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Coexistence of nematic superconductivity and spin density wave in magic-angle
twisted bilayer graphene
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We argue that doped twisted bilayer graphene with magical twist angle can become superconducting. In our
theoretical scenario, the superconductivity coexists with the spin-density-wave–like ordering. Numerical mean-
field analysis demonstrates that the spin-density-wave order, which is much stronger than the superconductivity,
leaves parts of the Fermi surface ungapped. This Fermi surface serves as a host for the superconductivity. Since
the magnetic texture at finite doping breaks the point group of the twisted bilayer graphene, the stabilized super-
conducting order parameter is nematic. We also explore the possibility of a purely Coulomb-based mechanism
of superconductivity in the studied system. The screened Coulomb interaction is calculated within the random
phase approximation. It is shown that near the half-filling the renormalized Coulomb repulsion indeed induces
the superconducting state, with the order parameter possessing two nodes on the Fermi surface. We estimate the
superconducting transition temperature, which turns out to be very low. The implications of our proposal are
discussed.
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I. INTRODUCTION

The discovery of Mott insulating states [1,2] and super-
conductivity [2,3] in magic-angle twisted bilayer graphene
(MAtBLG) has attracted great attention to this material. In
twisted bilayer graphene (tBLG), one graphene layer is ro-
tated with respect to another one by a twist angle θ . The
twisting produces a moiré pattern and superstructure in the
system. The low-energy electronic structure of tBLG is sub-
stantially modified in comparison to single-layer, AA-stacked,
and AB-stacked bilayer graphene [4]. For small θ ∼ 1◦, the
low-energy single-electron spectrum consists of eight (if spin
degree of freedom is accounted for) flat bands separated from
lower and higher dispersive bands by energy gaps [4–6]. The
width of the low-energy bands (which is about several meV)
has a minimum at θ = θc, where θc is the so-called magic
angle θc ∼ 1◦.

The existence of the flat bands makes MAtBLG very
susceptible to interactions. The interactions lead to the ap-
pearance of Mott insulating states when carrier doping per
superlattice cell n is an integer. The authors of Ref. [1] ob-
served the insulating states in transport measurements near
the neutrality point (zero doping) and at doping corresponding
to n = ±2 extra charges per supercell. In similar experiments
in Ref. [2] the authors observed Mott states at doping corre-
sponding to n = 0, n = ±1, n = ±2, and n = ±3. The nature
of the insulating ground states is under discussion [7–19].
Several types of ordering, such as spin density wave (SDW)
states [9–13], ferromagnetic states [19], and other symmetry-
broken phases [15–18], have been proposed to be the ground
state of the system.

Besides Mott insulating states, the authors of Ref. [3]
observed on the doping-temperature (n, T ) plane two super-
conductivity domes located slightly below and slightly above

half-filling, n = −2. In other experiments [2], the supercon-
ductivity domes have been observed close to n = −2, n = 0,
and n = ±1.

The theory of the superconductivity in the MAtBLG has
been developed in many papers, see, e.g., Refs. [9,10,20–
27]. Different mechanisms, including phonon [20,21,26] and
electronic [9,10,22–24], are under discussion. The symmetry
of the superconducting order parameter is debated as well. All
cited works suggest that the superconductivity does not co-
exist with any nonsuperconducting order parameter (with the
exception of Ref. [24], where such a possibility is considered).

In our previous papers [11–14] we studied the nonsuper-
conducting order in MAtBLG, assuming that the SDW is the
ground state of the system. We showed that the SDW is stable
in the doping range −4 < n < 4. This allowed us to explain
the behavior of the conductivity versus doping (of course,
that theory is applicable only outside of the regions where
superconductivity was observed). We showed also that at fi-
nite doping the point symmetry of the SDW state is reduced,
and electronic nematicity emerges [12]. The latter is indeed
confirmed by experiment [28,29].

In the present paper we focus on the superconductivity.
We consider the doping range close to half-filling, n = −2.
We assume here that the superconductivity coexists, but does
not compete, with the SDW phase. This expectation is based
on the observation that the SDW order, with its characteristic
energy of several tens of meV, is much stronger than the
superconductivity, whose transition temperature is as low as
Tc = 1.7 K. Under such circumstances, theoretical justifica-
tion for the coexistence relies on the presence of a Fermi
surface that remains in MAtBLG even when SDW order is
established.

Additionally, we investigate a nonphonon mechanism of
superconductivity for MAtBLG. Our proposal relies on the
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renormalized Coulomb potential, which we calculate using
the random phase approximation (RPA). It will be demon-
strated that the screened Coulomb interaction can indeed
stabilize the superconductivity coexisting with the SDW. The
superconducting order parameter has two nodes on the Fermi
surface, similar to a p-wave order. However, as the SDW
spin texture breaks several symmetries, the common order-
parameter classification into s-wave, p-wave, etc., does not
apply. The estimated critical temperature turns out to be sig-
nificantly smaller than the experimentally observed values.
This discrepancy is discussed from the theory standpoint.
Possible reasons behind it are analyzed.

The paper is organized as follows. The geometry of the
system under study is briefly described in Sec. II. In Sec. III
we formulate our model and describe the structure of the
SDW order parameter. Section IV is devoted to the static
polarization operator and the renormalized Coulomb poten-
tial. In Sec. V we derive the self-consistency equation for the
superconducting order parameter coexisting with the SDW
order. We describe the property of the superconducting order
and obtain an estimate for Tc. Discussion and conclusions are
presented in Sec. VI.

II. GEOMETRY OF TWISTED BILAYER GRAPHENE

In this section we recap several basic facts about the geom-
etry of the tBLG that are important for further consideration
(for more details, see, e.g., review references, Refs. [4,30]).
Each graphene layer in tBLG forms a hexagonal honeycomb
lattice that can be split into two triangular sublattices, A and
B. The coordinates of atoms in layer 1 on sublattices A and
B are

r1A
n = r1

n ≡ na1 + ma2, r1B
n = r1

n + δ, (1)

where n = (n, m) is an integer-valued vector, a1,2 =
a(

√
3,∓1)/2 are the primitive vectors, δ = (a1 + a2)/3 =

a(1/
√

3, 0) is a vector connecting two atoms in the same unit
cell, and a = 2.46 Å is the lattice constant of graphene. Atoms
in layer 2 are located at

r2B
n = r2

n ≡ dez + na′
1 + ma′

2, r2A
n = r2

n − δ′, (2)

where a′
1,2 and δ′ are the vectors a1,2 and δ, rotated by the twist

angle θ . The unit vector along the z axis is ez, the interlayer
distance is d = 3.35 Å. The limiting case θ = 0 corresponds
to the AB stacking.

Twisting produces moiré patterns [4], which can be seen
as alternating dark and bright regions in scanning tunnel-
ing microscopy (STM) images. Measuring the moiré period
L, one can extract the twist angle using the formula L =
a/[2 sin(θ/2)]. Moiré patterns exist for arbitrary twist angles.
If the twist angle satisfies the relationship

cos θ = 3m2
0 + 3m0r + r2/2

3m2
0 + 3m0r + r2

, (3)

where m0 and r are coprime positive integers, it is called com-
mensurate. For commensurate θ ’s a superstructure emerges,
and the sample splits into a periodic lattice of finite supercells.
The majority of theoretical papers assume the twist angle to
be the commensurate one, since only in this case can one
work with Bloch waves and introduce the quasimomentum.

For the commensurate structure described by m0 and r, the
superlattice vectors are

R1 = m0a1 + (m0 + r)a2,
(4)

R2 = −(m0 + r)a1 + (2m0 + r)a2,

if r �= 3n (n is an integer), or

R1 = (m0 + n)a1 + na2, R2 = −na1 + (m0 + 2n)a2, (5)

if r = 3n. The number of graphene unit cells inside a supercell
is Nsc = (3m2

0 + 3m0r + r2)/g per layer. The parameter g in
the latter expression is equal to unity when r �= 3n. Otherwise,
it is g = 3.

The superlattice cell of the structure with m0 and r contains
r2 moiré cells if r �= 3n, or r2/3 moiré cells otherwise. When
r = 1, the superlattice cell coincides with the moiré cell. In
the present paper we consider only such structures. When θ

is small enough, the superlattice cell can be approximately
described as consisting of regions with almost AA, AB, and
BA stackings [4,5].

The reciprocal lattice primitive vectors for layer 1 (layer
2) are denoted by b1,2 (b′

1,2). For layer 1 one has b1,2 =
(2π/

√
3,∓2π )/a, while b′

1,2 are connected to b1,2 by a ro-
tation of an angle θ . Using the notation G1,2 for the primitive
reciprocal vectors of the superlattice, the following identities
in the reciprocal space are valid:

b′
1 = b1 + r(G1 + G2), b′

2 = b2 − rG1, (6)

if r �= 3n, or

b′
1 = b1 + n(G1 + 2G2), b′

2 = b2 − n(2G1 + G2), (7)

if r = 3n.
Each graphene layer in tBLG has a hexagonal Brillouin

zone. The Brillouin zone of layer 2 is rotated in momentum
space with respect to the Brillouin zone of layer 1 by the
twist angle θ . The Brillouin zone of the superlattice (reduced
Brillouin zone, RBZ) is also hexagonal but smaller in size.
It can be obtained by Nsc-times folding of the Brillouin zone
of the layer 1 or 2. Two nonequivalent Dirac points of the
layer 1 can be chosen as K = (0, 4π/(3a)), K′ = −K. The
Dirac points of layer 2 are Kθ = 4π (− sin θ, cos θ )/(3a),
K′

θ = −Kθ . Band folding translates these four Dirac points to
the two Dirac points of the superlattice, K1,2. Thus one can say
that the Dirac points of the superlattice are doubly degenerate.
Points K1 and K2 can be expressed via vectors G1,2 as

K1 = 1
3 (G1 + 2G2), K2 = 1

3 (2G1 + G2). (8)

A typical picture illustrating these three Brillouin zones, the
vectors G1,2, as well as the main symmetrical points, is shown
in Fig. 1.

III. MODEL HAMILTONIAN

We start with the following Hamiltonian of the tBLG:

H =
∑
nmi j
ss′σ

t
(
ris

n ; r js′
m

)
d†

nisσ dm js′σ + U
∑
nis

nnis↑nnis↓

+ 1

2

∑′

nmi j
ss′σσ ′

V
(
ris

n − r js′
m

)
nnisσ nm js′σ ′ . (9)
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FIG. 1. Reciprocal space geometry of tBLG for θ ≈ 21.79◦

(m0 = 1, r = 1). The figure presents Brillouin zones of layers 1 and
2 (large red and blue hexagons), as well as the Brillouin zone of the
superlattice (small thick green hexagon). Reciprocal vectors of the
superlattice (G1 and G2), Dirac points of layer 1 (K and K′) and
layer 2 (Kθ and K′

θ ), as well as high-symmetry points of the reduced
Brillouin zone (�, M, K1,2) are also shown.

In this expression, d†
nisσ (dnisσ ) are the creation (annihilation)

operators of the electron with spin σ (=↑,↓) at the unit cell
n in the layer i (= 1, 2) in the sublattice s (= A, B), while
nnisσ = d†

nisσ dnisσ . The first term in Eq. (9) is the single-

particle tight-binding Hamiltonian, with t (ris
n ; r js′

m ) being the
amplitude of the electron hopping from a site in the posi-
tion r js′

m to the site in the position ris
n . The second term in

Eq. (9) describes the on-site (Hubbard) interaction of elec-
trons with opposite spins, while the last term corresponds to
the intersite Coulomb interaction. [The prime near the last
sum in Eq. (9) means that elements with ris

n = r js′
m should be

excluded.]

A. Single-particle spectrum of MAtBLG

Let us consider first the single-particle properties of the
MAtBLG. If we neglect interactions, the electronic spectrum
of the system is obtained by diagonalization of the first term of
the Hamiltonian (9). The result depends on the parametriza-
tion of the hopping amplitudes t (ris

n ; r js′
m ). In this paper we

keep only nearest-neighbor terms for the intralayer hopping.
The corresponding amplitude is t = −2.57 eV.

As for the interlayer hopping amplitudes, we explored
several parametrization schemes, all of which deliver qualita-
tively similar results. The results presented below correspond
to the parametrization II B, of Ref. [12]. This parametriza-
tion, initially proposed in Ref. [31], takes into account the
environment dependence of the hopping. That is, the electron
hopping amplitude connecting two atoms at positions r and
r′ depends not only on the difference r − r′, but also on
positions of other atoms in the lattice. Extra flexibility of the
formalism becomes useful when the tunneling between r and
r′ is depleted by nearby atoms, which act as obstacles to a
tunneling electron. For the tBLG, the parametrization II B was
used in Refs. [32–34], among other papers. This parametriza-

tion can correctly reproduce the Slonczewski-Weiss-McClure
parametrization scheme in the limiting case of the AB bilayer
graphene (θ = 0).

Once a specific parametrization is chosen, the single-
electron Hamiltonian may be diagonalized and its energy
spectrum may be found. For the parametrization chosen, the
magic-angle superstructure is (m0, r) = (17, 1), which corre-
sponds to the magic angle θc = 1.89◦.

To execute the Hamiltonian diagonalization, one must in-
troduce the quasimomentum representation. To this end, we
define new electronic operators dpGisσ by the following rela-
tion:

dpGisσ = 1√
N

∑
n

exp
[ − i(p + G)ri

n

]
dnisσ , (10)

where N is the number of graphene unit cells in the sample in
one layer, the momentum p lies in the first Brillouin zone of
the superlattice, while G = nG1 + mG2 is the reciprocal vec-
tor of the superlattice confined to the first Brillouin zone of the
ith layer. The number of G’s satisfying the latter requirement
is equal to Nsc for each graphene layer.

In the quasimomentum representation, for a specific quasi-
momentum p, the single-electron Hamiltonian is a bilinear
of the fermionic operators, characterized by a 4Nsc × 4Nsc

matrix (one such matrix per spin projection). Diagonalizing
this matrix numerically, one finds the single-electron spectrum
of tBLG. The low-energy part of the spectrum is shown in
Fig. 2. In this figure we see four flat bands E (S )

0k separated
from lower and higher dispersive bands by the energy gaps
of the order of 30 meV. The width of the flat bands W as a
function of the twist angle θ has a minimum W = 9.4 meV at
the magic angle.

Unlike undoped graphene and the undoped AB bilayer,
which both have Fermi points, tBLG at low θ is a metal
[33], even at no doping. The four flat bands cross the Fermi
level, forming a multicomponent Fermi surface, see Fig. 8 in
Ref. [33]. The shape of the Fermi surface components depend
on the specific model of the interlayer hopping and on the
doping level n.

B. SDW order parameters

The system having flat bands intersecting the Fermi level
is very susceptible to interactions. Interactions spontaneously
break symmetries of the single-particle Hamiltonian, gener-
ating an order parameter. Neglecting first a possibility of the
superconducting state, we assume that this order parameter is
the SDW. This choice is not arbitrary. It was shown in many
papers (see, e.g., Refs. [5,6,33]) that at small twist angles,
electrons on the Fermi level occupy mainly the regions with
almost perfect AA stacking within a supercell. At the same
time it was demonstrated theoretically [35–38] that the ground
state of AA-stacked bilayer graphene is antiferromagnetic.
For this reason we believe that the ground state of MAtBLG
possesses an SDW-like order parameter.

The SDW order parameter is a multicomponent one. First,
it contains on-site terms of the form

�nis = U 〈d†
nis↑dnis↓〉, (11)
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FIG. 2. (a) Energy spectrum of MAtBLG at vanishing interac-
tions. The flat bands appear as a bundle of almost nondispersive
horizontal lines at E (S)

k ≈ 4 × 10−3t . The gaps separating the flat
bands from the dispersive bands are clearly visible. The data in panel
(b) show that the flat bands do have finite dispersion as well. Their
width W can be approximately estimated as W ≈ 9.4 meV.

with the on-site interaction U serving as a proportional-
ity coefficient. For our calculations we assign U = 2t . This
value of U is somewhat smaller than the critical Uc = 2.23t
above which single-layer graphene spontaneously enters a
mean-field antiferromagnetic state [39]. Thus our Hubbard
interaction is rather strong but not strong enough to open a
gap in single-layer graphene.

Next we include an intralayer nearest-neighbor SDW order
parameter, which is defined on links connecting nearest-
neighbor atoms in the same layer. In a graphene layer, each
atom in one sublattice has three nearest neighbors belonging
to the opposite sublattice: an atom on sublattice B (sublattice
A) has three nearest neighbors on sublattice A (sublattice B).
For this reason we consider three types of intralayer nearest-
neighbor order parameters, A(�)

niσ (� = 1, 2, 3), corresponding
to three different links connecting the nearest-neighbor sites.
These order parameters are defined as follows:

A(�)
niσ = Vnn

〈
d†

n+n�iAσ
dniBσ̄

〉
, (12)

where n1 = (0, 0), n2 = (1, 0), n3 = (0, 1), σ̄ = −σ , and
Vnn = V (|δ|) is the in-plane nearest-neighbor Coulomb repul-
sion. We take Vnn/U = 0.59, in agreement with Ref. [40].

Finally, we introduce the interlayer SDW order parameter

Brs
m;nσ = V

(
r1r

m − r2s
n

)〈d†
m1rσ dn2sσ̄ 〉. (13)

For calculations it is assumed that Brs
m;nσ is nonzero only when

sites r1r
m and r2s

n are sufficiently close. Namely, if the hopping
amplitude connecting r1r

m and r2s
n vanishes in our computation

scheme, then the parameter Brs
m;nσ is also zero. Naturally, the

number of nonzero Brs
m;nσ depends on the type of hopping

amplitude parametrization. For the parametrization chosen we
have up to three nonzero Brs

m;nσ for a given n, r, s, and σ .
Assuming that the screening is small at short distances, we
chose the function V (r) in Eq. (13) as V (r) ∝ 1/|r| with
V (d ) = Vnn|δ|/d = 0.25U . All three types of SDW order pa-
rameters are restricted to obey the superlattice periodicity.

Using these order parameters, the full MAtBLG Hamilto-
nian can be approximated by a mean-field Hamiltonian, the
latter being quadratic in fermionic operators. The mean-field
Hamiltonian is uniquely specified by a 8Nsc × 8Nsc matrix.
This matrix diagonalization allows one to determine the
eigenfunctions �

(S)
pGisσ and eigenvalues E (S)

p of the mean-field
Hamiltonian, as well as the mean-field ground-state energy for
a fixed n. The Bogolyubov transformation

dpGisσ =
∑

S

�
(S)
pGisσ ψpS (14)

introduces new Fermi operators ψpS that diagonalize the
mean-field Hamiltonian.

By minimizing the mean-field ground-state energy, one de-
rives the self-consistency equations for �nis, A(�)

niσ , and Brs
m;nσ .

These equations must be solved numerically for different val-
ues of doping n confined to the interval −4 < n < 4. The
details of the numerical procedure can be found in Ref. [12].

C. Symmetry properties of the order parameters

The results of the order-parameter calculations for different
doping levels are presented in Ref. [12], where spatial profiles
of �nis and A(�)

niσ are plotted. Let us briefly describe their
main properties. The order parameters are nonzero within the
doping range −4 < n < 4. The absolute values of the order
parameters decrease to zero when |n| → 4. For any doping,
the absolute values of A(�)

niσ are smaller than �nis, and the
values of Brs

m;nσ are by order of magnitude smaller than A(�)
niσ .

All three types of order parameters have maximum values
inside the AA region of the superlattice cell because electrons
at the Fermi level are located mainly in this region.

The order parameter �nis describes the on-site spins po-
larized in the xy plane. At zero doping, �nis can be chosen
to be real for all n, i, and s, that is, all spins are collinear and
parallel or antiparallel to the x axis. Our simulations show that
�niA = −�niB with a good accuracy. Thus we have an anti-
ferromagnetic ordering of spins. At finite doping, the on-site
spins are no longer collinear, but they remain coplanar. In this
case we observe a kind of helical antiferromagnetic ordering.
Note that in present simulations we do not allow on-site spins
to have the z component. However, more general calculations
performed in Ref. [13] showed that the coplanar spin texture
survives even if we allow for spin non-coplanarity.

As for the on-link order parameter A(�)
niσ , at zero doping

these vectors are collinear, while at finite doping they are
coplanar. Similar to the on-site spins, simulations performed
in Ref. [13] showed that A(�)

niσ remain coplanar (with the ex-
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ception of several on-link spins, see Fig. 3 of Ref. [13]) even
if non-coplanarity is permitted by the minimization algorithm.

An important observation for the present study is that the
doping reduces the symmetry of the order parameters. They
have the hexagonal symmetry at zero doping, which is the
symmetry of the crystal. Specifically, the order parameters
are invariant under rotation on 60◦ around the center of the
AA region. Doping reduces the symmetry from C6 to C2.
For example, near the half-filling, the order parameters are
invariant under rotation on 180◦ around the center of the AA
region. Reduction of the symmetry of the order parameters
affects the symmetry of the mean-field spectrum, indicating
the appearance of an electron nematic state under doping.
At zero doping the mean-field spectrum has the hexagonal
symmetry. At finite doping the symmetry of the spectrum
is reduced; the eigenenergies E (S)

p are invariant under rota-
tion of vector p on 180◦ (but not on 60◦) around the �

point.
The reduced symmetry of the order parameters affects

the symmetry of the local density of states (see Fig. 6 of
Ref. [12]). “Nematic” features of the local density of states
were detected in STM measurements in Refs. [28,29]. In
these experiments, the bright spots in STM images, centered
at the AA regions of the moiré superlattice, were uniaxially
stretched.

IV. POLARIZATION OPERATOR AND SCREENED
COULOMB INTERACTION

In our simulations the SDW order parameter is a short-
range one: it includes on-site and nearest-neighbor terms. At
small distances, that is, at large momenta k ∼ 1/a, the system
behaves as two decoupled graphene layers. In such a limit the
screening does not introduce new qualitative features. Indeed,
the static polarization operator of the graphene layer [41]
equals 	(q) = −q/(4vF), where vF = √

3ta/2 is the Fermi
velocity of the graphene. As a result, the effective Coulomb
interaction can be estimated as

V (q) = 1

εRPA

2πe2

q
, (15)

where the dielectric constant of the bilayer is εRPA = ε +
πe2/vF (ε is the dielectric constant of the media surround-
ing the sample). According to this formula, in the real-space
representation we have V (r) ∝ 1/r, and the interaction slowly
decays with the distance. This is why we used 1/r dependence
to estimate the interlayer interaction in constructing our short-
range order parameter.

Such arguments are not applicable to a superconducting
phase, since the stabilization of the superconducting order
parameter relies on the interaction with small transferred mo-
menta. At large distances and small momenta, Eq. (15) fails
for MAtBLG, and the peculiarities of the system, such as the
moiré structure, the flat-band formation, the SDW order, must
be accounted for. We do this in the RPA approximation using
the wave functions and the eigenenergies corresponding to the
SDW mean-field Hamiltonian.

To find the RPA interaction, the polarization operator has
to be calculated first. It is a matrix function of the transferred

momentum q, defined as [42]

	
is js′
QQ′ (q) = 1

Nsc

∑
SS′

∫
d2p
vRBZ

nF
(
E (S)

p

) − nF
(
E (S′ )

p+q

)
E (S)

p − E (S′ )
p+q

×
(∑

Gσ

�
(S)
pGisσ �

(S′ )∗
p+qG+Qisσ

)

×
(∑

G′σ ′
�

(S)∗
pG′ js′σ ′�

(S′ )
p+qG′+Q′ js′σ ′

)
, (16)

where vRBZ is the Brillouin zone area of the superlattice, and
nF(E ) is the Fermi function. In Eq. (16) the reciprocal super-
lattice vector Q (vector Q′) is confined to the first Brillouin
zone of the layer i (layer j). The momentum integration is
performed over the reduced Brillouin zone.

Within RPA, the renormalized interaction V̂ satisfies the
equation

V̂ = V̂ (0) − V̂ (0)	̂V̂ . (17)

Here the matrix-valued function representing the bare interac-
tion V̂ (0)(q) = V (0)is js′

QQ′ can be written as

V (0)is js′
QQ′ (q) = 1

Nsc

∑
nm

e−i(q+Q)(ris
n −r js′

m )

×V
(
ris

n − r js′
m

)
ei(Q′−Q)r js′

m , (18)

where r js′
m runs over the atoms located inside zeroth superlat-

tice cell, while ris
n runs over all atoms of the sample.

In Eq. (18) we neglect the Hubbard term. In separate sim-
ulations we showed that adding the Hubbard term does not
change the results significantly. This is because at small trans-
ferred momenta (the case, which is of interest for us in the part
concerning the superconductivity) the intersite Coulomb term
dominates. This is not surprising, as the screening ultimately
fails at short distances.

At small q + Q one can obtain an analytical expression for
the matrix V (0)is js′

QQ′ . In the case i = j, the translation symmetry
allows us to convert the summation over ris

n to the summa-
tion over ris

n − ris′
m , and the summation over m gives a factor

NscδQQ′ before the sum in Eq. (18). Further, when q + Q is
small (|q + Q| � a−1), the lattice summation can be replaced
by the space integration. As a result, we establish

V (0)1s1s′
QQ′ (q) = V (0)2s2s′

QQ′ (q) = δQQ′
2πe2

εvc|q + Q| , (19)

where vc = √
3a2/2 is the area of the graphene unit cell. For

i �= j one can find such m that r2s′
m = dez + r1s

n + δss′
nm, where

δss′
nm is small (|δss′

nm| � a). At small |q + Q| we can neglect δss′
nm

and replace the summation by integration. This allows us to
derive

V (0)1s2s′
QQ′ (q) = V (0)2s1s′

QQ′ (q) = δQQ′
2πe2e−|q+Q|d

εvc|q + Q| . (20)

In our simulations we use truncated matrices 	
is js′
QQ′ and

V (0)is js′
QQ′ , with Q and Q′ being restricted to the insides of the

11th coordination sphere (CS). The total number of such Q
is 91.
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FIG. 3. The components of the polarization operator 	11
QQ(q)

(a) and 	12
QQ(q) (b) calculated in the SDW phase at q = qG1/|G1|

for Q = 0 and Q belonging to the first two coordination spheres. The
doping level is n = −1.75.

According to the expressions (19) and (20), the bare inter-
action V (0)is js′

QQ′ at small transferred momentum is independent
of the sublattice indices s, s′. Then one can prove that the
screened interaction is also independent of these indices
V is js′

QQ′ = V i j
QQ′ . The matrix V i j

QQ′ satisfies Eq. (17) with the

sublattice-independent polarization operator 	
i j
QQ′ defined as

	
i j
QQ′ =

∑
ss′

	
is js′
QQ′ . (21)

We calculate the polarization operator numerically for dif-
ferent doping levels. The temperature is chosen as T = 5 ×
10−3WSDW, where WSDW is the width of the eight low-energy
mean-field bands. It is not possible to perform the double
summation in Eq. (16) over all bands at a realistic time. For
this reason we keep only 104 bands closest to the Fermi level
in the summation over S and S′, assuming that the contri-
butions from higher-energy bands are small. The functions
	11

QQ(q) and 	12
QQ(q) are shown in Fig. 3 for Q = 0 and for

Q belonging to the first two CS. These results correspond to
the doping level n = −1.75. The vector q is along the vector
G1. We see that −	

i j
00(q) decreases with q. The values of

−	
i j
QQ(0) decrease with the increase of the absolute values

of Q. Our simulations show that 	
i j
QQ′ (q) is almost diagonal

in Q and Q′ for Q or Q′ belonging to the third and larger CS.
In this case we have 	

i j
QQ′ (q) ∼= δQQ′	

i j
Q(q).

FIG. 4. The dependence of renormalized Coulomb interaction
V 11

QQ(q) (a) and V 12
QQ(q) (b) calculated in the SDW phase at q =

qG1/|G1| for Q = 0 and for Q belonging to the first two coordination
spheres. The doping level is n = −1.75 and ε = 1.

Figure 4 shows the dependence of the renormalized
Coulomb interaction V 11

QQ(q) and V 12
QQ(q) on q calculated for

Q = 0 and for Q belonging to the first two CS. We see that
V i j

QQ(0) increases with the increase of Q. Such a dependence

exists up to the fourth CS. At larger Q, the V i j
QQ(0) decreases

approximately as 1/Q. The dependence of V i j
QQ(0) on Q is

shown in Fig. 5.
Observe that according to the results presented in Figs. 4

and 5, the interlayer interaction turns out to be noticeably
weaker than the intralayer one. This is because the factor e−qd

appearing in the definition (20) of the bare interlayer interac-

FIG. 5. The dependence of V 11
QQ(0) (red triangles) and V 12

QQ(0)
(blue circles) on Q. The doping level is n = −1.75 and ε = 1.
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FIG. 6. The Fermi surface in the SDW phase calculated for n = −1.75 (a), n = −1.69 (b), and n = −1.67 (c). For each doping there are
two elliptical Fermi surface sheets centered at the M point and two circular Fermi surface sheets centered at the � point. In each plot the upper
and lower M points are equivalent. Due to nematicity of the underlying spin texture, the Fermi surface symmetry is C2, not C6.

tion cannot be neglected even at small transfer momentum.
More information about the difference between intralayer and
interlayer interactions in bilayer graphene systems can be
found in Refs. [43,44].

V. SUPERCONDUCTIVITY

We examine a possibility of the superconducting state
controlled by the renormalized Coulomb interaction near the
half-filling, where it was observed experimentally [2,3]. For
each momentum p in the reduced Brillouin zone we arrange
energies of the low-energy bands E (S )

p (S = 1, 2, . . . , 8) in
ascending order. In our study of the superconductivity we
consider three doping levels: n = −1.75, n = −1.69, and n =
−1.67.

In our scenario the superconductivity becomes possible
since the SDW order cannot completely eliminate the Fermi
surface of MAtBLG. Thus the remaining low-lying fermionic
degrees of freedom can become unstable in the superconduc-
tivity channel. The Fermi surface structures corresponding
to the three doping levels are shown in Fig. 6. For each
doping there are two almost elliptical Fermi surface sheets
centered at the M point and two circular Fermi surface sheets
centered at the � point. Elliptical Fermi surfaces are formed
by the bands with S1 = 3 (bigger ellipse) and S2 = 4 (smaller
ellipse), while circular Fermi surface sheets are formed by the
bands with S3 = 1 and S4 = 2. For n = −1.75 the sizes of
ellipses are almost equal to each other. When we increase the
doping the sizes of the ellipses become more dissimilar. This
happens because the low-energy spectra are almost doubly
degenerate at half-filling, while the bands tend to separate
from each other when n approaches −1. Note that for the
considered doping levels the mean-field spectra demonstrate
nematicity, that is, the spectra have a C2 symmetry group,
which is lower than the C6 symmetry of the crystal. The ne-
matic SDW order induces the nematicity of the Fermi surface;
the latter is clearly visible in Fig. 6.

The bands S3 and S4 forming the circular Fermi surfaces
are not interesting for the superconducting pairing since they
have large Fermi velocities at the Fermi level and small Fermi
momenta. The bands S1 and S2 forming the elliptical Fermi

surfaces around the M point are more relevant for the super-
conductivity, since their Fermi velocities are small enough
(the density of states is large) and the Fermi momenta are
larger than that for the circular Fermi surfaces.

Using fermionic operators ψpS introduced in Eq. (14) and
keeping only terms relevant for the superconducting pairing,
one can rewrite the renormalized interaction Hamiltonian as
follows:

Hint = 1

2N
∑
pp′

∑
SS ′

�
(S,S ′ )
pp′ ψ

†
−p′S ′ψ

†
p′S ′ψpSψ−pS . (22)

Here and below the summation over S and S ′ is performed
over bands S1 and S2, and

�
(S,S ′ )
pp′ =

∑
i j

Q1Q2

(∑
Gsσ

�
(S )
pGisσ �

(S ′ )∗
p′G+Q1isσ

)
V i j

Q1Q2
(p′ − p)

×
(∑

Gsσ

�
(S )
−pG jsσ �

(S ′ )∗
−p′G−Q2 jsσ

)
(23)

is the effective interaction in the Cooper channel.
We assume that in the superconducting state the following

expectation values are nonzero:

α(S )
p = 〈ψ†

−pSψ
†
pS〉. (24)

The total momentum of the pair is zero. We introduce the
superconducting order parameter in the form

�(S )
p = 1

N
∑
S ′p′

�
(S,S ′ )
pp′ α

(S ′ )
p′ . (25)

Transforming the interaction Hamiltonian (22) to its mean-
field version, we derive the self-consistency equation for the
order parameter. After standard calculations we obtain

�(S )
p = −

∑
S ′

∫
d2p′

vBZ

�
(S,S ′ )
pp′ �

(S ′ )
p′

2
√[

E (S ′ )
p′ − μ

]2 + ∣∣�(S ′ )
p′

∣∣2

× tanh

[
1

2T

√[
E (S ′ )

p′ − μ
]2 + ∣∣�(S ′ )

p′
∣∣2

]
, (26)
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where vBZ is the Brillouin zone area of the graphene and the
integration is performed over the reduced Brillouin zone.

We do not solve the integral equation (26) but only estimate
the critical temperature Tc by order of magnitude. With a good
accuracy the Fermi surface sheets centered at the M point have
shapes of ellipses. One can introduce the polar angle ϕ and
parametrize the Fermi momenta of the bands S1 and S2 as
p(S )

F (ϕ) = M + k(S )
F (ϕ), where

k(S )
F (ϕ) = k(S )

1F n1 cos ϕ + k(S )
2F n2 sin ϕ. (27)

In this equation k(S )
1F and k(S )

2F are found by fitting of the
Sth Fermi surface sheet by an ellipse, and n1 and n2 are
the unit vectors parallel and perpendicular to the vector G2,
correspondingly. Near the Sth Fermi surface sheet, one can
write the energy of the band S as

E (S )
M+k

∼= μ + v(S )(ϕ) · [
k − k(S )

F (ϕ)
]
, (28)

where

v(S )(ϕ) = ∂E (S )
M+k

∂k

∣∣∣∣∣
k=k(S )

F (ϕ)

. (29)

In Eq. (26) we introduce for each S ′ the polar coordinates
(k, ϕ) in the integral over p′ as follows:

p′ = M + k(n1 cos ϕ + κ
(S )n2 sin ϕ), (30)

where κ
(S ) = k(S )

2F /k(S )
1F . In this case we have d2p′ =

κ
(S )kdkdϕ. Using Eqs. (27) and (30) we can rewrite Eq. (28)

in the form

E (S )
M+k

∼= μ + ṽ(S )(ϕ)
(
k − k(S )

1F

)
, (31)

where

ṽ(S )(ϕ) = v(S )(ϕ) · (n1 cos ϕ + κ
(S )n2 sin ϕ). (32)

We replace �
(S,S ′ )
pp′ in Eq. (26) by their values at Fermi mo-

menta introducing the functions

�̃
(S,S ′ )
ϕϕ′ = �

(S,S ′ )
pp′

∣∣∣ p=M+k(S )
F (ϕ)

p′=M+k(S′ )
F (ϕ′ )

. (33)

Finally, we assume the following ansatz for the superconduct-
ing order parameter:

�
(S )
M+k =

{
�(S )(ϕ), ṽ(S )(ϕ)

∣∣k − k(S )
1F

∣∣ < ε0,

0, otherwise,
(34)

where ε0 ∼ WSDW is the cutoff energy. In the limit of T → Tc

one can linearize the equation for the superconducting order
parameter taking �

(S ′ )
p′ = 0 in the square roots in the integrals

in Eq. (26). Keeping in mind all aforementioned formulas and
taking the integral over k in the limit ε0/T � 1, we obtain the
equations for �(S )(ϕ) in the form

�(S )(ϕ) = −
∑
S ′

∫ 2π

0
dϕ′ �̃

(S,S ′ )
ϕϕ′ k(S ′ )

2F �(S ′ )(ϕ′)

vBZ|ṽ(S ′ )(ϕ′)| ln
E∗

T
, (35)

where E∗ = ε0/(2A), and ln A = ln π/4 − C (where C is the
Euler’s constant, A ∼= 0.441).

We calculate the functions �̃
(S,S ′ )
ϕϕ′ in Eq. (33) numerically.

An appropriate choice of the phase of the wave functions

FIG. 7. Interaction in the Cooper channel. The dependence of
�̃

(S,S ′ )
0ϕ′ on ϕ′, calculated for n = −1.75. Panel (a) corresponds to

S = S1, S ′ = S1 and S = S2, S ′ = S2, while panel (b) corresponds
to S = S1, S ′ = S2 and S = S2, S ′ = S1, see the legend.

�
(S )
pGisσ makes �̃

(S,S ′ )
ϕϕ′ real. The dependence of �̃

(S,S ′ )
0ϕ′ on ϕ′

calculated for n = −1.75 is shown in Fig. 7. We see that the
absolute value of �̃

(S,S ′ )
0ϕ′ has maxima at ϕ′ = π if S �= S ′,

see panel (b). The maxima of �̃
(S,S ′ )
0ϕ′ for S = S ′ are located

near the ϕ′ = π , panel (a). When ϕ �= 0 the functions �̃
(S,S ′ )
ϕϕ′

have maxima at ϕ′ ≈ ϕ + π . Such a behavior of �̃
(S,S ′ )
ϕϕ′ can

stabilize the superconducting state just due to the electron
repulsion. To show this, let us choose the trial function for
�(S )(ϕ) in the form �(S )(ϕ) = �

(S )
0 cos ϕ. By multiplying

both sides of Eq. (35) by 2 cos ϕ and integrating over ϕ one
obtains the equation for �

(S )
0 :

�
(S )
0 =

∑
S ′

λ(S,S ′ )�
(S ′ )
0 ln

E∗

T
, (36)

where

λ(S,S ′ ) = −a2
√

3k(S ′ )
2F

2π

∫ 2π

0

dϕ

2π

∫ 2π

0

dϕ′

2π

�̃
(S,S ′ )
ϕϕ′ cos ϕ cos ϕ′

|ṽ(S ′ )(ϕ′)| .

(37)

The most important is that the double integral in Eq. (37) is
negative for S = S ′ and λ(S,S ) > 0 due to the properties of
�̃

(S,S ′ )
ϕϕ′ described above. As a result, Eq. (36) has nontrivial

solutions for two values of T , and the maximum of these two
temperatures corresponds to Tc. The result can be presented in
the form

Tc = E∗e−1/�, (38)
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where

� = [λ(3,3) + λ(4,4) +
√

[λ(3,3) − λ(4,4)]2 + 4λ(3,4)λ(4,3)]

2
.

(39)

We calculate � numerically for three doping levels cor-
responding to the Fermi surfaces shown in Fig. 6. For n =
−1.75, n = −1.69, and n = −1.67 we obtain, respectively,
� = 0.05, � = 0.09, and � = 0.08. Thus the maximum Tc

corresponds to n = −1.69, Fig. 6(b). Taking for an estimate
E∗ = WSDW

∼= 17 meV, we obtain in the latter case Tc
∼=

2.6 mK. This value is much smaller than the experimentally
observed [2,3] Tc ≈ 1.7 K. Thus the considered Coulomb in-
teraction alone is not enough to stabilize the superconducting
state with experimentally observed critical temperature. The
implications of this finding are discussed below.

VI. DISCUSSION AND CONCLUSIONS

In this paper we consider a possibility of superconducting
phase in MAtBLG, and, more specifically, a Coulomb-
interaction-driven superconducting mechanism in MAtBLG.
At the center of our proposal is the notion that at least some
parts of the MAtBLG Fermi surface remain ungapped, despite
the SDW order-parameter presence. The fermionic degrees
of freedom that remain at the Fermi energy even after the
emergence of the SDW order is a peculiar feature of MAt-
BLG [11–13]. The residual Fermi surface can host a weaker
order parameter, such as a superconductivity. This is the most
important theoretical point of our proposal.

This scenario has three obvious consequences, which can
be tested experimentally. (i) The superconductivity coexists
with the (stronger) nematic SDW phase, (ii) the supercon-
ducting order parameter is unavoidably nematic, inheriting its
nematicity from the underlying SDW order parameter, and
(iii) our proposal entails large coherence length ξ : the usual
BCS estimate ξ = vF/� ∼ LWSDW/� suggests that ξ greatly
exceeds the moiré period L, which itself is significant, due
to large ratio WSDW/�. Note also that, due to (i) and (ii),
a familiar classification of superconducting order parameters
into s-, p-, and d-wave symmetry classes is impossible.

Nematic features of both the low-temperature supercon-
ducting phase and the higher-temperature nonsuperconduct-
ing “metallic” state were indeed experimentally detected [45].
This finding is consistent with (i) and (ii) above. The observed
transport anisotropy of the “metallic” phase (see Fig. 3(b) of
Ref. [45]) is qualitatively consistent with a nematic Fermi
surface [11–13] plotted in our Fig. 6. Namely, one can in-
fer from this figure that the transport remains anisotropic
as long as the SDW order parameter is not destroyed by
temperature.

While a detailed description of the SDW phase is beyond
the scope of this manuscript, we will make the following
two comments. In Ref. [45] the ratio α = (R1 − R2)/(R1 +
R2), where R1,2 represents the resistivity tensor eigenvalues,
serves as an experimental measure of transport anisotropy.
The absolute value of α = α(T, n) is between zero (for purely
isotropic cases) and unity (for extreme anisotropy). The data
unambiguously indicate that the resistivity is anisotropic,
both in the superconducting and deep in the “metallic”

phases, but |α| remains quite small for most T and n val-
ues, begging the question of how this smallness fits into
the discussed theoretical framework. Considering this issue,
one must keep in mind that as the Supplemental Material
to Ref. [45] explains, the performed measurement always
underestimates |α|. Additionally, in our model the Fermi sur-
face anisotropy is quite moderate, as Fig. 6 indeed attests,
implying moderately low |α|. Consequently, we interpret the
results of Ref. [45] as being qualitatively consistent with our
scenario.

The second comment is related to Ref. [46], which presents
an STM study of MAtBLG. This investigation, unlike pre-
vious papers [28,29], did not report a nematic phase of
MAtBLG. Although at this stage a confident resolution of
this discrepancy is impossible, we can hypothesize that it
may be a manifestation of the competition between multiple
dissimilar low-energy phases in the considered system [12].
If the energies of the competing phases are sufficiently close,
the outcome of the competition is determined by an interplay
of a number of poorly controlled factors unique to a spe-
cific MAtBLG device. In this framework it becomes natural
that several seemingly identical samples demonstrate different
low-temperature properties.

Besides the presence of the Fermi surface, an essential
ingredient of a mechanism is a source of attraction keeping
Cooper pairs together. In the previous section we attempted to
assess to which extent the renormalized Coulomb interaction
can serve this purpose. Our calculations revealed that the
resultant critical temperature is much lower than the value
observed in the experiment.

Clearly, the discrepancy in terms of Tc requires additional
analysis. It is easy to convince oneself that the root cause of
the superconducting instability weakness is the weakness of
the coupling constant �. In our estimates � never exceeded
0.1, making the BCS exponent exp(−1/�) extremely small.

Moreover, in the regime of small �, any inaccuracy in
� is greatly amplified by the BCS exponential function. To
illustrate this sensitivity in our circumstances, let us increase
the coupling constant twofold, from 0.09 to 0.18. Then the
critical temperature grows by more than two orders of mag-
nitude, from 2.6 mK to 0.66 K, which compares favorably
against 1.7 K measured experimentally. This simple calcu-
lation reminds us that an order-of-magnitude estimate of �

is insufficient for an order-of-magnitude estimate of Tc. This
issue is particularly pressing in the limit of low �, as in our
case.

We envision two possibilities that can reconcile the theory
with the experiment. One option is simply to resign to the fact
that the approximate nature of our calculations limits us to
an order-of-magnitude estimate �, which is equivalent to an
order-of-magnitude estimate of ln Tc. We should not consider
this viewpoint as excessively defeatist. After all, any many-
body calculation is performed under numerous assumptions
that skew the final answer. For MAtBLG the situation is
worsened by lack of reliable knowledge about the interlayer
tunneling.

Alternatively, we can add phonons to our mechanism. One
can imagine two possibilities for phonon-mediated attraction.
(i) The phonons increase the coupling constant � discussed
in the previous section, increasing the critical temperature.

094505-9



SBOYCHAKOV, ROZHKOV, AND RAKHMANOV PHYSICAL REVIEW B 109, 094505 (2024)

(ii) On the other hand, the phonon-mediated attraction may
stabilize a superconducting order parameter of a different type
(e.g., nodeless). In the latter case, the competition between
two (or more) order parameters of different structures be-
comes a possibility.

The superconductivity in MAtBLG is experimentally ob-
served both below and above half-filling. In our paper we
present the results for doping levels slightly above n = −2.
Similar calculations can be done for n < −2. In that case
(when doping n is not very far from half-filling) the Fermi
surface structure consists of two closed curves centered at
the � point. These Fermi surface sheets are not circular but
elongated along the vector G2. When evaluating the super-
conducting coupling constant � for some doping levels with
n < −2 one discovers that � is of the same order as in the case
of n > −2. For example, for n = −2.5 we obtain � ≈ 0.1.
Thus our theory predicts the same superconducting tempera-
tures for two superconducting domes near the half-filling.

Finally, when interpreting experimental data for MAtBLG,
it is necessary to remember that the system might experience
electronic phase separation. For twisted bilayer graphene this
phenomenon has been discussed in Ref. [14], but it itself is
not uncommon in theoretical models for doped SDW phase
[36,37,47–53], as well as for other continuous phase transi-
tions affected by doping [54]. Phase separation frustrated by
long-range Coulomb interaction may lead to spatial pattern
formation altering transport [55] and other physical properties
of a sample.

In conclusion, we argued that MAtBLG can enter a super-
conducting phase coexisting with the SDW-like ordering. The
mean-field description of the host SDW state accounts for
on-site, and both in-plane and out-of-plane nearest-neighbor
intersite anomalous expectation values. Numerical mean-field
minimization reveals that the SDW order leaves the small
multicomponent Fermi surface ungapped. Near the half-filling
the SDW order parameters partially break the MAtBLG point
symmetry group that leads to the Fermi surface nematicity.
For superconductivity the presence of the ungapped Fermi
surface is crucial, as it bypasses the competition between
the magnetic and superconducting phases, which the (much
weaker) superconductivity cannot win. Additionally, we ex-
plore the possibility of a purely Coulomb-based mechanism
of the superconductivity in MAtBLG. The screened Coulomb
interaction is calculated within the random phase approxi-
mation. We show that near the half-filling the renormalized
Coulomb repulsion indeed stabilizes the superconducting
state. The superconducting order parameter has two nodes on
the Fermi surface. We estimate the superconducting transition
temperature and discuss the implications of our proposal.
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