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Two-electron photoemission spectroscopy in topological superconductors
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We demonstrate that the photoelectron counting rate, P(2), measured in two-electron coincidence spectroscopy
experiments, provides insight into the nature of topological superconductivity. In particular, we show that the
spin dependence of P(2) allows one to detect superconducting spin-triplet correlations that are induced in a
topological superconductor even in the absence of an associated triplet superconducting order parameter. This
ability to detect spin-triplet correlations allows one to distinguish between two recently proposed scenarios for
the microscopic origin of topological superconductivity in FeSe0.45Te0.55. Finally, we show that P(2) exhibits a
characteristic intensity maximum that can be employed to detect topological phase transitions.
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I. INTRODUCTION

Topological superconductors harbor Majorana zero modes
(MZMs) whose non-Abelian statistics in combination with
their topologically protection against disorder and decoher-
ence effects provide an exciting platform for the realization
of topological quantum computing [1]. However, the exper-
imental observation and identification of MZMs in a variety
of superconducting systems [2–11] met significant challenges
due to the systems’ small superconducting gaps, which are of-
ten only of the order of a few hundred µeV. The recent report
of topological superconductivity in the iron-based super-
conductor FeSe0.45Te0.55 [12–21], possessing a significantly
larger superconducting gap of a few meV, might therefore
provide a more suitable platform for the unambiguous identifi-
cation of MZMs, and the realization of topology based devices
and topological quantum computing.

The origin of topological surface superconductivity in
FeSe0.45Te0.55 was initially proposed to arise from band
inversion [12,22–24]—rendering FeSe0.45Te0.55 a three-
dimensional topological insulator—and the gapping of the
ensuing surface Dirac cone by proximity induced supercon-
ductivity. We refer to this as the 3DTI mechanism, giving
rise to a Fu-Kane like topological superconductor [25]. How-
ever, the recent experimental observation of ferromagnetism
on the surface of FeSe1−xTex [13–15,26] has shed doubts on
this interpretation, as topological superconductivity arising
from the 3DTI mechanism, being protected by a time rever-
sal symmetry, is destroyed already for rather weak surface
ferromagnetism [27,28]. A competing scenario was therefore
proposed [28–30] in which the very ferromagnetism observed
experimentally in combination with the two-dimensional na-
ture of superconductivity in FeSe0.45Te0.55 and a Rashba
spin-orbit interaction on the surface induced by the broken
inversion symmetry gives rise to topological surface super-
conductivity (we refer to this as the 2DTSC mechanism).

Clearly, further experiments are required to distinguish be-
tween these two proposed scenarios [28].

In this paper, we demonstrate that the photoelectron count-
ing rate [31], P(2), measured in two-electron coincidence
spectroscopy (2e-ARPES) experiments, can provide insight
into the nature of topological superconducting phases, and
thus identify the microscopic origin of topological supercon-
ductivity in FeSe0.45Te0.55. In 2e-ARPES experiments, the
absorption of a single photon leads to the emission of two
coincident photoelectrons. As previously shown [32], the en-
ergy dependence of P(2) can reveal not only the total center of
mass momentum of a Cooper pair, but also its spin state. As
a result, 2e-ARPES experiments can identify superconducting
spin-triplet correlations which are induced within the 2DTSC
mechanism in FeSe1−xTex, but are all but absent in the 3DTI
mechanism. In addition, we show that 2e-ARPES experiments
can identify topological phase transitions which coincide with
a maximum in P(2) for photoelectrons with equal spin. These
results open an avenue to distinguish between proposed mech-
anisms for the emergence of topological superconductivity
in FeSe1−xTex.

II. THEORETICAL MODEL

In the following, we consider the 2e-ARPES photoelec-
tron counting rate for two different types of topological
superconductors: (i) a two-dimensional topological supercon-
ductor with broken time reversal symmetry, as described
by the 2DTSC mechanism, and (ii) a topological super-
conductor on the surface of a three-dimensional topological
insulator, arising from the proximity coupling of its surface
Dirac cone to an s-wave superconductor, as described by the
3DTI mechanism. The former system is described by the
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FIG. 1. (a) Schematic representation of the 2DTSC with local
magnetic moments interacting with conduction electrons on the sur-
face of an s-wave superconductor. (b) Topological phase diagram of
the 2DTSC in terms of the Chern number C in the (µ, JS) plane for
(α, �0) = (0.05, 0.08)t .

Hamiltonian [29,33–35]

HSC =
∑

k

[
ξkc†

k,σ ck,σ + �0(c†
k,↑c†

−k,↓ + c−k,↓ck,↑)

+ 2α
∑
δ,σ,σ ′

sin(k · δ)c†
k,σ

(δ × σ )z
σσ ′ck,σ ′

− JS
∑
σ,σ ′

c†
k,σ

σ z
σσ ′ck,σ ′

]
. (1)

Here, c†
k,σ creates an electron with momentum k and spin σ

and ξk = −2t (cos kx + cos ky) − μ is the tight binding disper-
sion with −t being the nearest neighbor hopping amplitude,
and μ being the chemical potential. Moreover, �0 is the
s-wave superconducting order parameter, α is the Rashba
spin-orbit interaction with δ being the unit vector connect-
ing nearest neighbor sites, and J is the magnetic exchange
coupling between the ordered moments of magnitude S and
the conduction electrons. A schematic representation of the
2DTSC is shown in Fig. 1(a). This topological supercon-
ductor is in the topological class D, and its topological
invariant is the Chern number [35], C. Below, we consider
parameter sets (α,�0, JS) that yield a superconducting gap
of �SC ≈ 3.5 meV, which is similar to that observed in
FeSe1−xTex [21,36]. The resulting topological phase diagram
in terms of C is shown in Fig. 1(b) in the (µ, JS) plane. Note
that a similar Hamiltonian has been discussed in the context
of cold atom systems [37] and semiconductor heterostruc-
tures [38].

The Hamiltonian of the 3DTI system is given by [39]

H3D = −t
∑

r, j=1,2,3

(
�

†
r+ê j

�1 − i� j+1

2
�r + H.c.

)

+ m
∑

r

�†
r �1�r (2)

with spinor

�†
r = (

c†
r,1,↑, c†

r,2,↑, c†
r,1,↓, c†

r,2,↓
)
, (3)

where cr,a,σ annihilates an electron with spin σ in orbital
a = 1, 2 at site r, and �(0,1,2,3,4) = (1 ⊗ 1,1 ⊗ sz,−σy ⊗
sx, σx ⊗ sx,−1 ⊗ sy) with σi and si(i = x, y, z) being Pauli
matrices. Within this model, a topological superconducting
phase emerges on the surface of the 3DTI due to proximity
coupling to a superconductor, and the ensuing opening of a
gap in the 3DTI’s surface Dirac cone. The proximity induced
superconductivity is described by the Hamiltonian

H� = �0

∑
r,a=1,2

c†
r,a,↑c†

r,a,↓ + H.c., (4)

where �0 is the induced superconducting order parameter
with s-wave symmetry. We note that to demonstrate the qual-
itative different form of P(2) in the 2DTSC and 3DTI systems
(see below), it is sufficient to consider for simplicity an s-wave
symmetry of the superconducting order parameter, rather than
the s±-wave symmetry found in FeSe0.45Te0.55. A more ma-
terial specific calculation of P(2) that also takes into account
the multiband structure of FeSe0.45Te0.55 [29] is reserved for a
future study. In 2e-ARPES spectroscopy, there are two distinct
processes in which the absorption of a single photon leads to
the ejection of a correlated pair of electrons [31,32,40–46],
giving rise to the photoelectron counting rate P(2). In the first
one, the absorption of a photon results in the excitation of a
valence band electron into a free photoelectron state, which
subsequently ejects a second valence electron via an electron
energy-loss-like scattering event, mediated by the Coulomb
interaction. In the second process, the photon first excites a
photoelectron from a core level (rather than the conduction
band). The resulting core hole is then filled by a valence
electron, leading to the emission of a second valence electron
through an Auger process. As previously shown [32], both
processes lead to a very similar energy, momentum, and spin
dependence of P(2). However, the use of lower photon energy
laser based XUV sources will not allow 2e-ARPES experi-
ments to directly probe core states. Below, we will therefore
consider P(2) as arising from the first process only, which is
described by the Hamiltonian

Hscat =
∑

k,q,σ,ν

γν (q)d†
k+q,σ ck,σ

(
aq,ν + a†

−q,ν

)

+
∑

k,p,q,α,β

V (q)d†
k+q,αd†

p−q,βdp,βck,α + H.c. (5)

Here, γν (q) is the effective electron-photon dipole interaction,
d†

k,σ (ck,σ ) creates (destroys) a photoelectron (conduction elec-
tron) with momentum k and spin σ , and V (q) = V0/(q2 + κ2)
is the Fourier transform of the (screened) Coulomb interac-
tion, with κ−1 being the screening length. Moreover, aq,ν
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destroys a photon with momentum q and polarization ν.
We note that in the 3DTI, possessing two orbitals per site,
the c-electron operators in Eq. (5) acquire an orbital index.
Since the qualitative nature of P(2) does not depend on κ [32],
we take for concreteness κ−1 = 10a0 for the results shown
below. Moreover, as the photon momentum is much smaller
than typical fermionic momenta, we set it equal to zero, such
that γν (q) = γ0 is simply a momentum-independent constant.

To compute the photoelectron counting rate in 2e-ARPES
experiments, which depends on the two photoelectron mo-
menta and spin projections, we use

P(2)(k′
1, σ

′
1, k′

2, σ
′
2) = 1

Z

∑
a,b

e−βEa

�t
|〈�b|Ŝ(2)(∞,−∞)|�a〉|2

(6)

where Z is the partition function, and the initial and final states
of the entire system before and after the two-step process, |�a〉
and |�b〉, are represented by the following product states:

|�a〉 = |�a〉 |1q,ν〉p |0〉pe ,

|�b〉 = |�b〉 |0〉p |1k′
1,σ

′
1
1k′

2,σ
′
2
〉

pe
(7)

where |1q,ν〉p is the initial state of the photon with wave
vector q and polarization ν, and |1k′

1,σ
′
1
1k′

2,σ
′
2
〉

pe
is the final

photoelectron state with momenta k′
1, k′

2 and spins σ1, σ2. The
sum in Eq. (6) runs over all states |�a,b〉 of the topological
superconductor, �t is the time over which the photon beam
is incident in the superconductor, and Ŝ(2) is the second-order
contribution to the S matrix arising from Hscat. As previously
discussed [32], the photoelectron counting rate can then be
written as P(2) = V 2P(2)

SC + V P(2)
2CP, where V is the volume

of the system. The first term arises from the breaking of a
single Cooper pair, and thus directly reflects the strength of
the superconducting condensate, while the second term arises
from the breaking of two Cooper pairs. Note that the first
term scales as V 2, while the second term scales as V , as
the probability to find a second Cooper pair from which an
electron is ejected is given by 1/V . The explicit forms for P(2)

in the 2DTSC and 3DTI systems are given in Appendices A
and B, respectively.

III. RESULTS

A. P(2) in a 2DTSC

We begin by considering the photoelectron counting rate
in the topological C = 1 phase of the 2DTSC system [at
μ = −3.8t , see black circle in Fig. 1(b)], whose Fermi sur-
face in the normal state is shown in Fig. 2(a). P(2) for two
photoelectrons with opposite momenta (k′

1 = −k′
2) located on

the Fermi surface [see filled blue circles in Fig. 2(a)], and
opposite spins, is shown in Fig. 2(b), both for the normal
and superconducting states. In the normal state, the onset
of P(2) occurs when the energy of the photon is sufficiently
large to eject two photoelectrons with energy εk′

1
(which also

includes the work function). In the superconducting state,
P(2) exhibits two contributions. The first one is a peak at
�ω = ωq − 2εk′

1
= 0 which arises from P(2)

SC and reflects the
breaking of a single Cooper pair. This peak is present only

FIG. 2. P(2) in the topological C = 1 phase at μ = −3.8t [black
dot in Fig. 1(b)]: (a) Fermi surface in the normal state and (b–d)
the corresponding P(2) for three different spin configurations of the
photoelectrons, in the normal (black lines) and superconducting (red
lines) states. The photoelectron momenta k′

1,2 are shown as filled blue
circles in (a). P(2) in the topological C = −2 phase at μ = 0 [white
star in Fig. 1(b)]: (e) Fermi surface in the normal state and (f–h)
the corresponding P(2) for three different spin configurations of the
photoelectrons, in the normal (black lines) and superconducting (red
lines) states. The photoelectron momenta k′

1,2 are shown as filled blue
circles in (e). Parameters are t = 200 meV, (α, JS) = (0.05, 0.3)t ,
and (b–d) �0 = 0.08t and (f–h) �0 = 0.04t .

if the two photoelectrons possess the same center of mass
momentum and spin state as a Cooper pair [32], as is the
case here. The second contribution, arising from P(2)

2CP, is a
continuum with onset energy �ω ≈ 2�k′

1
, with �k′

1
being

the superconducting gap at k′
1, implying that the two mea-

sured photoelectrons are ejected from two different Cooper
pairs. Moreover, it was previously shown that the emer-
gence of spin-triplet correlations, which are induced by the
interplay of ferromagnetism, Rashba spin-orbit interaction,
and s-wave superconductivity, is an essential feature of a
2DTSC [35,47]. To investigate whether these correlations
can be probed via 2e-ARPES experiments, we present P(2)
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for two photoelectrons possessing equal spins in Figs. 2(c)
and 2(d). Interestingly enough, we find that even for this
spin configuration, a peak at �ω = 0 exists. As the starting
Hamiltonian, Eq. (5), does not contain a triplet superconduct-
ing order parameter, this peak at �ω = 0 should be attributed
to the aforementioned emergence of superconducting spin-
triplet correlations.

To gain more insight into the relation between P(2)
SC and

the superconducting pairing correlations, we consider the
latter in the spin-triplet channel (S = 1, Sz = ±1), given by
CT

k,σ = 〈c†
k,σ c†

−k,σ 〉 and σ =↑,↓, and the singlet channel (S =
0), given by CS

k = 〈c†
k,↑c†

−k,↓ − c†
k,↓c†

−k,↑〉. We note that the
superconducting correlations in the spin-triplet channel S =
1, Sz = 0 are identically zero, such that P(2) for photoelec-
trons with opposite spins arises solely from the presence of
superconducting correlations in the singlet channel. For the
same momentum on the Fermi surface [see filled blue circles
in Fig. 2(a)] as we considered for the calculation of P(2) in
Figs. 2(b)–2(d), we obtain |CT

k,↑| ≈ 0.347, |CT
k,↓| ≈ 0.026, and

CS
k = 0.252 (note that CT

k,σ is in general a complex function).

Given that P(2)
SC ∼ C2 [32], the relative peak intensities in P(2)

SC
in the three different channels are in good agreement with
the relative strength of the superconducting correlations. This
supports our conclusion that P(2)

SC indeed reflects the supercon-
ducting correlations in the system. Finally, we note that we
obtain qualitatively similar results for P(2) in the topological
C = −2 phase of the 2DTSC [at μ = 0, see white star in
Fig. 1(b)], whose Fermi surface in the normal state is shown
in Fig. 2(e). P(2) shown in Figs. 2(f)–2(h) exhibits a peak at
�ω = 0 for all three spin configurations, again reflecting the
presence of spin-triplet Cooper pairs.

While the presence of spin-triplet correlations is a key
feature of a 2DTSC, as shown in Fig. 2, it is not sufficient
to uniquely identify a topological phase, as the interplay
of ferromagnetism, a Rashba spin-orbit coupling, and an
s-wave superconducting order parameter can also induce spin-
triplet correlations in a trivial superconducting phase [35].
The question thus arises whether 2e-ARPES experiments can
be employed to distinguish between topological and trivial
superconducting phases, or to at least identify topological
phase transitions. To answer this question, we consider the
topological phase transition between a trivial phase and the
topological C = −2 phase, along the black dashed line shown
in Fig. 1(b), which is accompanied by the closing of the
superconducting gap at the X/Y points, yielding a gap closing
momentum, kgc = (0,±π ), (±π, 0). We thus consider two
photoelectrons with momenta k′

1 = −k′
2 = kgc and present in

Fig. 3(a), P(2)
SC at �ω = 0 as a function of JS. As we tune the

system through a topological phase transition at (JS)cr = �0,
we find that while P(2)

SC is nonzero both in the topological
and trivial phases, consistent with earlier findings [35], it
exhibits a maximum at (JS)cr. We obtain the same result for
the phase transition between a trivial phase and the topo-
logical C = 1 phase as shown in Fig. 3(b), along the purple
dashed line in Fig. 1(b), where the gap closing occurs at
kgc = (±π,±π ). As before, we find that P(2)

SC reflects the
presence of superconducting spin-triplet correlations, CT

k,σ ,
which also exhibit a peak at the topological phase transi-
tion, as shown in Figs. 3(c) and 3(d) for several momenta

FIG. 3. P2
SC at �ω = 0 for photoelectrons with equal spin

projections and momenta k′
1 = −k′

2 = kgc at the gap closing mo-
mentum kgc, across a topological phase transition into the (a) C =
−2 [μ = 0, kgc = (0, ±π ), (±π, 0)] and (b) C = 1 [μ = 4t, kgc =
(±π,±π )] phases. The vertical dashed blue line indicates the
topological phase transition at (JS)cr = �0. (c, d) |CT

k,↑| for the
cases shown in (a) and (b), respectively, for several momenta k =
kgc − �k near kgc. Parameters are t = 200 meV and (α, �0) =
(0.05, 0.08)t .

near kgc, corresponding to the cases shown in Figs. 3(a)
and 3(b). An analytical expression for the spin-triplet corre-
lations near kgc is given in Appendix C, which demonstrates
that the increase in CT

k,σ as one approaches the topological
phase transition is a direct consequence of the decreasing
excitation energy, and hence the gap closing at kgc. The fact
that P(2)

SC exhibits a maximum at (JS)cr for both topological
phase transitions shown in Figs. 3(a) and 3(b) implies that
this maximum is a general signature of topological phase
transitions in a 2DTSC, that can be employed to identify
them.

B. P(2) in a 3DTI system

Finally, we consider P(2) in the topological superconduc-
tor arising from the 3DTI mechanism whose surface Dirac
cone in the normal state is schematically shown in Fig. 4(a).
To this end, we consider a system that is translationally
invariant in the x and y directions and possesses a finite
number of layers Nz in the z direction. We assume that
photoelectrons are ejected from the surface layer (which con-
tains the Dirac cone) only, as the spectral weight of the
Dirac cone on layers below the surface is negligible. More-
over, we assume below that both photoelectrons are of the
same orbital character in the 3DTI system (orbital selec-
tivity can in general be achieved by varying the energy or
polarization of the incoming photon [48]). However, P(2) is
independent of the orbital from which the photoelectrons are
ejected.

In Fig. 4(b), we present P(2) for photoelectrons ejected
from the same orbital with opposite spins and momenta k′

1 =
−k′

2 on the Fermi surface of the Dirac cone [see filled red cir-

094503-4



TWO-ELECTRON PHOTOEMISSION SPECTROSCOPY IN … PHYSICAL REVIEW B 109, 094503 (2024)

FIG. 4. (a) Schematic representation of a surface Dirac cone in a
3DTI with Nz = 5 layers. (b, c) P(2) for photoelectrons with momenta
indicated by filled red circles in (a) and different spin states. Param-
eters used here are t = 200 meV and (m, μ, �0) = (2, 0.04, 0.02)t .

cles in Fig. 4(a)]. As expected, P(2) exhibits a peak at �ω = 0
arising from the breaking of a single (singlet) Cooper pair, and
an onset of a continuum at �ω ≈ 2�k′

1
arising from breaking

of two Cooper pairs. In contrast, for photoelectrons with the
same spin state, P(2) exhibits a peak at �ω = 0 whose inten-
sity is more than 500 times smaller [see Fig. 4(c)] than that for
the case of opposite photoelectron spins [see Fig. 4(b)]. This
is consistent with vanishingly small superconducting correla-
tions CT

k,σ in the triplet S = 1, Sz = ±1 channel (as before, the
correlations in the S = 1, Sz = 0 channel are identically zero).
The reason for the vanishingly small CT

k,σ lies in the helical
structure of the surface Dirac cone, reflecting spin momentum
locking, which implies that states with opposite momenta
k1 = −k2 possess opposite spin polarizations. As such, these
states can only form Cooper pairs in the singlet channel.
However, this spin momentum locking, and the associated
complete suppression of pairing in the spin-triplet channel, is
lifted when the Dirac point is located away from zero energy
at nonzero ED. Since the degree to which the spin momentum
locking is violated scales with ED, the spin-triplet correlations
and the associated intensities in P(2)

SC remain very small for
realistic values of ED [12–15], as shown in Fig. 4(c). Thus,
in the 3DTI system, the �ω = 0 peak in P(2)

SC for equal spin
configuration is either absent, or at least greatly suppressed in
comparison to the peak in P(2)

SC for opposite spin projections,
in contrast to the results in the 2DTSC system (see Fig. 2),
implying that the presence of ferromagnetism is crucial for
the emergence of robust spin-triplet correlations. We thus
conclude that the presence or absence of a �ω = 0 peak in
P(2) for photoelectrons with equal spin states is a characteristic
signature of topological superconductivity arising from the
2DTSC and 3DTI mechanisms, respectively, and thus allows
us to discriminate between them.

FIG. 5. Schematic form of the Fermi surface of FeSe0.5Te0.5 with
calculated projections of fields of view (red circles) of two time-of-
flight (TOF) analyzers separated by 90◦. (a) Calculation done with
0.2-eV kinetic energy of the two electrons (or an incident photon
energy of hν ≈ 9 eV), corresponding to electrons from the holelike
Fermi surface. (b) Calculation done with 6.0-eV kinetic energy of
the two electrons (or an incident photon energy of hν ≈ 21eV), cor-
responding to electrons from the electronlike Fermi surface. (a) and
(b) are adapted from [12].

C. Feasibility of 2e-ARPES measurements in FeSe0.45Te0.55

We note that our findings are directly applicable to the
case of FeSe0.45Te0.55 to distinguish between the recently pro-
posed 2DTSC [29,30] and 3DTI [12,22–24] mechanisms for
the emergence of topological surface superconductivity. As
discussed in [41,49], a possible configuration for 2e-ARPES
experiments is the use of two time-of-flight (TOF) analyzers
placed orthogonal to each other, with an XUV photon beam
normally incident onto the sample under study. In this con-
figuration, 2e-ARPES can explicitly probe both the holelike
and electronlike Fermi surfaces of FeSe0.45Te0.55 using two
TOF analyzers and XUV photon energies of 9 and 21 eV
[as illustrated in Figs. 5(a) and 5(b)]. This calculation is
based on the standard formulas relating the angle at which
an electron is photoemitted to its in-plane momentum in the
material, i.e., k‖ =

√
2m
h̄

√
Ek sin θ [48]. Figures 5(a) and 5(b)

illustrate that both the holelike and electronlike Fermi surfaces
in FeSe0.45Te0.55 can be measured independently of each other
by varying the incident photon energy.

IV. CONCLUSIONS

We have demonstrated that 2e-ARPES experiments can de-
tect superconducting spin-triplet correlations that are induced
in a 2DTSC, even in the absence of an associated long-range
order parameter. This allows us to identify characteristic sig-
natures in the 2e-ARPES photoelectron counting rate P(2) for
equal spin configuration that distinguish between the recently
proposed 2DTSC [29,30] and 3DTI [12,22–24] mechanisms
for the emergence of topological surface superconductivity in
FeSe0.45Te0.55. Finally, we showed that P(2)

SC exhibits a char-
acteristic feature—a maximum in intensity—at a topological
phase transition that allows one to identify its occurrence.
These results show that 2e-ARPES spectroscopy represents
an invaluable experimental probe in the study of topological
superconductors.
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APPENDIX A: PHOTOELECTRON COUNTING RATE FROM 2DTSC

To compute P2, we start from Eq. (6), assuming that a photon beam is incident for times −�t/2 � t � �t/2. As discussed
in the main text, the photon momentum q is much smaller than typical fermionic momenta, and we therefore set it equal to zero,
such that γν (q) = γ0 is simply a momentum-independent constant. We then have

〈�b|Ŝ(2)(∞,−∞)|�a〉 =
∫ �t/2

−�t/2
dt2

∫ ∞

t2

dt1
∑
k1,σ1

∑
k2,σ2

∑
k3,σ3

∑
p

γ0V (p)

× 〈�b| d†
k2+p,σ2

(t1)d†
k3−p,σ3

(t1)dk3,σ3 (t1)ck2,σ2 (t1)d†
k1,σ1

(t2)ck1,σ1 (t2)aq=0,λ(t2) |�a〉 . (A1)

The last term in the integrand can then be simplified as

〈�b| d†
k2+p,σ2

(t1)d†
k3−p,σ3

(t1)dk3,σ3 (t1)ck2,σ2 (t1)d†
k1,σ1

(t2)ck1,σ1 (t2)aq=0,λ(t2) |�a〉
= 〈1k′

1,σ
′
1
1k′

2,σ
′
2
| d†

k2+p,σ2
(t1)d†

k3−p,σ3
(t1)dk3,σ3 (t1)d†

k1,σ1
(t2) |0〉 〈�b| ck2,σ2 (t1)ck1,σ1 (t2) |�a〉 〈0| aq=0,λ(t2) |1q=0,λ〉

= ei(εk2+p+εk3−p−εk3 )t1 eiεk1 t2
[
δk′

1,k3−pδσ ′
1,σ3δk′

2,k2+pδσ ′
2,σ2 − δk′

1,k2+pδσ ′
1,σ2δk′

2,k3−pδσ ′
2,σ3

]
× δk3,k1δσ3,σ1 e−iωqt2 〈�b| ck2,σ2 (t1)ck1,σ1 (t2) |�a〉 (A2)

where εk is the energy of a photoelectron with momentum k. Using the spinor �
†
k = (c†

k,↑, c†
k,↓, c−k,↓, c−k,↑), we rewrite Eq. (1)

in matrix form as H = ∑
k�

†
kĤk�k and diagonalize it using the Bogoliubov transformation

�
†
k = (

c†
k,↑, c†

k,↓, c−k,↓, c−k,↑
) = (

γ
†
1,k, γ

†
2,k, γ

†
3k, γ

†
4,k,

)
Û †

k = �
†
kÛ †

k , �k =

⎛
⎜⎜⎜⎝

ck,↑
ck,↓

c†
−k,↓

c†
−k,↑

⎞
⎟⎟⎟⎠ = Ûk

⎛
⎜⎜⎝

γ1,k
γ2,k
γ3k
γ4,k

⎞
⎟⎟⎠ = Ûk�k (A3)

where Ûk is a unitary matrix consisting of the eigenvectors of Ĥk. This yields

H =
∑

k

�
†
kĤk�k =

∑
k

�
†
kÛ †

k ĤkÛk�k =
∑

k

�
†
kÊk�k (A4)

where

Êk =

⎛
⎜⎜⎝

E1,k 0 0 0
0 E2,k 0 0
0 0 E3,k 0
0 0 0 E4,k

⎞
⎟⎟⎠ (A5)

and Ei,k(i = 1, . . . , 4) are the eigenenergies of Ĥk. In the main text, we took the photoelectron momenta to be opposite, such that
k′

2 = −k′
1. Using the Bogoliubov transformation of Eq. (A3) to simplify the last term in Eq. (A2), we then obtain from Eqs. (6)

and (A1) after taking the limit �t → ∞ that P(2) = V 2P(2)
SC + V P(2)

2CP where

P(2)
SC (k′

1, σ
′
1, σ

′
2) = 2πγ 2

0 δ
(
2εk′

1
− ω0

)∣∣∣∣∣
∑

k

4∑
i=1

[Uk]ni[Uk]∗mi

[
V
(
k − k′

1

)
nF (Ei,k )

2εk′
1
− εk + Ei,k + iδ

− V
(
k − k′

1

)
[1 − nF (Ei,k )]

2εk′
1
− εk − Ei,k + iδ

]∣∣∣∣∣
2

,

P(2)
2CP(k′

1, σ
′
1, σ

′
2) = 2πγ 2

0

∑
k

4∑
i, j=1

∣∣[Uk]n,i

∣∣2∣∣[Uk]m, j

∣∣2δ(2εk′
1
− ω + Ei,k − Ej,k

)

×
∣∣∣∣∣ V

(
k − k′

1

)
2εk′

1
− εk + Ei,k + iδ

+ V
(
k − k′

1

)
2εk′

1
− εk − Ej,k + iδ

∣∣∣∣∣
2

[1 − nF (Ei,k )]nF
(
Ej,k

)
(A6)

where n = 1, 2 for σ ′
1 =↑,↓ and m = 4, 3 for σ ′

2 =↑,↓.
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APPENDIX B: PHOTOELECTRON COUNTING RATE FROM 3DTI

To compute the photoelectron counting rate for the 3DTI system, we need to consider a slab geometry, since the Dirac cone
only emerges on the surface layer of the system. To this end, we perform a partial Fourier transform of the Hamiltonian in
Eqs. (2) and (4) from real space (x, y, z) to (kx, ky, z). Since ARPES is a surface sensitive probe, we assume that the interaction
between the incident photon, conduction electrons, and photoelectrons occurs only on the surface layer of the system, denoted
by z = 1. The scattering Hamiltonian is then given by

Hscat =
∑

k,q,σ,ν

γν (q)d†
k+q,σ ck,z=1,m1,σ

(
aq,ν + a†

−q,ν

)+
∑

k,p,q,α,β

V (q)d†
k+q,αd†

p−q,βdp,βck,z=1,m2,α + H.c. (B1)

with m1,2 denoting the orbital index. The derivation of P(2) is then similar to that in the 2DTSC system, with the exception that
we now have a layer index z and orbital indices m1,2. As a result, the scattering amplitude 〈�b| ck2,σ2 (t1)ck1,σ1 (t2) |�a〉 in Eq. (A2)
needs to be generalized to

〈�b| ck2,z=1,m2,σ
′
2
(t1)ck1,z=1,m1,σ

′
1
(t2) |�a〉 . (B2)

We next rewrite the 3DTI Hamiltonian in matrix form and diagonalize it via

H3D =
∑

k

�
†
kĤk�k =

∑
k

�
†
kÛ †

k ĤkÛk�k =
∑

k

�
†
kÊk�k (B3)

where k = (kx, ky), and we defined the spinor

�
†
k = (

ψ
†
k,z=1 · · · ψ

†
k,z=Nz

)
, (B4)

ψ
†
k,z = (

c†
k,z,1,↑ c†

k,z,2,↑ c†
k,z,1,↓ c†

k,z,2,↓ c−k,z,1,↑ c−k,z,2,↑ c−k,z,1,↓ c−k,z,2,↓
)
. (B5)

Moreover, the Bogoliubov transformation is given by

�k =

⎛
⎜⎝ψk,z=1

...

ψk,z=Nz

⎞
⎟⎠ = Ûk

⎛
⎜⎝ γ1,k

...

γ8Nz,k

⎞
⎟⎠ = Ûk�k (B6)

where Ûk is the unitary matrix consisting of the eigenvectors of Ĥk. Using the Bogoliubov transformation of Eq. (B6) to simplify
the term in Eq. (B2), we then obtain from Eqs. (6) and (A1) after taking the limit �t → ∞ and for k′

2 = −k′
1 that

P(2)(k′
1, m1, σ

′
1, m2, σ

′
2) = V 2P(2)

SC (k′
1, m1, σ

′
1, m2, σ

′
2) + V P(2)

2CP(k′
1, m1, σ

′
1, m2, σ

′
2) (B7)

where

P(2)
SC = 2πγ 2

0 δ
(
2εk′

1
− ω

)∣∣∣∣∣∣
∑

k

8Nz∑
i=1

[Uk]∗4+n(m2 ,σ ′
2 ),i

[Uk]n(m1 ,σ ′
1 ),i

[
V
(
k − k′

1

)
nF (Ei,k )

2εk′
1
− εk + Ei,k + iδ

− V
(
k − k′

1

)
[1 − nF (Ei,k )]

2εk′
1
− εk − Ei,k + iδ

]∣∣∣∣∣∣
2

,

P(2)
2CP = 2πγ 2

0

∑
k

8Nz∑
i, j=1

∣∣∣[Uk]4+n(m2 ,σ ′
2 ),i

∣∣∣2∣∣∣[Uk]n(m1 ,σ ′
1 ), j

∣∣∣2δ(2εk′
1
− ω + Ei,k − Ej,k

)

×
∣∣∣∣∣ V

(
k − k′

1

)
2εk′

1
− εk + Ei,k + iδ

+ V
(
k − k′

1

)
2εk′

1
− εk − Ej,k + iδ

∣∣∣∣∣
2

[1 − nF (Ei,k )]nF
(
Ej,k

)
, (B8)

and

n(m,σ ) =

⎧⎪⎪⎨
⎪⎪⎩

1 , (m, σ ) = (1,↑)
2 , (m, σ ) = (2,↑)
3 , (m, σ ) = (1,↓)
4 , (m, σ ) = (2,↓)

.

APPENDIX C: SUPERCONDUCTING SPIN-TRIPLET CORRELATIONS NEAR A TOPOLOGICAL PHASE TRANSITION

We showed in Fig. 3 that the peak in P(2)
SC at the topological phase transition reflects the peak in the superconducting spin-triplet

correlations. To derive an analytical form for these correlations, we use the structure of the Hamiltonian matrix near the gap
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closing points, which are given by kgc = (0,±π ), (±π, 0) for the transition between the trivial C = 0 and −1 phases (case 1)
and by kgc = (±π,±π ) for the transition between the trivial C = 0 and 2 phases (case 2). Specifically, considering these phase
transitions with μ = 0 and 4t for case 1 and 2, respectively, we have ξkgc=0. Thus, to linear order in the deviation from the gap
closing momentum kgc, the Hamiltonian matrix is given by

Ĥ =

⎛
⎜⎜⎝

−J −Ak � 0
−A∗

k J 0 −�

� 0 −J −Ak
0 −� −A∗

k J

⎞
⎟⎟⎠ (C1)

where Ak = 2α(sin kx + i sin ky).
Diagonalizing the Hamiltonian matrix yields the following eigenenergies (i = 1, . . . , 4):

Ei = ±
√

(� ± J )2 + |Ak|2. (C2)

Next, we compute the triplet correlations:

CT,↑ = 〈c−k,↑ck,↑〉 =
∑

i

[Ûk]1i[Ûk]∗4inF (Ei,k ). (C3)

At T = 0 only states with negative energies E1,2 = −
√

(� ± J )2 + |Ak|2 contribute to CT,↑. These energy states possess the
normalized eigenvectors

�1 = 1√
2
[
1 + [

√
(�+J )2+|Ak|2+�+J]2

|Ak|2
]
(

−
√

(� + J )2 + |Ak|2 + � + J

A∗
k

,−1,

√
(� + J )2 + |Ak|2 + � + J

A∗
k

, 1

)
,

�2 = 1√
2
[
1 + [

√
(�−J )2+|Ak|2−(�−J )]2

|Ak|2
]
(√

(� − J )2 + |Ak|2 − (� − J )

A∗
k

, 1,

√
(� − J )2 + |Ak|2 − (� − J )

A∗
k

, 1

)
. (C4)

We thus obtain at T = 0

CT
k,↑ = [Ûk]11[Ûk]∗41 + [Ûk]12[Ûk]∗42 = −

√
(� + J )2 + |Ak|2 + � + J

2{|Ak|2 + [
√

(� + J )2 + |Ak|2 + � + J]2}
Ak

+
√

(� − J )2 + |Ak|2 − (� − J )

2{|Ak|2 + [
√

(� − J )2 + |Ak|2 − (� − J )]2}
Ak (C5)

with the second term being the dominant one near the gap
closing. To understand the origin of the peak in the supercon-
ducting spin-triplet correlations in more detail, we expand the
above expression for |Ak| � � − J , which yields to leading
order in |Ak|

CT
k,↑ ≈ |Ak|

4(� − J )
. (C6)

Comparing this with the known result for the spin-singlet
correlations in a conventional s-wave superconductor CS

k =
�/Ek, where Ek is the energy dispersion in the supercon-
ducting state, we infer that Ak in Eq. (C6) corresponds to
the induced spin-triplet gap, while (� − J ) is the excitation
energy as expected from Eq. (C2). We can thus conclude that
the reason for the increase of the spin-triplet correlations as
one approaches the gap closing, and thus for the peak in P(2)

SC
at the phase transition, is the decrease in the excitation energy
(� − J ).

In Fig. 6, we present a comparison between the numerically
obtained triplet correlations |CT

k,↑|, and the analytical form of
the triplet correlations obtained from Eq. (C5), for two differ-
ent momenta near the gap closing momentum kgc = (0,±π ).
The good agreement between these two results confirmed the
validity of the analytical form shown in Eq. (C5).

FIG. 6. (a, b) Comparison between the numerical and analytical
results for |CT

k,↑| for two different momenta near the gap closing
momentum kgc = (0, ±π ).
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