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Calculated spin fluctuational pairing interaction in HgBa2CuO4 using LDA+FLEX method

Griffin Heier and Sergey Y. Savrasov
Department of Physics, University of California, Davis, California 95616, USA

(Received 17 November 2023; revised 29 January 2024; accepted 27 February 2024; published 11 March 2024)

A combination of density functional theory in its local density approximation (LDA) with k- and ω-dependent
self-energy found from fluctuational–exchange-type random-phase approximation (FLEX–RPA) is utilized here
to study superconducting pairing interaction in a prototype cuprate superconductor HgBa2CuO4. Although the
FLEX–RPA methodology has been widely applied in the past to unconventional superconductors, previous
studies were mostly based on tight–binding-derived minimal Hamiltonians, while the approach presented here
deals directly with the first-principle electronic structure calculation of the studied material where spin and
charge susceptibilities are evaluated for a correlated subset of the electronic Hilbert space as it is done in
popular LDA+U and LDA+dynamical mean-field theory methods. Based on our numerically extracted pairing
interaction among the Fermi-surface electrons we exactly diagonalize a linearized BCS gap equation, whose
highest eigenstate is expectantly found corresponding to dx2−y2 symmetry for a wide range of on-site Coulomb
repulsions U and dopings that we treat using virtual crystal approximation. Calculated normal-state self-energies
show a weak k and strong frequency dependence with particularly large electronic mass enhancement in the
vicinity of a spin-density wave instability. Although the results presented here do not bring any surprisingly
new physics to this very old problem, our approach is an attempt to establish the numerical procedure to
evaluate material specific coupling constant λ for high-Tc superconductors without reliance on tight–binding
approximations of their electronic structures.

DOI: 10.1103/PhysRevB.109.094506

I. INTRODUCTION

Shortly before the discovery of high–temperature super-
conductivity in cuprates in 1986 [1], two seminal works [2,3]
were published in an attempt to understand properties of
heavy fermion superconductors by the pairing of their Fermi-
surface electrons mediated by strong (anti)ferromagnetic
spin fluctuations, which can lead to symmetries of the su-
perconducting state of angular momenta higher than zero.
Although such random–phase–approximation-based (RPA-
based) calculations were deemed oversimplified, the diver-
gency of spin susceptibility in the vicinity of the magnetic,
spin–density–wave-type (SDW-type) instability due to the
Fermi-surface nesting is a common feature of many un-
conventional superconductors which this method naturally
incorporates. The approach took off right after doped
La2CuO4 was shown to superconduct at 33 K [4] and has
been applied since then to study unconventional supercon-
ductivity phenomenon [5] in a great variety of materials,
such as cuprates [6–9], ruthenates [10,11], cobaltates [12],
ironates [13–16], heavy fermion [11,17] systems, and, most
recently, nickelates [18,19].

To date, most of these applications, however, utilize simple
few–orbital models where the hopping integrals are ex-
tracted from density-functional-based calculations using such
popular approximations as the local density approximation
(LDA) [20], and these parameters are subsequently treated
as input to Hubbard-type model Hamiltonians. The latter
is then solved by an available many-body technique, such
as, for example, as the fluctuational exchange approximation
(FLEX) [21]. FLEX is a diagrammatic approach that includes

particle–hole ladders and bubbles as well as particle–particle
ladder diagrams while the RPA neglects the latter contribu-
tion. However, it was found to be sufficiently small [22] at
least for the problem of paramagnons [23,24] where the most
divergent terms are given by the particle–hole ladders.

Many past studies of strongly correlated systems have
been performed using the RPA and FLEX [25] including the
proposals to combine it with density functional electronic
structure calculations [26]. The more recently developed
combination of LDA with dynamical mean-field theory
(LDA+DMFT) [27] sometimes utilizes the local FLEX ap-
proximation to solve the corresponding impurity problem
during the self-consistent solution of the DMFT equations. A
further combination of FLEX and DMFT was also proposed
recently and has resulted in reproducing a doping dependence
of critical temperature seen in cuprates [28]. More rigorous
quantum Monte Carlo-based simulations provide further ex-
tensions to this approach [29,30].

We have recently described an implementation of the
LDA+FLEX(RPA) [31] approach using the method of pro-
jectors, which allows us to evaluate dynamical susceptibilities
of the electrons in a Hilbert space restricted by correlated
orbitals only. This is very similar to how it is done in such pop-
ular electronic structure techniques as LDA+U [32,33] and
LDA+DMFT [27]. The projector formalism tremendously
simplifies the numerics and allows us to incorporate k- and
ω-dependent self-energies of correlated electrons straight into
the LDA electronic structure calculation. Our applications to
V and Pd [31] have, in particular, showed that the d electron
self-energies in these materials are remarkably k independent,
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which justifies the use of local self-energy approximations
such as DMFT.

Here, we extend the projector based LDA+FLEX ap-
proach to evaluate superconducting pairing interactions de-
scribing the scattering of the Cooper pairs at the Fermi surface
in a realistic material framework. We utilize density functional
calculation of the electronic energy bands and wave functions
for HgBa2CuO4, a prototype single-layer cuprate whose su-
perconducting Tc was reported to be 94 K [34]. Based on our
numerically evaluated pairing function we exactly diagonalize
a linearized BCS gap equation on a three-dimensional k grid
of points in the Brillouin zone (BZ). The extracted highest (in
value) eigenstate from this procedure is unsurprisingly found
to correspond to dx2−y2 symmetry for a wide range of on-site
Coulomb repulsions U and dopings that we scan during our
simulations. The corresponding maximum eigenvalue λmax

represents a coupling constant similar to the parameter λe-p

of the electron-phonon (e-p) theory of superconductivity. Our
primary goal here is to establish a numerical procedure for
the material specific evaluation of this coupling constant that
can hopefully be helpful in future findings of the materials
with high Tc. However, we found λmax to be very sensitive
to the values of U used in our calculation once we approach
the region of antiferromagnetic instability. The same is seen in
our calculated normal-state self-energies which were found to
show a weak k and strong frequency dependence with partic-
ularly large electronic mass renormalization m∗/mLDA = 1 +
λsf in the proximity of a SDW. The evaluated renormalized
coupling constant λeff = λmax /(1 + λsf ) is found to be mod-
est and incapable of delivering the high-Tc values unless we
tune U to be close to SDW. Using the available experimental
constraints on the values of λsf � 3, we find λeff � 0.4 and
the BCS Tc � 30 K. Despite that it looks like an underestima-
tion, we think the approach opens up better opportunities to
find material specific dependence of the Tc in unconventional
superconductors without reliance on tight-binding approxima-
tions of their electronic structures.

Our paper is organized as follows: In Sec. II we summarize
the approach to evaluate the pairing interaction using the
LDA+FLEX formalism. In Sec. III we discuss our results of
exact diagonalization of the linearized BCS equation and cor-
respondingly extracted superconducting energy gaps and the
eigenvalues as a function of U and doping. We also present our
results for correlated electronic structure in HgBa2CuO4 in the
normal state, the calculated mass enhancement, the effective
coupling constant λeff, and finally give some estimates for the
Tc. Section V is the conclusion.

II. METHOD

A. Superconducting pairing interaction from LDA+FLEX

Our assumption here is that a general spin-dependent inter-
action is operating between the electrons at the Fermi surface,

Kν1ν2ν3ν4 (r1, r2, r3, r4). (1)

Here for the sake of numerical simplicity we make one impor-
tant approximation to consider this interaction as static and
operating between the electrons only in the close proximity
to the Fermi energy exactly as the BCS theory assumes. The

inclusion of its frequency dependence is of course possible
and has been done previously in many model calculations, but
we postpone such implementation for real materials for the
future.

For the nonrelativistic formulation that is adopted here,
due to full rotational invariance of the spin space, the actual
dependence of this interaction on spin indexes appears to be
the following:

Kν1ν2ν3ν4 = 1
2δν1ν3δν2ν4 Kc − 1

2σν1ν3σν2ν4 Ks,

where the interactions Kc and Ks are due to charge and spin
degrees of freedom, and σ are the Pauli matrices. Trans-
formation to singlet-triplet representation is performed using
the eigenvectors ASSz

ν1ν2 of the product for two spin operators,
which leads us to consider the interactions for the singlet
(S = 0, Sz = 0) and triplet (S = 1, Sz = −1, 0, +1) states
separately,

K (S′S′
zSSz ) =

∑
ν1ν2ν3ν4

A
S′S′

z
ν1ν2 Kν1ν2ν3ν4 ASSz

ν3ν4
= δS′SδS′

zSz K
(S),

where K (S) = 1
2 Kc − 1

2 ESKs, and ES=0 = −3, ES=1 = +1 are
the eigenvalues for the spin product operators.

We next introduce the matrix elements of scattering be-
tween the Cooper pair wave functions �

(ν1ν2 )
k j,SSz

(r1, r2) which
are proper antisymmetric combinations of the electronic wave
functions with their Fermi momenta k and −k in a given
energy band labeled by index j. In the singlet-triplet repre-
sentation these matrix elements are diagonal with respect to
the spin indexes and do not depend on Sz,∑

ν1ν2ν3ν4

〈
�

(ν1ν2 )
k j,SSz

∣∣Kν1ν2ν3ν4
∣∣� (ν3ν4 )

k′ j′,S′S′
z

〉 = δS′SδS′
zSz M

(S)
k jk′ j′ . (2)

Since one-electron wave functions forming the Cooper pairs
should obey the Bloch theorem, the integration in the matrix
elements can be reduced to the integration over a single unit
cell, which leads us to consider the pairing interaction in terms
of its lattice Fourier transforms with various combinations of
±k and ±k′ of the type

K (S)
k,k′ (r1, r2, r3, r4) =

∑
R1R2R3R4

e−ik(R1−R2 )eik′(R3−R4 )

× K (S)(r1−R1, r2−R2, r3

− R3, r4 − R4).

Due to translational periodicity one lattice sum should be
omitted.

The Cooper pair wave functions can be constructed from
corresponding single-electron states that are easily accessible
in any density functional based electronic structure calcu-
lation. However, the formidable theoretical problem is to
evaluate the pairing interaction K (S). Our first approximation
to this function is to assume that it operates for correlated
subset of electrons which are introduced with help of site-
dependent projector operators: φa(r) = φl (r)ilYlm(r̂) of the
one–electron Schrödinger equation taken with a spherically
symmetric part of the full potential [35]. The Hilbert space
{a} inside the designated correlated site restricts the full
orbital set by a subset of correlated orbitals, such as those
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corresponding to l = 2 for Cu. We therefore write

K (S)
k,k′ (r1, r2, r3, r4)

=
∑

a1a2a3a4

φa1 (r1)φa2 (r2)K (S)
a1a2a3a4

(k, k′)φ∗
a3

(r3)φ∗
a4

(r4).

Our second approximation is to adopt the LDA+FLEX(RPA)
procedure for evaluating the matrix K (S)

a1a2a3a4
(k, k′) (static for

this particular problem, but ω dependent in general). Namely,
we represent it in terms of screening the on-site Coulomb
interaction matrix Ia1a2a3a4 (we drop all indexes hereafter as
this becomes just the matrix manipulation),

K̂ = Î + Î
[
χ̂ − 1

2 π̂
]
Î.

Here the interacting susceptibility χ̂ = π̂[1̂ − Îπ̂ ]−1, π̂ is the
noninteracting polarizability, and the subtraction of 1

2 π̂ takes
care of the single bubble diagram that appears twice in both
bubble and ladder series. Recall that the matrix Î is local in
space since it describes the on-site Coulomb repulsion U . Due
to this notion of locality, the screened matrix K (S)

a1a2a3a4
(k, k′)

becomes dependent only on k ± k′.
The procedure to calculate the matrix K̂ using density-

functional-based electronic structure for real materials was
described in details in our previous publication [31]. Here we
would only like to point out that it is still a computationally
demanding problem since the matrices need to be computed
for dense set of wave vectors and their frequency dependence
is also generally required. The restriction by the correlated
subset tremendously simplifies all matrix manipulations with
the ladder diagrams that rely on the four-point functions
scaling with the number of atoms in the unit cell as N4

atom.
This is contrary to the bubble diagrams, which rely on the
two-point functions scaling as N2

atom and are in the heart of
popular methods such as GW [36]. However, the use of the
on-site interaction in ladder diagrams allows one to express all
quantities via charge and spin susceptibilities, which are the
two-point functions and allow us to regain the N2

atom scaling.
It is still computationally involved because the number of
matrix elements for representing the susceptibility grows as
N2

atomN4
orb, where Norb is the size of the complete orbital man-

ifold per atom needed. For HgBa2CuO4, Natom = 8, Norb = 9
for Hg, Ba, Cu (lmax � 2) and Norb = 4 for O (lmax � 1), this
requires at least 42×94 + 42×44 = 109 072 matrix elements
to be computed for each wave vector and frequency! Often,
to improve the accuracy, the number of orbitals per angular
harmonic needs to be doubled or tripled, which blows up
the matrices by another one to two orders due to N4 scaling.
The restriction by the correlated subset greatly facilitates the
calculation, because now the matrices have to be computed
for the correlated sites and orbitals only, and for the problem
at hand, five orbital states representing Cu d electrons produce
only 12×54 = 625 matrix elements.

B. Spin fluctuational coupling constant

The matrix elements M (S)
k jk′ j′ which scatter the Cooper

pairs enter the Eliashberg gap equation for superconduct-
ing Tc. Numerous solutions of this equation have been
implemented in the past for the single- and multiorbital
Hubbard models to address the question of unconventional

superconductivity in cuprates and other systems [6,8,9,11,13].
These implementations involve both the FLEX and the more
sophisticated dynamical cluster approximation (DCA) [29,30]
for the pairing interaction; they work on the imaginary Mat-
subara frequency axis and do not determine the coupling
constant directly but go straight to Tc. The self-consistency
is important because it allows us to account for many effects
known from the theory of superconductivity. In particular,
the mass of the quasiparticles is known to renormalize due
to the attractive pairing interaction operating at some small
energy scale, set, e.g., by a spin fluctuational energy ωsf. Also,
the Coulomb repulsion that operates at much larger energy
scale, such as plasmon energy ωp, weakens the coupling of
the Cooper pairs somewhat.

Establishing numerical procedure for estimating the cou-
pling constant for unconventional superconductors is central
for understanding material specific trends of their critical tem-
peratures. This was earlier the case for electron-phonon (e-p)
superconductors [37], where, in most cases, the solution of
the gap equation is given by the momentum-independent gap
function in the singlet pairing channel, which corresponds to
λe-p. Luckily, phonons have a well-defined cutoff frequency,
which is the phonon Debye energy ωD, and the equation for
Tc is often treated in the BCS approximation, i.e., when the
pairing between the electrons resides only in a small energy
window ±ωD around the Fermi energy εF , and where the
matrix elements M (S)

k jk′ j′ are assumed to be constant, and zero
outside those energies. The quasiparticle mass enhancement,
m∗/m = 1 + λe-p, which leads to a kink in the single-particle
spectrum at the scale ωD and the effects of the Coulomb
interaction that weaken the coupling constant λe-p by the pa-
rameter μ∗ (usually very small, ≈0.1, due to different energy
scales ωD vs ωp [38]) are taken into account by utilizing the
renormalized coupling constant λeff = (λe-p − μ∗)/(1 + λe-p)
that determines the Tc. With a few empirically adjusted coeffi-
cients this gave rise to the famous McMillan Tc equation [39].
One, in principle, does not need this simplified point of view
and can proceed with the Eliashberg equation, but in a semi-
quantitative way, the McMillan theory is known to work very
well.

In the following we adopt the BCS approximation by as-
suming that the pairing occurs in a small region around the
Fermi surface restricted by some spin fluctuational frequency
ωsf. Although for a generally screened electron–electron in-
teraction there is no formal justification to separate such small
energy scale, it is known that spin fluctuations have a charac-
teristic energy ωsf similar to phonons, and that experimentally,
in cuprates they have been seen in the range of energies 30–
50 meV as peaks in imaginary spin susceptibility accessible
via the numerous neutron-scattering experiments [40]. There
is a famous 40 meV resonance which is visible in the su-
perconducting state [41]. There are numerous angle-resolved
photoemission experiments (ARPES) that show kinks in the
one–electron spectra at the same energy range [42]. These
kinks are sometimes interpreted as caused by the electron–
phonon interactions [43], but, unfortunately, the calculated
values of λe-p are known to be small in the cuprates [44,45].
Note also that, for the undoped antiferromagnetic cuprates,
the spin-wave spectra reside in the energy range of
30 meV [46].
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Thus, we assume that the matrix elements M (S)
k jk′ j′ which

scatter the Cooper pairs enter the linearized BCS equation,

�S(k j) = −1

2

∑
k′ j′∈εF±ωsf

M (S)
k jk′ j′�S

(
k′ j′

)
tanh

(
εk′ j′

2Tc

)/
2εk′ j′ .

(3)

where the summation over k′ j′ goes over the electrons re-
siding in a small region around the Fermi surface restricted
by ωsf. The solutions �S (k j) for S = 0 or 1 describe the
momentum dependence of the superconducting energy gap
and are known to be either even or odd functions of momenta.
Performing the integration over the energy window εF ± ωsf,
we rewrite the equation in the form

− ln

(
1.134ωsf

Tc

) ∑
i′

M (S)(k̂i, k̂i′ )
δAi′

|vi′ |�S
(
k̂i′

) = �S(k̂i ).

Here we introduced some discretization of the Fermi surface
onto small areas δAi with absolute values of the electronic
velocities |vi| whose locations are pointed by the Fermi mo-
menta k̂i. To view this expression as diagonalization in ii′
indexes, we treat �S (k̂i ) as eigenvectors and multiply the
right-hand part by a set of eigenvalues ε(κ ) bearing in mind
that the physical solution for �

(κ )
S (k̂i ) is given when the

highest eigenvalue ε(κ ) becomes unity. We thus obtain the
Hermitian eigenvalue problem

∑
i′

⎡
⎣−

√
δAi

|vi|M (S)(k̂i, k̂i′
)√δAi′

|vi′ | − δii′
ε(κ )

ln
( 1.134ωsf

Tc

)
⎤
⎦

×
√

δAi′

|vi′ |�
(κ )
S

(
k̂i′

) = 0, (4)

where the renormalized eigenvalues λ(κ ) =
ε(κ )/ ln(1.134ωsf/Tc) come out as a result of diagonalization.
The condition ε(κ ) = 1 for some κ = m means that the
highest renormalized eigenvalue λ(m) = max{λ(κ )} ≡ λmax is
the physical one which delivers �

(m)
S (k̂i ) and produces the

famous BCS equation for Tc = 1.134ωsf exp(−1/λmax).
We further modify the coupling constant that enters this

equation to take into account the discussed effects as in
the electron-phonon theory. For the mass enhancement, we
introduce the Fermi surface (FS) average of the electronic
self-energy derivative taken at the Fermi level and define

λsf = −
〈

∂�(k, ω)

∂ω

∣∣∣∣
ω=0

〉
FS

. (5)

For the Coulomb interaction operating at large energy scale,
we introduce the effective parameter μ∗

m which should now
refer to the same pairing symmetry m as λmax. We therefore
have the effective coupling constant

λeff = λmax − μ∗
m

1 + λsf
(6)

that should determine Tc.

III. RESULTS

A. Calculated superconducting properties in HgBa2CuO4

Here we discuss the results of our calculated supercon-
ducting properties for HgBa2CuO4 such as the energy-gap
function �S (k j) and the behavior of the maximum eigenvalue
λmax describing the strength of the spin-fluctuational pairing.
We use the full potential linear muffin-tin orbital method [47]
to calculate its LDA energy bands and wave functions. The
results show a rather simple band structure near the Fermi
surface composed primarily of the dx2−y2 states of Cu hy-
bridized with Opx,py orbitals on the square lattice, as is well
known from the pioneering work of Emery [48]. (More details
are given in the next section, and associated Fig. 4.) We
then utilize the LDA+FLEX(RPA) evaluation of the pairing
interaction K (S)

a1a2a3a4
(q) on the 20×20×4 grid of the q points

in the Brillouin zone (198 irreducible points). We use Hubbard
interaction parameter U for the d electrons of Cu as the input
to this simulation, which we vary between 2.5 and 4.5 eV. We
also introduce the doping by holes using the virtual crystal
approximation.

The Fermi surface is triangularized onto small areas δAi

described by about 1600 Fermi-surface momenta ki for which
the matrix elements of scattering between the Cooper pairs,
M (S)(k̂i, k̂i′ ), are evaluated. The linearized BCS gap equa-
tion is then exactly diagonalized and the set of eigenstates
λ(κ ), �

(κ )
S (k̂i ) is obtained for both S = 0 and S = 1 pairings.

The highest eigenvalue λ(m) = λmax represents the physical
solution and the eigenvector corresponds to superconducting
energy gap function �

(m)
S (k j).

The result of this simulation is that �
(m)
S=0(k j) shows a

much celebrated d-wave behavior of x2 − y2 symmetry (the
lobes pointing along the kx and ky directions) This happens
for dopings δ � 0.3 that we used in the simulation. A typical
behavior of this function is shown in Fig. 1(a) for U = 4 eV
and δ = 0, where the blue (red) corresponds to negative (pos-
itive) values of �. The zeros of the gap function are along
(11) direction which are colored in gray. This result is not sur-
prising given the strong nesting property of the Fermi surface
around (1/2, 1/2, 0)2π/a point of the Brillouin zone as was
emphasized many times in the past.

We also studied the effect of higher dopings δ = 0.4–0.5.
At those values, the gap function retains the nodal lines along
(11) but develops a rather complex sign-changing behavior
along the lobes by acquiring higher-order harmonics. We il-
lustrate the solution in Fig. 1(b) for δ = 0.4 and U = 3.3 eV.
Such oscillatory behavior would carry an additional kinetic
energy and should be less favorable energetically.

We further analyze the behavior of the highest eigenvalue
λmax as a function of U and doping. The plot of λmax vs
U is shown in Fig. 2 for hole dopings δ = 0.0, 0.1, 0.2. In
particular, one can see pretty big λ once we approach the
spin-density wave instability for U close to 4 eV. Unfortu-
nately, this sensitivity imposes some challenges regarding the
predictions for Tc. It is, however, clear that if one adopts a
constant U for all dopings, this plot will be incompatible with
the well-known dome-like behavior of Tc vs doping. Rather,
one needs to assume that, for the undoped case, U is largest to
trigger the antiferromagnetic instability but then it gradually
decreases with doping.
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FIG. 1. Calculated superconducting energy gap �(k) for singlet
pairing in HgBa2CuO4 using numerical solution of the linearized
BCS gap equation with the pairing interaction evaluated using the
LDA+FLEX(RPA) approach described in the text. Blue (red) corre-
sponds to the negative/positive) values of �(k). Panel (a) is obtained
for U = 4 eV, doping δ = 0 and shows typical dx2−y2 behavior that is
also seen for dopings δ � 0.3. Panel (b) corresponds to U = 3.3 eV,
δ = 0.4 and shows more oscillating behavior, highlighting the pres-
ence of higher-order harmonics.

It is interesting to mention several works that do indeed see
that U decreases with doping. A recent work [49] reported
computation of doping-dependent U using the constrained
RPA (cRPA) procedure. Their reported values of U ≈ 4 eV
for HgBa2CuO4 are very close to those needed to produce
large λmax, as seen in Fig. 2, together with the trend that U
decreases with doping a little bit. Another recent cRPA study
reported this value to be 3 eV for the same compound [50]
which is again within the range of what we use in our simu-
lation. Unfortunately, the spread in these values also indicates
that we cannot rely on the present state-of-the-art calculations
of U .

In a different work employing DCA [51], an effective
temperature-dependent coupling Ū (T ) was introduced to
parametrize the DCA pairing interaction in terms of the spin

FIG. 2. Calculated dependence of maximum eigenvalue λmax of
the linearized BCS equation as a function of the on-site Hubbard
interaction U for d electrons of Cu and for several hole dopings
δ = 0, 0.1, 0.2 in HgBa2CuO4. Large values of λmax are seen for
the values of U close to the antiferromagnetic instability.

susceptibility. It was extracted between 4 and 8 in the units
of the nearest-neighbor hopping t . The latter is known to be
around 0.5 eV in the cuprates, thus placing Ū (T ) between
2 and 4 eV. Ū (T ) has shown a significant reduction upon
doping.

At the lack of an accurate determination of U , we turn
to more empirical findings whether some other well-known
properties of the cuprates can be reproduced using our im-
plemented LDA+FLEX(RPA) method. Those are related to
the normal-state electronic structure and the extracted quasi-
particle mass enhancement, m∗/m = 1 + λsf. These data are
needed to determine the effective coupling constant, Eq. (6),
and give estimates for the Tc. They will be discussed below.

B. Calculated correlation effects in electronic
structure of HgBa2CuO4

Here we discuss our calculated properties of HgBa2CuO4

in the normal state. The self-energy is computed by utilizing
the procedure described in Ref. [31] with the full frequency-
resolved dynamical interaction matrix K̂ , Eq. (1). This is
done as a “one-shot” calculation using the Green’s functions
obtained from the LDA band structure, without feedback of
the self-energy that will lead to “dressed” Green’s functions.
Due to the existence of a generating functional for the FLEX
approximation [21], the self-consistency with respect to the
Green’s functions can in principle be considered. There is one
complication which makes such implementation not straight-
forward and time consuming: once complex self-energy is
introduced, single-particle excitations are dumped and no
longer represented by the real energy bands εk j . A general for-
mulation via, for example, imaginary Matsubara frequencies,
is needed. The effect of such self-consistency was studied ear-
lier using the GW method [36] with applications to some real
materials [52]. The outcome is that self-consistency worsens
the agreement of the one-electron spectra with experiment.
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Therefore the advantage of the self-consistent implementation
within perturbation theory is not obvious in general.

Nevertheless, this issue may deserve a further investigation
since cuprates are doped Mott insulators in close proximity
to the Mott transition and it is known that, in this regime,
the self-consistency is an important step when using, for ex-
ample, dynamical mean-field theory. Although not currently
implemented by us, one can adopt a simplified version of the
self-consistency with respect to quasiparticles, i.e., when not
the full self-energy but its value at ω = 0 and its frequency
derivative around ω = 0 describing the quasiparticle mass en-
hancement are used to reconstruct new densities and resulting
quasiparticle Green’s functions. It was developed in connec-
tion with the GW approach and was shown to reproduce the
band gaps of semiconductors quite well [53]. A combination
of the LDA and Gutzwiller’s method (called LDA+G) ex-
plores a similar idea [54] where the variational Gutzwiller
method is used to find those self-energy parameters. It was
also implemented in a most recent combination of the GW
and DMFT called QSGW+DMFT [55].

For the calculated Cu d electron self-energy matrix
�a1a2 (k, ω), we found the only significant matrix elements
of this matrix exist for dx2−y2 orbitals. This result is shown
in Fig. 3 where the diagonal matrix elements, Re�(k, ω)
[Fig. 3(a)] and Im�(k, ω) [Fig. 3(b)], of �a1a2 (k, ω) with
a1 = a2 = x2 − y2 are plotted as a function of frequency for
several k points of the Brillouin zone. A representative value
of U = 4 eV and δ = 0 are used but general trends of this
function are similar for the range of U and dopings that we
study here. The Hartree Fock value for Re� has been sub-
tracted.

To illustrate the k dependence, the self-energy is plotted in
Fig. 3 along the �-M line of the Brillouin zone (BZ) and also
for the X point. At the energy scale −6 eV < ω < 2 eV that
we use in Figs. 3(a) and 3(b), we find the k dependence to be
quite small, prompting that the local self-energy approxima-
tion may be adequate. This is not surprising since, within the
RPA, �̂ = ĜK̂ and the range of the self-energy in real space
is set by the interaction K̂ which describes the screening of
the manifestly local U . In k space, all features in K̂ due to
nesting come under the integral over the Brillouin zone (BZ)
and average out.

We subsequently evaluate numerically the local self-energy
�loc(ω) as an integral over all k points. Its frequency depen-
dence is also shown in Fig. 3 by small circles. We see a close
agreement between �loc(ω) and �(k, ω).

Another feature seen in this calculation is the development
of pole-like behavior for the self-energy at frequencies around
2 and 4 eV. Those resonances frequently lead to additional
poles in the one-electron Green’s functions that cannot be
obtained using the single-particle picture. The imaginary part
of the self-energy is quite large, which indicates the existence
of strongly damped excitations. Those are usually hard to
associate with actual energy bands and are detected by ex-
perimental techniques such as angle-resolved photoemission
spectroscopy (ARPES), which works best for the quasiparti-
cles just below the Fermi energy.

Figure 3(c) shows the behavior of Re�(k, ω) on the scale
±0.6 eV with respect to the Fermi level for the two repre-
sentative points M (red line) and X (blue line) of the BZ

FIG. 3. Calculated (a) real part, (b) imaginary part, and (c) real
part at small energy scale of dx2−y2 diagonal matrix element of
the self-energy �(k, ω) using the FLEX–RPA approximation for
d electrons of Cu in HgBa2CuO4. Various black curves show the
self-energy for the wave vector k traversing along the (ξξ0) direction
of the Brillouin zone. Red (blue) curves give the result for the M (X)
points of the BZ. The circles show the result of the local self-energy
approximation taken as the average over all k points. A representative
value of Hubbard U = 4 eV is used and the doping δ is set to zero
in this plot, but similar trends are seen for a whole range of U and
dopings studied in this work.

together with the momentum-integrated self-energy (circles).
A slight variation in the slope of the self-energy at ω = 0
can be noticed as well as some differences in the frequency
behavior. These data are important for further analysis since
the slope at ω = 0 sets the mass-enhancement parameter λsf

for the quasiparticles, as illustrated in Fig. 3(c).
Based on our calculated d electron self-energy �(k, ω),

we evaluate the poles of the single-particle Green’s func-
tion. The obtained ImG(k, ω) for HgBa2CuO4 is plotted in
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FIG. 4. Effect of the FLEX(RPA) self-energy on the calculated
poles of single-particle Green’s functions (shown in black) for un-
doped HgBa2CuO4 as compared with its nonmagnetic LDA band
structure (red lines). The local value at ω = 0 is subtracted from
�(k, ω) during the calculation of ImG(k, ω), and the Hubbard
U = 4 eV is used.

Fig. 4. Most of the poles are seen as sharp resonances (plot-
ted in black) in the function ImG(k, ω) that closely follows
the energy-band structure obtained by the LDA plotted in
red. The notable difference is seen in the behavior of the
hybridized Cudx2−y2 -Opx,py band in the vicinity of the Fermi
surface that acquires a strong damping at energies away from
the Fermi level. This is because our projectors allow the self-
energy corrections for the Cu d electrons only. To generate
the ImG(k, ω) we have subtracted from �(k, ω) its local
value �loc(ω) taken at ω = 0, which preserves the shape of
the Fermi surface as obtained by the LDA. As one sees, the
primary effect of the self-energy is the renormalization of
the electronic bandwidth. The mass enhancement m∗/mLDA =
1 + λsf for the Fermi electrons was found to be fairly k inde-
pendent. The value of λsf was calculated numerically as the
average derivative of the self-energy, Eq. (5), and estimated to
be around 2.7 for δ = 0 and U = 4 eV that we use in Fig. 4.

We further analyze the dependence of λsf on U and doping.
It was found to exhibit the behavior similar to the maximum
eigenvalue λmax shown in Fig. 2. To generate such functional
dependence we implement analytical differentiation of the
self-energy at zero frequency using the spectral representation
for the dynamically screened interaction K (q, ω) proposed
many years ago [56]. Figure 5 shows the calculated behav-
ior of λsf for dopings δ = 0, 0.1, 0.2 and 2.5 eV < U <

4.5 eV. Although RPA does not reproduce the metal-insulator
transition, it signals its proximity via the divergence of the
quasiparticle mass as the system approaches the instability.

We can compare the values of λsf with the experimen-
tally deduced quasiparticle masses that were measured by
ARPES experiments. There is some spread in these data
reported in the literature. Doping and temperature depen-
dence of the mass enhancement has been carefully studied
for Bi2Sr2CaCu2O8+δ [57], which produced 0.5 � λsf � 1.7.
A later work [58] for Bi2Sr2CaCu2O8 and also for

FIG. 5. Calculated dependence of the mass enhancement pa-
rameter λsf = m∗/mLDA − 1 as a function of the on-site Hubbard
interaction U for d electrons of Cu and for several hole dopings
δ = 0, 0.1, 0.2 in HgBa2CuO4. Large values of λsf are seen for the
values of U close to the antiferromagnetic instability.

La2−xBaxCuO4 reported the estimate 1 � λsf � 2. Somewhat
larger values of the self-energy slope, 4–8, taken for sev-
eral Fermi momenta have been seen in ARPES analyses of
Bi1.74Pb0.38Sr1.88CuO6+δ [59]. The value of 2.7 along the
nodal line was quoted for YBa2Cu3O6.6 [60].

Quantum oscillations is another technique that gives the
direct measure of the effective masses. The reported m∗
range from 1.9 to 5 (in units of the free-electron mass)
for various cuprates, including the value of 2.45 ± 0.15 for
HgBa2CuO4+δ [61]. As the LDA band masses are not very
different from the free-electron masses, this indicates that
1 � λsf � 4. Given the spread in these numbers, it is clear that
our calculations for λsf shown in Fig. 5 cover the range of the
experimental data quite well.

C. Effective coupling constant and estimate for Tc

To give estimates for the effective coupling constant, λeff,
Eq. (6), we first notice that, for the case of angular momentum
l = 2 relevant here, the Coulomb pseudopotential μ∗

m that
projects the screened Hubbard interaction on the dx2−y2 cubic
harmonic is expected to be very small [62]. We therefore set
this parameter to zero. The plot of λeff = λmax/(1 + λsf ) vs
U is shown in Fig. 6 for three dopings δ = 0.0, 0.1, 0.2.
One can see that the range of these values is quite modest
as compared with both λmax and λsf, primarily due to the fact
that the rise in the eigenvalue of the gap equation, Fig. 2, is
completely compensated by the renormalization effect of the
electronic self-energy, Fig. 5.

We can judge about the relevant range of λeff and deduce
corresponding values of Tc using the experimentally measured
mass enhancement data. Let us, for example, take the middle
value λsf = 2. From Fig. 5, using the values of U that produce
λsf = 2, we find the corresponding values of λeff in the range
0.17–0.25 in Fig. 6, depending on doping. The BCS Tc ≈
ωsf exp(−1/λeff ) = 1–8 K if one takes ωsf = 40 meV. Once
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FIG. 6. Dependence of the effective spin fluctuational coupling
constant λeff as a function of the on-site Hubbard interaction U
for d electrons of Cu and for several hole dopings δ = 0, 0.1, 0.2
in HgBa2CuO4, calculated as the ratio between the maximum
eigenvalue λmax of the gap equation and the quasiparticle mass en-
hancement 1 + λsf.

we get closer to the SDW instability, the effective coupling
increases to the values 0.4 as seen from Fig. 6. It can go
up even further by tuning U . If we consider λsf = 3, corre-
sponding to the higher values of the mass enhancement seen
experimentally, we find 0.26 � λeff � 0.36 from Fig. 6 and
the BCS Tc ≈ 10–30 K. Given the exponential sensitivity of
the Tc, these estimates are certainly not far from the 100 K
range for which λeff ≈ 0.6–0.7 would be desired.

We can comment on the numerous publications devoted
to the self-consistent solution of the Eliashberg equation on
the imaginary Matsubara axis using RPA-FLEX and single-
orbital tight-binding band structures on the square lattice.
Unfortunately, due to the use of the imaginary frequencies,
in most cases the theory goes straight to Tc, and it is hard
to make direct comparisons to elucidate sources of possi-
ble discrepancies. In the very earlier work [6], the authors
found trends very similar to ours regarding the Tc using a
general t − t ′ tight-binding model: Tc is very small and the
spin fluctuational superconductivity is strongly suppressed in
the vicinity of the SDW due to the renormalization effect
of the electronic self-energy, while the attractive pairing was
found to have a divergent character near the instability. A later
solution of the same model [63] obtained Tc = 0.02t ≈ 100 K,
for U = 4t = 2 eV and δ = 0.15.

Given the last result, it is possible that our underestimation
of λeff and Tc is due to the fact that we utilize the full LDA
energy bands and the wave functions in the RPA–FLEX cal-
culation. We have repeated the procedure for the single-band
tight-binding model εk = −2t (cos kxa + cos kya), and while
seeing similar trends for both λmax and λsf as a function of U ,
the evaluated λeff as the ratio λmax/(1 + λsf ) is a factor of two
larger. We show the result of such a calculation for δ = 0.1
in Fig. 7, close to the instability taking place right above
U/t = 2. Fixing λsf = 2(3), we extract λeff = 0.62(0.78) and
the BCS Tc = 90 K (130 K).

FIG. 7. Dependence of the maximum eigenvalue λmax of the
linearized BCS equation (red line, squares), the mass enhancement
parameter λsf (blue line, circles), and the effective spin fluctuational
coupling constant λeff = λmax/(1 + λsf ) (black line, triangles) as
a function of the on-site Hubbard interaction U for the single-
band Hubbard model with εk = −2t (cos kxa + cos kya) and doping
δ = 0.1 solved using the RPA (FLEX) method.

A possible route for improving our approach would be
to extend the BCS approximation to include full frequency
dependence of the pairing interaction together with its imple-
mentation on the real frequency axis. This should allow the
comparison with the BCS limit in a more controllable manner.

IV. CONCLUSION

In conclusion, we have implemented the electronic struc-
ture calculation of the superconducting pairing interaction
using our recently developed LDA+FLEX(RPA) method that
accounts for the electronic self-energy of the correlated elec-
trons using a summation of the particle-hole bubble and ladder
diagrams. Based on this procedure, the superconducting scat-
tering matrix elements between the Cooper pairs have been
evaluated numerically, which served as the input to numerical
diagonalization of the linearized BCS gap equation, whose
maximum eigenvalue λmax is seen as the superconducting
coupling constant. The goal of this approach was to establish
the numerical procedure to evaluate material specific λ with-
out reliance on tight-binding approximations of the electronic
structure.

A case study of the prototype cuprate superconduc-
tor HgBa2CuO4 was presented where we found a much
celebrated d-wave (x2 − y2 type) symmetry of the supercon-
ducting energy gap as the favorable solution for the whole
range of dopings and on–site Hubbard interactions U that
were used in our simulations. A strong dependence of λmax

as a function of U was seen in the vicinity of antiferro-
magnetic instability. The same was true for the calculated
quasiparticle mass enhancement m∗/mLDA = 1 + λsf in the
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normal state. The effective spin fluctuational coupling con-
stant λeff = λmax/(1 + λsf ) was deduced, but found to be
modest and incapable to deliver high values of Tc unless
U is tuned to be close to SDW. Taking the experimental
constraint for λsf � 3 we have obtained the coupling con-
stant λeff � 0.4 and the BCS Tc � 30 K. Application of
the same procedure to the two-dimensional (2D) Hubbard

model with nearest-neighbor hoppings returns λeff ≈ 0.6–0.8
and Tc ≈ 90–130 K.

At the end, we hope that, upon gaining further insights into
other unconventional superconductors using this approach and
its further improvements will ultimately allow us to reach a
more quantitative understanding of unconventional supercon-
ductivity in cuprates and other systems.
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