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The admixture of spin-singlet and spin-triplet pairing states in superconductors can be typically induced by
breaking spatial inversion symmetry. Employing the numerically exact auxiliary-field quantum Monte Carlo
method, we study such mixed-parity pairing phenomena of attractive fermions with Rashba spin-orbit coupling
(SOC) in a two-dimensional optical lattice at finite temperature. We systematically explore the evolution of the
essential pairing structure in both singlet and triplet channels versus the temperature, fermion filling, and SOC
and interaction strengths, via computing the finite-size results of the condensate fraction and pair wave function.
Our numerical results reveal that the singlet channel dominates in the fermion pairing and the triplet pairing has
a relatively small contribution to the superfluidity for physically relevant parameters. In contrast to the singlet
channel mainly consisting of the on-site Cooper pairs, the triplet pairing has plentiful patterns in real space with
the largest contributions from several nearest neighbors. As the SOC strength increases, the pairing correlation is
first enhanced and then suppressed for triplet pairing while it is simply weakened in the singlet channel. We have
also obtained the Berezinskii-Kosterlitz-Thouless transition temperatures through the finite-size analysis of the
condensate fraction. Our results can serve as a quantitative guide for future optical lattice experiments as well as
accurate benchmarks for theories and other numerical methods.
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I. INTRODUCTION

The fermion paring and corresponding superconductivity
and superfluidity [1] are of great interest in condensed mat-
ter physics. The fundamental ingredient is the Cooper pair
consisting of two spin-1/2 electrons [2]. Given the spatial
inversion symmetry, the pair wave function can be decou-
pled into orbital and spin channels resulting in two states of
Cooper pairs, even parity with spin singlet and odd parity
with spin triplet [3]. The majority of known superconductors
(SCs) fall into the spin-singlet case, such as simple metals
[4] and high-Tc cuprates [5]. Nevertheless, the triplet paring
has been observed or suggested to exist in far fewer realistic
systems, e.g., superfluid 3He [6] and UPt3 and Sr2RuO4 [7].
Without inversion symmetry, the parity conservation is bro-
ken and thus the mixing of singlet and triplet paring states
can emerge [8–11]. Such mixed-parity pairing state has been
experimentally verified in various three-dimensional (3D)
noncentrosymmetric SCs [12–17], which induces intensive
interests due to many exotic properties [10] including fertile
superconducting gap structures [13,18], anisotropic magnetic
response [19,20], and topological superconductivity [21].

The appearance of the mixed-parity pairing in noncen-
trosymmetric systems can be attributed to the rise of the
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antisymmetric spin-orbit coupling (SOC) [22], which has be-
come one of the key elements for condensed matter physics
[23]. For correlated fermion systems, SOC acts as another
dimension and induces many exotic states of matter, includ-
ing spintronics [24], topological phases [25], and unusual
superconductivity [11]. Specifically, it typically breaks the
spatial inversion symmetry and mixes the spin species, and
thus renders the coexistence of spin-singlet even-parity and
spin-triplet odd-parity pairing. Moreover, it was shown [14]
that tuning the SOC strength can even change the dominant
component of the mixed-parity pairing from the singlet in
Li2Pd3B to the triplet in Li2Pt3B, as replacing the Pd atom by
the Pt atom. To date, most of the study for the SOC-induced
singlet-triplet mixed pairing phenomena concentrates on the
3D systems including the noncentrosymmetric SCs [11] and
interacting Fermi gas [26–28].

In physically more relevant two-dimensional (2D) sys-
tems, the interplay between the reduced dimensionality and
enhanced quantum fluctuations can induce fascinating and
unique quantum phenomena [29–31]. A typical representa-
tive is the Berezinskii-Kosterlitz-Thouless (BKT) transition
[32–35] of superconductivity and superfluidity. Similar to
the 3D analog, inclusion of SOC to 2D attractive fermions
can also induce mixed-parity pairing [8], which has been
much less studied. Experimentally, the recently elegant real-
ization of synthetic SOC for fermions [36,37] with ultracold
atoms, especially in the 2D optical lattice [38–40], substan-
tively paves the way for exploring novel quantum phenomena
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related to SOC. Thus, a systematically theoretical study
with high precision on the mixed-parity pairing in 2D is
highly demanded to shed light on problems closely related
to ultracold-atom experiments. For example, finding the best
condition to observe the spin-triplet pairing in an optical lat-
tice, in comparison to the achieved singlet pairing [41], should
be a useful guide for experiments.

To date, most theoretical work on 2D attractive fermions
with SOC falls into the Fermi gas and approximate theories
[42–46]. Interesting results such as singlet and triplet contri-
butions to the condensation [42] are presented in these studies,
but still need careful verification from unbiased approaches.
Nevertheless, numerically exact calculations for such systems
are rare. Auxiliary-field quantum Monte Carlo (AFQMC)
simulations have been performed for the ground state of 2D
Fermi gas [47], and for the lattice system at finite temperatures
[48] as well as its ground state [49]. The authors in Ref. [48]
focused on the properties of BKT transition temperatures and
anisotropic spin susceptibility without touching the pairing
structure, which were limited to 12 × 12 finite lattices. The
pairing structure was discussed in Ref. [49] only for the half-
filling case, for which the BKT transition disappears and thus
it was of less interest to experiments.

In this paper, we study the mixed-parity pairing of attrac-
tive fermions with Rashba SOC in the 2D optical lattice,
applying the finite-temperature AFQMC algorithm [50–53].
We mainly concentrate on the condensate fraction and pair
wave functions to reveal the pairing structures of both singlet
and triplet channels for physically relevant regimes of the tem-
perature, fermion filling, and SOC and interaction strengths.
We also present the determination of the BKT transition tem-
perature from the finite-size analysis of condensate fraction
results. The rest of the paper is organized as follows. In Sec. II,
we introduce the lattice model that we use to describe the 2D
attractive fermions with Rashba SOC in the optical lattice, and
the AFQMC method. In Sec. III, we present our numerical re-
sults, including the pairing structures, the pairing correlations,
and calculations of the BKT transition temperature. Finally,
Sec. IV summarizes this work, and discusses its connections
with the optical lattice experiments.

II. MODEL AND METHOD

We describe the 2D attractive fermions with Rashba SOC
in the optical lattice using the following square lattice model
Hamiltonian [48,49] as

Ĥ =
∑
kσ

εkc†
kσ ckσ +

∑
k

(Lkc†
k↓ck↑ + H.c.)

+ U
∑

i

(
n̂i↑n̂i↓ − n̂i↑ + n̂i↓

2

)
+ μ

∑
iσ

n̂iσ , (1)

with εk = −2t (cos kx + cos ky), Lk = 2λ(sin ky − i sin kx ),
and n̂iσ = c†

iσ ciσ representing the density operator with spin
σ =↑,↓ on the lattice site i = (ix, iy). The momentums kx and
ky are defined in units of 2π/L with the system size Ns = L2.
We denote the fermion filling as n = N/Ns with N as the
total number of fermions in the system. The nearest-neighbor
hopping t , on-site Coulomb interaction U (<0), SOC strength
λ, and chemical potential μ are model parameters. Within the

above formulation, the system is at half filling with n = 1
for μ = 0 due to the particle-hole symmetry [48], and it is
hole doped for μ > 0. Throughout this work, we set t as the
energy scale, and we focus mostly on the doped systems with
the fermion filling n < 1.

The previous study [49] showed that the model in Eq. (1)
has a supersolid ground state with coexisting charge and
superfluid long-range orders at half filling. Away from this
special point, the superfluidity survives for arbitrary filling
with arbitrary interaction strength [47]. Since the SOC term
breaks the spin SU(2) symmetry and results in two helical
bands for the noninteracting case, the corresponding super-
fluid state with interaction is composed of both spin-singlet
and triplet Cooper pairs, whose pairing properties are the main
content of this work.

We then apply the finite-temperature AFQMC algorithm
[50–53] to numerically solve the lattice model in Eq. (1).
It is free of the fermion sign problem at arbitrary filling
due to the time-reversal symmetry [54]. The scheme of
the AFQMC method is first to decouple the two-body in-
teractions into free fermions coupled with auxiliary fields
and then to calculate the fermionic observables through im-
portance sampling of the field configurations. Practically,
the imaginary-time discretization of the inverse temperature
as β = M�τ , the symmetric Trotter-Suzuki decomposition
e−�τ Ĥ = e−�τ Ĥ0/2e−�τ ĤI e−�τ Ĥ0/2 + O[(�τ )3] (with Ĥ0 and
ĤI as the free and interaction parts of the Hamiltonian), and
the Hubbard-Stratonovich (HS) transformation are succes-
sively implemented. The discrete HS transformation with the
spin-ŝz decomposition rather than the usual charge channel
[51] is adopted for the attractive U interaction to suppress the
fluctuations of pairing-related observables. Other algorithmic
advances and techniques applied here include the fast Fourier
transform (FFT) between the real and momentum space [53],
the delayed version of local update [55], and the τ -line type of
global update [56], which together improve the efficiency of
the numerical simulations. For further details of the AFQMC
algorithm, we refer to the reviews in Refs. [57,58].

III. NUMERICAL RESULTS

In this section, we present the AFQMC simulation results
of the lattice model in Eq. (1), including the pairing structure,
the pairing correlation functions, and the BKT transition. Our
AFQMC calculations reach the linear system size L = 20
with the temperature as low as T/t = 0.025 to sufficiently
access the superfluidity (quasi-long-range ordered or quasi-
condensate) regime. We mainly concentrate on the pairing
properties away from half filling, for which the charge density
wave does not have long-range order (see details in Ap-
pendix A). The parameter �τ t = 0.05 is chosen mostly in
this work, which has been tested to safely eliminate the Trotter
error, except for the strong interactions where smaller �τ is
applied. Periodic boundary conditions in both directions are
applied for all the calculations.

A. Condensate fractions and pair wave functions

The contributions of spin-singlet and triplet channels to
the fermion pairing can be quantified by the corresponding
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condensate fractions [42]. On the other hand, properties of the
Cooper pairs, including their sizes and the fermion momen-
tum, can be obtained from the pair wave functions [47,49].
The computation of these quantities involves the following
pairing matrix in momentum space [47,49] as

M(k, 	; k′, 	′) = 〈�†
	(k)�	′ (k′)〉, (2)

with 	 = s or t↑ or t↓, and �
†
	(k) as spin-singlet and triplet

pairing operators with zero center-of-mass momentum as

�†
s (k) = 1√

2

(
c†

k↑c†
−k↓ − c†

k↓c†
−k↑

)
,

�†
t↑ (k) = c†

k↑c†
−k↑, �†

t↓ (k) = c†
k↓c†

−k↓. (3)

Note that the third component of the triplet pairing is elimi-
nated by symmetry. In the Ns = L2 finite system, the pairing
matrix M is a 3Ns × 3Ns matrix. Attributing to the FFT
algorithm applied in our numerical calculations, we can com-
pute the equal-time, momentum-space single-particle Green’s
function matrix G = {Gkσ,k′σ ′ = 〈ckσ c†

k′σ ′ 〉τ }, and thus di-
rectly measure the pairing matrix defined in Eq. (2) for a
single auxiliary-field configuration via Wick decomposition.

Then from the leading eigenvalue Nc of the pairing matrix,
we can obtain the total condensate fraction as nc = Nc/(N/2)
[59,60]. The corresponding eigenstate of Nc is the momentum-
space pair wave function �c, which consists of the singlet and
triplet components as �c = (�c,s,�c,t↑ ,�c,t↓ )T with every
component as an Ns-dimensional vector. For the lattice model
in Eq. (1), the two triplet channels are degenerate as �c,t↑ =
�c,t↓ due to the spin-inversion symmetry. Thus, we define
the overall triplet pair wave function as �c,t = √

2�c,t↑ . Then
within normalized �c, we assign the condensate fractions of
spin singlet and triplet pairing as nc,s = nc × (�c,s�

T
c,s) and

nc,s = nc × (�c,t�
T
c,t ), respectively. Thus, the relation nc =

nc,s + nc,t obviously holds, with nc,s/nc and nc,t/nc as the
contributions of singlet and triplet channels to the pairing.
The square |�c,	(k)|2 (	 = s, t) stands for the probability of
fermions with momentum k participating in the pairing. We
can further obtain the corresponding real-space pair wave
functions ψc,s(r) and ψc,t (r) by Fourier transform of �c,s and
�c,t . Similarly, |ψs(r)|2 and |ψt (r)|2 represent probabilities of
spin singlet and triplet Cooper pairs with distance r of the two
fermions, and they actually reflect the size of the pairs.

We note that the finite-temperature condensate fraction
should vanish in the thermodynamic limit for both the quasi-
condensate and disordered phases. Alternatively, its finite-size
results can present plentiful information about the pairing
properties [47,49,61]. Attributed to the distinct behaviors of
pairing correlation across the BKT transition, the finite-size
condensate fraction should also undergo a qualitative change
around the transition, which serves as an effective tool to
locate the BKT transition temperature [61]. Thus, throughout
this work, we always deal with finite-size AFQMC results of
the condensate fraction at finite temperatures.

As a demonstration, we show the typical results of con-
densate fractions and pair wave functions for a specific group
of parameters in Fig. 1. With lowering temperature, both
the spin singlet and triplet condensate fractions monotoni-
cally increase from the high-temperature normal state to the

FIG. 1. Illustration of the condensate fractions and pair wave
functions in momentum space. Plotted in panel (a) are the total,
singlet, and triplet condensate fractions versus the temperature. The
inset is the corresponding fermion filling. Panel (b) presents the
magnitudes of momentum-space pair wave functions |�c(k)| in both
singlet and triplet channels for two temperatures T/t = 0.025 and
0.30. The inset plots the Fermi surfaces (red and blue dashed lines)
for the fermion filling of T/t = 0.025 case and the high-symmetry
path (black solid lines with arrows) with �, X, and M points in
Brillouin zone. These calculations are performed for L = 20 system
with U/t = −4, λ/t = 0.5, and μ/t = 0.5.

low-temperature superfluid phase, and then saturate to the
ground-state values as indicated by the plateau achieved with
T/t � 0.06 results. They also exhibit a rapid increase at a
specific temperature, for which the BKT transition should be
responsible (see Sec. III D). Remarkably, the triplet channel
has a rather small contribution to the total condensate fraction
(less than 15% approaching T = 0). As shown in Fig. 1(b),
the momentum-space pair wave functions of both singlet and
triplet channels have peaks around the Fermi surfaces of the
two helical bands for the intermediate interaction U/t = −4
at low temperature, which resembles the results without SOC
[53,61]. This is also consistent with the fundamental picture
of BCS theory that the fermions around the Fermi surfaces
dominate the pairing in the weakly interacting regime [2]. In
contrast, the high-temperature results of the pair wave func-
tions seem featureless as the system is in the normal state.
Note that the node at the � point in the triplet pair wave func-
tion indicates its antisymmetry, while the singlet component
is symmetric without the node.
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B. The mixed-parity pairing structure

Based on the results and discussion in Sec. III A, we then
concentrate on the mixed-parity pairing structure for physi-
cally relevant parameter regimes, revealed by the numerical
results of condensate fractions and pair wave functions. Tun-
ing parameters including the temperature, interaction strength,
SOC, and chemical potential are accounted for in our AFQMC
simulations.

The condensate fraction versus the temperature typically
shares similar behavior as the results shown in Fig. 1(a), with
differences lying in the specific numbers and BKT transition
temperatures. With varying interaction strength, SOC, and
chemical potential, we perform the AFQMC simulations with
T/t = 0.10, at which most systems studied as follows fall into
the superfluid phase and the condensate fractions are close to
the corresponding T = 0 results [similar to Fig. 1(a)].

In Fig. 2, we present one of the key results in this work,
as condensate fractions with tuning parameters other than
the temperature. First, with increasing on-site interaction, the
system hosts the BCS-BEC crossover from extended Cooper
pairs to tightly bounded molecules [62]. Figure 2(a) shows
that the singlet condensate fraction simply increases during
the crossover, while the triplet contribution has a peak around
U/t = −4 (for λ/t = 0.5). This difference can be understood
as follows. Turning on the interaction can first enhance the
pairing in both channels as well as the condensate fractions.
Cross some intermediate U , the interaction begins to frustrate
the triplet pair formation and continues to increase the singlet
pairs, due to the nature of the attraction between fermions with
unlike spins. The results suggest that the triplet contribution
to the pairing is most significant [∼21% as in Fig. 2(a)] in
the intermediate interaction regime, whose specific value of
U/t should depend on SOC strength. These results are qualita-
tively consistent with those from the ground-state calculations
of 2D spin-orbit-coupled Fermi gas [47]. Then, with tuning
SOC strength, the condensate fractions for U/t = −4 are
plotted in Fig. 2(b). The decreasing of the singlet condensate
fraction with λ/t can be explained by the enlarged bandwidth
W (t, λ) [48] and the reduced effective interaction U/W . How-
ever, the triplet condensate fraction is first enhanced by SOC,
due to the fact that SOC is the essential source of triplet
pairing in the presence of Hubbard interaction. Then the effect
from reduced U/W sets in, and the competition results in a
broadened peak around λ/t = 0.5 ∼ 1.0. The biggest contri-
bution from the triplet channel to the pairing is ∼30% around
λ/t = 1.3, where nevertheless the total condensate fraction
is only 0.043. Finally, in Fig. 2(c), we show the numerical
results versus the fermion filling (by tuning the chemical po-
tential). Both the singlet and total condensate fractions reach
the maximum around n = 0.80, while the triplet one possesses
a wide plateau regarding the filling. The triplet contribution
saturates to the largest value ∼20% toward the low filling
regime. As discussed above, for the simulation temperature
T/t = 0.10, the system evolves from the normal state at half
filling (with μ = 0) to the superfluid phase with increasing
doping. Thus, the results in Fig. 2(c) might indicate that the
maximal BKT transition temperature is achieved around the
filling n = 0.80 [48]. Combining all the results in Fig. 2,
we can conclude that the spin-singlet pairing always has the

FIG. 2. The condensate fractions nc, nc,s, and nc,t versus various
tuning parameters. (a) Tuning interaction strength U/t with λ/t =
0.5 and μ/t = 0.5. (b) Tuning SOC λ/t with U/t = −4 and μ/t =
0.5. (c) Tuning the fermion filling n by chemical potential μ/t with
U/t = −4 and λ/t = 0.5. The insets in panels (a) and (b) plot the
results of corresponding filling. These calculations are performed for
L = 20 system with temperature T/t = 0.1.

predominant contribution compared to the triplet channel to
the mixed-parity pairing in the system.

We then turn to the results of the pair wave functions.
First, their evolutions versus the chemical potential in mo-
mentum space and real space are illustrated in Figs. 3 and
4, respectively. For half filling, our results are quantitatively
consistent with the T = 0 results in Ref. [49]. Increasing
the chemical potential results in smaller fermion filling,
and the corresponding noninteracting Fermi surfaces at T = 0
of the two helical bands (dashed lines in Fig. 3), which are
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FIG. 3. The singlet (top) and triplet (bottom) pair wave functions in momentum space, |�c,s(k)| and |�c,t (k)|, versus chemical potential
μ/t with corresponding fermion filling n shown on top of the plots. The error bars of n are in the fourth or fifth digit and thus are neglected.
The noninteracting Fermi surfaces at T = 0 of the two helical bands are also plotted with the green and blue solid lines. These calculations are
performed for L = 20 system with T/t = 0.10 and U/t = −4, λ/t = 0.5.

determined from the corresponding fermion filling from
finite-T AFQMC calculation, shrink toward circles. It is clear
that for the intermediate interaction U/t = −4 the pair wave
functions in both channels show sharp peaks in the vicinity of
the Fermi surfaces, regardless of the filling. With the increas-
ing interaction, the results should gradually become smooth in
the whole Brillouin zone (not shown) without apparent peaks
[47] indicating the deviation from BCS theory. In contrast,
the singlet and triplet pair wave functions in real space show
significant difference, as shown in Fig. 4. The localized peaks
in the singlet pair wave function |ψs(r)| clearly show that the
singlet pairing mainly has a local origin with on-site pairs.
However, the Pauli principle prohibits such on-site triplet pair
formation, resulting in zero value at r = 0. Instead, the triplet
pair wave function |ψt (r)| is more extended and has very
rich patterns and evolutions along with decreasing fermion

filling. Multipeak structures appear in |ψt (r)|, with the largest
amplitude locations changing from the next-nearest-neighbor
(NNN) sites at half filling, to intermediate fourth-nearest-
neighbor (4th-NN), and finally to the nearest-neighbor (NN)
sites at low filling, as shown in Fig. 6(a). These finite-size
triplet Cooper pairs within several NN sites can be explained
by the real-space nature of Rashba SOC, which is actually
NN spin-flip hopping. As a result, successive SOC hops can
enhance the possibility to find another fermion at neighboring
sites with the same spin as the one located at the origin.
Moreover, toward smaller filling, both of |ψs(r)| and |ψt (r)|
show more extended behaviors due to the enlarged wavelength
∼2π/kF .

As for the other tuning parameters, the pair wave functions
in momentum space show similar behaviors as illustrated in
Fig. 3, and in real space for the singlet channel as |ψs(r)|

FIG. 4. The singlet (top) and triplet (bottom) pair wave functions in real space, |ψs(r)| and |ψt (r)|, versus chemical potential μ/t .
Simulation parameters are the same as in Fig. 3.
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FIG. 5. The triplet pair wave function in real space |ψt (r)| ver-
sus (top row) interaction strength −U/t = 2, 4, 6, 8 with T/t =
0.10, λ/t = 0.5, μ/t = 0.5; (middle row) the temperature T/t =
0.025, 0.05, 0.14, 0.20 with U/t = −4, λ/t = 0.5, μ/t = 0.5; (bot-
tom row) SOC strength λ/t = 0.3, 0.6, 1.2, 1.5 with T/t =
0.10,U/t = −4, μ/t = 0.5. These calculations are performed for
L = 20 system.

are also dominated by the center peak as in Fig. 4. Thus, we
now concentrate on the triplet pair wave function in real space
|ψt (r)| shown in Fig. 5. With increasing interaction strength
(top row of Fig. 5), |ψt (r)| gradually evolves from rather ex-
tended pattern with multipeaks along diagonals, to local peaks
at NN lattice sites, which illustrates the BCS-BEC crossover
behavior in the triplet pairing channel. With decreasing tem-
perature (middle row of Fig. 5), the peaks in |ψt (r)| (located at
NNN and 4th-NN sites) simply become more significant and
eventually stabilize, indicating entering the superfluid phase
from the normal state. Increasing SOC strength, the T = 0
AFQMC simulations at half filling [49] showed a diamond
pattern of |ψt (r)| with enhanced peak values at both NNN
and 3rd-NN sites. They behave differently away from half
filling (bottom row of Fig. 5). As shown in Fig. 6(b), SOC first
enhances all the finite-range triplet pairing for λ/t < 0.75,
where NNN and 4th-NN pairing play the leading role. The
NNN component is then further promoted by SOC, and NN

FIG. 6. The amplitudes of real-space triplet pair wave function
|ψc,t (r)| with the distance r equal to NN, NNN, 3rd-NN, and 4th-NN
sites, with (a) tuning the fermion filling n and (b) varying the SOC
strength. The other simulation parameters for panels (a) and (b) are
the same as Fig. 4 and the bottom row of Fig. 5, respectively. These
calculations are performed for L = 20 system.

and NNN pairing gradually becomes comparable toward large
SOC, resulting in instead a square pattern as illustrated in
Fig. 5. All the qualitative behaviors of pair wave functions
results in Figs. 3–5 do not change with the system size.

C. The pairing correlation functions

In Sec. III B, the results in Fig. 2 clearly present an optimal
SOC strength and fermion filling regime where the triplet
condensate fraction reaches the maximum. In this section, we
pursue understanding this point from the aspect of the pairing
correlation functions.

We define the real-space singlet and triplet pairing opera-
tors as

�̂s,i = (c†
i↑c†

i↓ + ci↓ci↑)/2,

�̂t,i = (c†
i↑c†

i+δ↑ + ci+δ↑ci↑)/2, (4)

with s and t as singlet and triplet. For the triplet, we concen-
trate on NN and NNN pairing with δ = (1, 0) and δ = (1, 1)
denoting the corresponding lattice vectors. We then measure
the real-space correlation functions Ps(r) = 〈�̂s,i�̂s,i+r〉 and
Pt (r) = 〈�̂t,i�̂t,i+r〉, and the structure factors as their Fourier
transformation S	(q) = ∑

r P	(r)eiq·r with 	 = s or t . To di-
rectly evaluate the pure interaction contribution, we have also
obtained the vertex contribution for the pairing correlations
and structure factors, as P̄s(r) and S̄	(q), by subtracting the
uncorrelated part [63].

In Fig. 7, we present the vertex contributions to the pairing
correlation functions of on-site singlet, NN, and NNN triplet
channels, with tuning SOC strength. All the positive vertex
contributions to the correlations in Fig. 7 reveal that the on-site
attractive interaction enhances the singlet and triplet pairing
correlations with specific distances as L/4 � r � L/2 (as L =
20). These results contribute more than 90% of the corre-
sponding bare correlation functions (not shown). It is clear
that SOC simply suppresses the singlet pairing correlation,
while the NN and NNN triplet correlations show broadened
peaks around λ/t = 0.8 and λ/t = 1.0. Moreover, the singlet
correlation is stronger than the triplet ones around two or-
ders of magnitude, indicating the dominant role of the singlet
channel. These results are in accordance with the behaviors
of the corresponding condensate fractions shown in Fig. 2(b).
The almost collapsed numerical data for different distances
in Fig. 7 also highlight the superfluid phase of the system
for the chosen parameters. Then, the vertex contributions of
the pairing structure factors S̄	(q = �) (with 	 = s, t) with
increasing SOC strength are illustrated in Fig. 8. They show
similar behaviors as the real-space correlation functions. The
negative vertex of S̄t (�) with NN triplet for λ/t < 0.3 and
λ/t > 1.2 means that the NN triplet pairing is not favored in
these regimes. The growing numbers of S̄	(�) in Fig. 8 for all
three quantities (especially in the intermediate SOC regime)
with increasing system size also suggest quasi-long-range
pairing orders.

Similarly, the results of condensate fractions versus the
fermion filling in Fig. 2(c) can also be alternatively understood
from the pairing correlations. Figure 9 plots the vertex contri-
butions of the pairing structure factors S̄	(�) versus fermion
filling. The results of the on-site singlet structure factor have
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FIG. 7. Vertex contribution of on-site singlet (top), NN triplet
(middle), and NNN triplet (bottom) pairing correlation functions
P̄	(r) (with 	 = s, t) versus SOC strength. The correlations with
distance r = 5 ∼ 10 (along the x axis) are plotted. These calculations
are performed for L = 20 system with T/t = 0.10 and U/t = −4,
μ/t = 0.5.

the same nonmonotonic behavior as the singlet condensate
fraction in Fig. 2(c). Instead, the NN and NNN triplet structure
factors show more interesting signatures with different peak
locations, revealing that the triplet channel is first governed
by the NNN and then by the NN pairing from the half-filling
to the low-filling regime (n < 0.5). These validate the results
of condensate fractions in Fig. 2(c) and pair wave functions in
Fig. 3. Moreover, the wide plateau of the triplet condensate
fraction in Fig. 2(c) can be explained by the accumulated
results of the NN and NNN triplet pairing correlations in
Fig. 9(b).

As for the temperature and interaction strength, we have
also obtained the vertex contributions of both singlet and
triplet pairing correlations. In Appendix B, we have presented
the results of vertex contributions P̄	(r) versus temperature.

D. BKT transition temperature from condensate fractions

In previous studies of the 2D attractive Hubbard model,
the BKT transition temperature was usually determined by
the finite-size scaling of the pairing structure factor or from

FIG. 8. Vertex contribution of on-site singlet (top), NN triplet
(middle), and NNN triplet (bottom) pairing structure factors S̄	(q =
�) (with 	 = s, t) versus SOC strength. These calculations are per-
formed for L = 16, 18, 20 systems with T/t = 0.10 and U/t = −4,
μ/t = 0.5.

the universal jump property of the superfluid density
[48,64,65]. However, these quantities can become signifi-
cantly small for the low-filling system, which makes the
finite-size scaling even harder. In Ref. [48], the BKT transition

FIG. 9. Vertex contribution of (a) on-site singlet and (b) NN
triplet and NNN triplet pairing structure factors S̄	(�) versus fermion
filling. These calculations are performed for L = 20 systems with
T/t = 0.10 and U/t = −4, λ/t = 0.5.
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temperatures for the same system that we study were calcu-
lated from superfluid density with systems up to L = 12. Such
AFQMC simulations need to compute the superfluid density
from dynamical current-current correlation functions, which
cost much more computational effort to reach high-precision
results.

Alternatively, numerical studies in 2D XY models solidly
confirm that the finite-size BKT transition temperature
TBKT(L) has the following form [66,67],

TBKT(L) = TBKT(L = ∞) + a

(ln L + b)2
, (5)

with a, b as coefficients related to the specific problem, and
TBKT(L = ∞) as the final answer under the thermodynamic
limit. The second term in Eq. (5) containing the logarithm of
linear system size L already indicates the strong finite-size
effect. As a result, biased result of TBKT(L = ∞) might be
obtained if only a small group of systems with not large
enough sizes are accessed in the calculations. Based on
Eq. (5), we could extrapolate the precise TBKT(L = ∞) from
the finite-size TBKT(L) results. In the previous study of the
2D interacting Fermi gas without SOC [61], it was found
that the first-order derivative of condensate fraction over the
temperature shows a peak and its location can be identified
as TBKT(L). Such calculations do not involve dynamical mea-
surements and are thus computationally much cheaper and
high-precision results of TBKT(L) can be yielded. A similar
formula as Eq. (5) was also confirmed dealing with the con-
vergence of TBKT with number of fermions for 2D Fermi gas
in Ref. [61]. Thus, in the following, we also concentrate on
calculating TBKT(L) from the condensate fractions and reach-
ing TBKT(L = ∞) using Eq. (5), for the system with SOC.

In Fig. 10, we first demonstrate the determination of the
BKT transition temperature from the spin-singlet pairing
structure factor Ss(�) (defined in Sec. III C) and the total
condensate fraction as a comparison. The correlation ratio
for Ss(�) is defined as Rcorr = 1 − Ss(� + q)/Ss(�) with q
as the smallest momentum on the lattice, i.e., (2π/L, 0) or
(0, 2π/L). It resembles the Binder cumulant which converges
to unity in ordered phase and vanishes in the disordered
phase in the thermodynamic limit. Then the cross points of
the finite-size Rcorr results can be approximately viewed as
the transition temperature. As shown in Fig. 10(b), the cross
points of Rcorr indeed move to the lower temperature with
system size but not with a well defined behavior. Instead, for
the total condensate fraction in Fig. 10(c), we first perform
a polynomial fitting to the numerical data and then compute
its first-order derivative and get the location of the peak as
TBKT(L) [shown in Fig. 10(d)], which avoids the step error in-
volved in the numerical derivative. We have further calculated
the error bars of TBKT(L) applying the standard bootstrapping
technique. Finally, we use Eq. (5) to extrapolate the final result
of BKT transition temperature TBKT(L = ∞) = 0.135(4), as
plotted in inset of Fig. 10(d). The details of the bootstrapping
calculations of TBKT(L) are presented in Appendix C. These
results also indicate large finite-size effect in Rcorr as the cross
point of L = 18 and L = 20 is T/t = 0.158, which strongly
deviates from TBKT(L = ∞).

For the mixed-parity pairing we study, we also have the
numerical data of singlet and triplet condensate fractions.

FIG. 10. Determination of the BKT transition temperatures from
correlation ratio and total condensate fraction. Panels (a) and (b) are
the singlet pairing structure factor Ss(�) and the corresponding
correlation ratio. The inset in panel (b) plots the cross points of
finite-size correlation ratios. Panels (c) and (d) are the total conden-
sate fraction and its first-order derivative (after polynomial fitting).
The inset in panel (d) plots TBKT(L) after the best fitting using
Eq. (5), reaching the final result as TBKT(L = ∞)/t = 0.135(4).
These calculations are performed for L = 8 ∼ 20 systems with
U/t = −4, λ/t = 0.5, μ/t = 0.5.

From them, we can separately extrapolate the BKT transition
temperatures for the spin singlet and triplet superfluidity as
T s

BKT(L = ∞) and T t
BKT(L = ∞), which are expected be the

same. In Fig. 11, we illustrate the determination of TBKT from
both singlet and triplet condensate fractions. The procedure

FIG. 11. Determination of the BKT transition temperatures from
singlet and triplet condensate fractions. Panels (a) and (b) are the
singlet condensate fraction and its first-order derivative (after poly-
nomial fitting). Panels (c) and (d) are the triplet condensate fraction
and its first-order derivative. The inset in panels (b) and (d) plots
TBKT(L) after the best fitting using Eq. (5), reaching the final re-
sult as T s

BKT(L = ∞)/t = 0.135(4) and T t
BKT(L = ∞)/t = 0.135(4),

respectively. Simulation parameters are the same as in Fig. 10.
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FIG. 12. The density-density structure factor at � point for dif-
ferent quantities. The detailed parameters are shown in the figure.
Compared with half-filling case (μ = 0), the structure factor has an
obvious decrease, which indicates that the superconducting order and
CDW do not coexist in the doped system.

is exactly the same as that in Figs. 10(c) and 10(d), and the
details can also be found in Appendix C. These calculations
produce the final results of T s

BKT(L = ∞) = 0.135(4) and
T t

BKT(L = ∞) = 0.135(4). These results are indeed consis-
tent with expectation, meaning the BKT transition for the
quasi-long-range mixed-parity pairing order happens simul-
taneously for singlet and triplet channels.

Based on the results in Figs. 10 and 11, we have obtained
the BKT transition temperature TBKT(L = ∞) = 0.135(4) for
the parameter U/t = −4, λ/t = 0.5, μ/t = 0.5 (with fermion
filling n = 0.6795 at the transition point). This result is con-
sistent with the TBKT computed for filling n = 0.7 in Ref. [48].
We can then conclude that, similarly to previous studies [61],
it is also an efficient way to determine BKT transition temper-
ature from (total, singlet, and triplet) condensate fractions for
attractive fermion systems with SOC.

IV. SUMMARY AND DISCUSSION

The mixed-parity pairing phenomenon is theoretically a
natural result for fermionic systems with broken inversion
symmetry [8,22], and it has been experimentally observed in
various three-dimensional superconductors with SOC [11]. In
addition, the experimental realization of SOC with an artificial
gauge field in an optical lattice by ultracold atoms [38–40]
provides the opportunity to perform more systematic and
deeper study of the mixed-parity pairing in a more controlled
manner. Our AFQMC numerical results in this work can not
only serve as a quantitative guide for such 2D optical lattice
experiments, but also present some new physical results on the
essential pairing structure of the corresponding mixed-parity
pairing.

In summary, we have applied the numerically exact finite-
temperature AFQMC method to study the pairing properties
of attractive fermions with Rashba SOC in the 2D opti-
cal lattice. We evaluate the contributions of the spin singlet
and triplet channels to the mixed-parity pairing. With the

FIG. 13. Vertex contribution of on-site singlet (top), NN triplet
(middle), and NNN triplet (bottom) pairing correlation functions
P	(r) (with 	 = s, t) versus temperature, with r = √

2L/2 = 10
√

2
[as r = (L/2, L/2)] as the largest distance. Results with several
SOC strengths λ/t = 0 ∼ 1.5 are plotted. These calculations are
performed for L = 20 system with T/t = 0.10 and U/t = −4,
μ/t = 0.5.

scanning of temperature, fermion filling, and SOC and in-
teraction strengths, we find that the singlet pairing plays a
dominant role with relatively small triplet contribution in most
relevant parameter regimes. From the pair wave functions, we
find that for intermediate interaction (U/t = −4), the singlet
pairing mainly consists of local Cooper pairs while the triplet
channel is rather extended with major contributions from sev-
eral nearest neighbors. Especially, in the low-filling regime
(n < 0.5), the triplet pairing is dominated by NN fermion
pairs, in contrast with the NNN ones around half filling.
Via the vertex contribution of pairing correlations, we have
shown that the triplet pairing is first enhanced and then sup-
pressed with increasing SOC, and there exists an optimal SOC
strength for observing the triplet pairing. Finally, we have
demonstrated the computation of the BKT transition temper-
ature from the finite-size results of total, singlet, and triplet
condensate fractions, suggesting it also as an efficient method
for systems with SOC. Our numerical results will surely offer
useful benchmarks for future optical lattice experiments as
well as theories and other numerical methods.
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FIG. 14. Condensate fraction versus temperature. The points are QMC data for system size L = 18 and 20, where the error bars denote
the standard error. The curves are the fitting results of different random nc,i(L, T, q) = n̄c(L, T ) + N (0, qσ (L, T )). For simplicity, we plot five
random curves for each system. The parameters are U/t = −4, λ/t = 0.5, and μ/t = 0.5.

Our work also has implications for achieving the spin-
triplet superconductivity and superfluidity. Considering the
fact that the triplet pairing is only confirmed to exist in very
rare systems, it might be a way out to pay more attention
to the systems with mixed-parity pairing. Specifically, if one
can control the triplet contribution to the pairing by tuning
physical parameters (for example, the SOC strength) in such
systems, we might access the special case in which the triplet
channel dominates, similar to Li2Pt3B [14]. Unfortunately, our
work shows that it is very unlikely to realize such special
case for the system described by the lattice model in Eq. (1).
Instead, there are actually other possibilities, such as further
including the Dresselhaus SOC, and NN or NNN attractive
interactions. The former was found to be useful in promotion
of the triplet contribution in interacting Fermi gas within the
mean-field theory [42]. The latter is apparently supported by
our numerical results as the triplet pairing is mainly con-
tributed by NN and NNN Cooper pairs. We leave these open
possibilities to future work.

FIG. 15. The distribution of TBKT(L, q) based on the bootstrap-
ping calculations. We have generated 150 000 random data for each
system size and q. It is well illustrated that the average values
T BKT(L) for different q are identical. Simulation parameters are the
same as in Fig. 14.

ACKNOWLEDGMENTS

Y.-Y.H. acknowledges Peter Rosenberg and Shiwei Zhang
for valuable discussions. This work was supported by the
National Natural Science Foundation of China (under Grants
No. 12047502, No. 12204377, and No. 12275263), the Inno-
vation Program for Quantum Science and Technology (under
Grant No. 2021ZD0301900), the Natural Science Foundation
of Fujian province of China (under Grant No. 2023J02032),
and the Youth Innovation Team of Shaanxi Universities.

APPENDIX A: STRUCTURE FACTOR OF THE
DENSITY-DENSITY CORRELATION FUNCTION

In Ref. [49], it was found that, at half filling, the long-
range charge density wave (CDW) order with a checkerboard
pattern coexists with the pairing order in the ground state for
the lattice model in Eq. (1). We have also checked this, and
our numerical results suggest that the long-range CDW order
should not exist for the case away from half filling.

We compute the density-density correlation function de-
fined as D(r) = 1

4 (〈n̂in̂i+r〉 − 〈n̂i〉〈n̂i+r〉) (with n̂i = n̂i↑ +
n̂i↓), and the corresponding momentum-space structure fac-
tor as SCDW(q) = ∑

r D(r)eiq·r. The leading component of
SCDW(q) appears at the q = M = (π, π ) point, consistent
with the CDW order with the checkerboard pattern.

In Fig. 12, we illustrate the results of the CDW structure
factor SCDW(M) with various tuning parameters. First, with
doping as increasing the chemical potential, SCDW(M) imme-
diately decrease from the half-filling result by approximately
an order of magnitude for n = 0.94, which suggests the sig-
nificant suppression of CDW order away from half filling.
Second, the results with lowering temperature with μ/t =
0.5 (around n = 0.68) explicitly show that SCDW(M) first
decreases, then reaches a minimum and gradually saturates
toward T = 0, indicating the absence of long-range order.
The results with varying SOC and interaction strengths show
some enhancements of SCDW(M) for specific regimes, but
the largest values are still much smaller than the half-filling
results, which also suggests the short-range correlations.
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FIG. 16. BKT transition temperature TBKT(L, q) versus (ln L − 0.7)−2 for the total, singlet, and triplet condensate fractions. The fittings are
based on the correction formula Eq. (5), where −0.7 is determined from the fitting. The singlet and triplet channels give very similar results.
Simulation parameters are the same as in Fig. 14.

APPENDIX B: VERTEX CONTRIBUTIONS OF THE
PAIRING CORRELATION FUNCTIONS VERSUS

TEMPERATURE

In Sec. III C, we have shown the numerical results of vertex
contributions for the pairing correlation functions with tuning
SOC strength and chemical potential. Here, we present more
results with varying temperature.

In Fig. 13, we present the vertex of real-space pairing
correlations P	(r) (with 	 = s, t) with the largest distance as
r = √

2L/2 [as r = (L/2, L/2)] on the lattice with on-site
singlet and NN and NNN triplet channels versus the tem-
perature, for several SOC strengths as λ/t = 0 ∼ 1.5. All the
results show enhancements with decreasing temperature, and
plateaus appear saturating to the T = 0 results, indicating the
quasi-long-range pairing order at the low-temperature regime.
At the low-temperature regime, the triplet correlations reach
the maximum at λ/t = 0.9 for both NN and NNN pairing,
consistent with the results shown in Fig. 7. Besides, these
results also illustrate that the results at T/t = 0.10 are very
close to the T = 0 correspondences.

APPENDIX C: THE DETERMINATION OF THE BKT
TRANSITION TEMPERATURE TBKT(L) AND TBKT(L = ∞)

In this section, we present the details for the determination
of the BKT transition temperature TBKT(L) and TBKT(L = ∞).

Based on the numerical data of condensate fraction
n̄c(L, T ) (including the total, singlet, and triplet) and the
corresponding standard error σ (L, T ), we apply the bootstrap-
ping technique by first generating a set of random data by

nc,i(L, T, q) = n̄c(L, T ) + N (0, qσ (L, T )), (C1)

where i denotes the ith random data with q = 1, 2, 3 for
different range of deviation, and N (0, qσ (L, T )) stands for
the normalized Gaussian distribution with expectation and
standard deviation as 0 and qσ (L, T ). The whole process
follows the Gauss analysis and can quickly construct a large
number of nc,i(L, T, q). Then we fit nc,i(L, T, q) for every set
of random data with a fourth-order polynomial of temperature
around the transition point, and compute the peak location of
its first-order derivative, and then we take it as TBKT(i, L, q).
With the full set of TBKT(i, L, q), one can perform data anal-
ysis and obtain T BKT(L, q) with the stand deviation as its
error bar. Compared with the method to only fit nc(L, T ) with
the original data, this bootstrapping method can additionally
present a reasonable error bar for T BKT(L, q).

In order to show the process, we take L = 18 and 20
for example. Figure 14 shows the original data and fitting
polynomials of five random sets of data. It is shown that the
fourth-order polynomials can capture the essential behavior of
nc around the transition point. By generating 150 000 samples,
Fig. 15 shows the histogram of results for T BKT(L, q), which
are fairly consistent with Gaussian distributions. It is also well
illustrated that, for different q, the average T BKT(L, q) are
obviously identical for both system sizes. The only difference
of these results that the data set generated by different Gaus-
sian noise (different q) shows in the standard deviations of
these distributions. As expected, the distribution is wider (with
larger standard deviation) for larger q.

Finally, to obtain TBKT in the thermodynamic limit, we
perform fittings of TBKT(L, q) with the formula in Eq. (5).
Figure 16 shows the fitting results with different q. The total
condensate fraction as well as its two channels give similar
TBKT, as shown in Fig. 16. To achieve a confident estimate of
TBKT(L = ∞), we adopt the results of q = 3 as the final result
as presented in Sec. III D of the main text.
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