are yet to be experimentally verified.
For the E = 100α case in Fig. 7(c), we obtain a commensurate
unidirectional CDW with no defects. Figure 7(d) shows the
profile of a cross section of the CDW along the direction
perpendicular to the wave fronts, for the E = 0 (black solid
line) and E = 100α (red dashed line) cases, to emphasize the
difference between the results shown in Figs. 7(a) and 7(c).
One verifies that the former, which is incommensurate, has
a wavelength 10% smaller than the latter, due to our choice
of the discommensuration parameter δ3 = 0.1. It is easy to
infer that unidirectional CDW in the j = 1, 2 directions can
be similarly obtained simply by making δ j �= 0 and δn = 1 for
n �= j.

Notice that the minima in the 1q-CDW profile ρ(r) shown
in Fig. 7 for E = 0 and E = 100α do not result from a mod-
ulation of the amplitude of the order parameter, but rather
from the oscillations originating from the exponential terms
in Eq. (1). Therefore, the minima in these 1q-CDW cases are

FIG. 7. CDW distribution ρ(r) assuming an anisotropic set of
incommensurability vectors, such that qI

3 = 0.1QC
3 , qI

2 = QC
2 , and

qI
1 = QC

1 , for D = M = 0, thus leading to an unidirectional charge
density oscillation. Three values of lock-in energy are considered:
(a) E = 0α, (b) E = 40α, and (c) E = 100α. (d) Cross section of
the CDW profiles for E = 0α (black solid line) and E = 100α (red
dashed line) along the y-direction at x = 0, emphasizing the 10%
smaller wavelength in the former, as a result of the δ3 = 0.1 discom-
mensuration parameter.

not expected to affect the SC phase, which couples to the order
parameters ψ j , rather than to the total CDW density profile ρ

in the MGL model. Conversely, the amplitude modulation re-
sulting from the discommensurations in Fig. 7(b) for E = 40α

is expected to lead to significant effects on SC.

E. Effects on the emergent superconducting phase

Finally, we discuss qualitatively the effect on superconduc-
tivity of the CDW defects discussed in the previous sections.
As previously mentioned, our model simulates a supercon-
ducting order parameter � competing with the CDW order
parameters ψ j , which are coupled via the parameter γ in
Eq. (2). The superconducting phase is expected to emerge
in the regions of space where the CDW order parameters
are suppressed, due to competition that is closely related to
the hidden order parameter model discussed in Refs. [13,14].
In fact, the equivalence between the bi-quadratic coupling
considered in Eq. (2) and the coupling proposed in Ref. [9]
can be seen by collecting all terms that multiply |ψ j |2 in
the former into an effective α∗

s = αs + ∑
j γ |ψ j |2. Assuming

the usual temperature dependence in GL theory [35], namely,
αs(T ) = α0(T/TSC − 1), where TSC is the reference value of
the superconducting critical temperature and α0 defines the
SC coherence length at T = 0K, the γ coupling effectively
reduces the critical temperature of the superconducting phase
locally wherever the amplitude of the CDW order parameter
|ψ j |2 is high. From here onward, temperatures are rescaled
to TSC for clarity, i.e., in the absence of CDW, the SC phase
transition would occur at T/TSC = 1, and distributed |ψ j |2
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FIG. 8. Color map of the superconducting (Cooper-pair) density below the SC critical temperature TSC, in the system where the CDW
order parameter ψ1 exhibits discommensurations along the x direction, for lock-in energies E equal (a) 40α, (b) 50α, (c) 60α, and (d) 70α,
assuming a coupling parameter γ = 4. The profile of the CDW is superposed in each panel as a solid curve and referred to the right axis of
panel (d). The maximum value in each color map is different, to facilitate visualization: 0.2|φ0|2 (a), 0.8|φ0|2 (b), 1|φ0|2 (c), and 0.5|φ0|2 (d),
where |φ0|2 is the SC density in absence of any CDW.

will accordingly suppress superconductivity and consequently
reduce the effective SC critical temperature.

In what follows, for the sake of simplicity, we will discuss
the rise of the superconducting order parameter in the intersti-
tial spaces of a 1D-CDW found in the previous section. This
approximation allows us to conveniently qualitatively predict
the behavior of the superconducting critical temperature dome
in terms of the parameters of the CDW. A generalization of
this discussion to the case of a combination of three CDW
order parameters is then straightforward. The GL equation for
the SC order parameter resulting from this approximation
reads [13]

− 1

ξ 2
r

d2�

dx2
+

[
T

TSC
−

(
1 − γ

ξ 2
r

|ψ1|2
)

+ |�|2
]
� = 0, (19)

where we assume a ratio of coherence lengths of CDW and
SC order parameters as ξr = ξ/ξSC = 0.7, as an illustrative
example.

The amplitude of the CDW order parameter exhibits dips
at the discommensurations, whose depth is given by the steep-
ness of the discommensuration. Within the model employed
here, the effective superconducting critical temperature in-
creases as the dips in the CDW are deeper and closer to
each other [13]. Therefore, Fig. 1 allows us to predict that,
for low values of E , the discommensurations become steeper
as E increases, thus increasing the superconducting critical
temperature. However, for intermediate E , the discommensu-
rations separate further from each other, decreasing the critical
temperature again, until the commensurate phase is reached,
where discommensurations are no longer seen. This qualita-
tively explains the emergence of a superconducting dome in
the temperature versus charge density phase diagram. Indeed,
this behavior is verified in the color maps of the calculated SC
order parameter along the x axis as a function of temperature
in Fig. 8. The profile of the CDW order parameter for E equal
40α, 50α, 60α, and 70α are shown as a white solid curve in
Figs. 8(a)–8(d), respectively, for comparison. For E = 60α,
the dips in this order parameter are deep and close, leading
to a nonzero SC order parameter almost up to T = TSC for
γ = 4, cf. Fig. 8(c). However, superconductivity in the center

of the sample vanishes at lower effective critical temperatures
as E is made either higher or lower than E = 60α. For either
E < 40α or E > 90α, these dips are no longer able to sustain
superconductivity and the effective SC critical temperature
drops to zero.

Figure 9 shows the SC dome delimited by the effective
critical temperatures found as the temperature at which |�|2
drops to zero for each value of E . In the case where the
discommensuration parameter is δ1 = 0.10 and the coupling
between SC and CDW order parameters is strong, the SC
dome reaches values as high as 85% of the nominal SC
critical temperature at E = 40α, for γ = 2.5. Considering a
lower coupling parameter, γ = 2.0, the SC dome becomes
smaller. It is challenging to relate the strength of the SC-CDW
coupling in the phenomenological model proposed here to
an actual material sample, but the behavior of the SC dome
for systems with different discommensuration lengths can be
compared. In this case, our model predicts that for δ1 = 0.12,

FIG. 9. Superconducting dome, delimited by the effective SC
critical temperature as a function of the lock-in energy, assuming
γ = 2.0 (red) and 2.5 (black) for a δ1 = 0.1 discommensuration
parameter, and γ = 2.5 for δ1 = 0.12 (blue).
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FIG. 10. Color map of the SC Cooper-pair density in the region
of suppressed CDW order as the temperature T decreases below
the SC critical temperature TSC. We consider CDW order parameter
ψ1 that is suppressed either due to [(a), (b)] a 2π -phase domain
wall, [(c), (d)] a π -phase domain wall, or (e, f) a vortex-antivortex
defect along the x direction. Two values of the coupling parameter
γ between SC and CDW are considered in each case, as shown by
the labels in each panel. The profile of the amplitude of the CDW
order parameter ψ1 along the x direction is shown in each panel
as a white line, for comparison. The maximum value in each color
map is different, to facilitate visualization: 0.1|φ0|2 (a), 0.9|φ0|2 (b),
1|φ0|2 [(c), (d)], and 0.9|φ0|2 [(e), (f)], where |φ0|2 is the SC density
in absence of any CDW.

where discommensurations are shorter in space and more
weakly affected by the lock-in E (cf. Fig. 3), the SC dome
becomes considerably higher and wider, as shown by the blue
symbols in Fig. 9. Since superconductivity is expected to
emerge only at discommensurations, superconducting regions
would be further apart also in systems with high coupling M,
as suggested by Fig. 2. Consequently, the superconducting
dome is expected to exhibit lower critical temperatures in
systems with high M as well.

Superconductivity is also expected to emerge within the
dips in the CDW order parameter ψ1 due to domain walls
[36] illustrated in Fig. 5, or to the defects illustrated in Fig. 6.
Fig. 10 shows a color map of the SC order parameter profile
in Figs. 10(a)–10(d) domain wall and Figs. 10(e) and 10(f)
vortex-antivortex defects, as a function of temperature T .
As in the case where SC rises within discommensurations,
a higher γ coupling [Figs. 10(b), 10(d), and 10(f)] also en-
hances the effective SC critical temperature here, as compared
to the cases where γ is lower [Figs. 10(a), 10(c), and 10(e)].
However, for both domain wall and vortex-antivortex defects,

changing the lock-in energy E does not significantly affect
either the depth or the width of the minimum in ψ1, as
previously discussed in Sec. III C. Therefore, although these
defects are expected to enable the emergence of superconduc-
tivity in the sample, they are not expected to affect the profile
of the SC dome in the temperature versus charge density (or,
equivalently, lock-in energy E ) phase diagram. Nevertheless,
a significant difference is observed in the dip of the CDW
order parameter in each case investigated here: when plotted
in the same scale, the dip in |ψ1|2 observed for the 2π -phase
domain wall is shallower than the one for the π -phase domain
wall, and they both are one order of magnitude shallower than
the one observed for the vortex-antivortex pair, as one verifies
by comparing the white lines in Fig. 10. As a consequence, the
effective SC critical temperature for γ = 4 in the 2π -phase
domain wall case, i.e., Fig. 10(a), is much lower than the one
in the π -phase domain wall case for the same γ , as seen in
Fig. 10(c). Also, in the vortex-antivortex case, Figs. 10(e) and
10(f) show that one order of magnitude lower γ values lead to
similar enhancement of the effective SC critical temperature
as in the domain wall defect cases, owing to significantly
deeper CDW suppression in that case.

IV. CONCLUSIONS

We have demonstrated how parameters and functional
forms of the McMillan-Ginzburg-Landau energy functional
for transition metal dichalcogenides are linked to the forma-
tion of discommensurations in the CDW phase profiles, the
emergence of topological defects (vortex-antivortex pairs) and
domain walls in the phase, as well as the appearance of an
unidirectional CDW state. We also investigated how modifica-
tions of the phase features associated with each of those states
affect the resulting profile of the CDW order parameters.
With such an analysis, albeit within the phenomenological
model, we revealed the mechanism behind the formation of
these states, which have been observed in recent experiments.
Since CDW order parameter is known to typically compete
with an emergent SC order parameter in these systems, we
have also used our model to elucidate the emergence of the
SC dome in the phase diagram of such materials, and we
demonstrated how the SC critical temperature depends on
the distance and depth of the modulations in the CDW order
parameter. Our model and presented results will therefore
help further design of material systems where the interaction
of competing collective phenomena is practically tailored at
will.
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