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Impurity effect on Bogoliubov Fermi surfaces: Analysis based on iron-based superconductors
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The effect of impurities on a superconductor with Bogoliubov Fermi surfaces (BFSs) is studied using a realistic
tight-binding model. Based on the band structure composed of d-orbitals in tetragonal FeSe, whose S-doped
sample is a potential material for a BFS, we construct the superconducting state by introducing a time-reversal
broken pair potential in terms of the band index. We further consider the effect of impurities on the BFS, where
the impurity potential is defined as a local potential for the original d-orbitals. The self-energy is calculated using
the (self-consistent) Born approximation, which shows an enhancement of the single-particle spectral weight
on the Fermi surface. This is consistent with the previous phenomenological theory and is justified by the present
more detailed calculation based on the FeSe-based material.

DOI: 10.1103/PhysRevB.109.094502

I. INTRODUCTION

The phenomenon of superconductivity is induced by
Cooper-pair condensation near the Fermi surface, which typi-
cally results in the formation of a superconducting gap at the
Fermi level. This gap structure is usually classified into three
categories: full-gap, point-node, and line-node [1]. However,
it has been suggested that some superconductors exhibit a
fourth type of gap structure known as a Bogoliubov Fermi
surface (BFS) or ultranodal pair, in which the Fermi surface
persists even in the superconducting state. This type of su-
perconductor was first proposed in the context of multiband
superconductors [2,3] and superfluid helium [4–6]. More re-
cently, specific models with broken time-reversal symmetry
and preserved inversion symmetry have also been proposed as
candidate systems [7,8]. In these models, the BFS is topologi-
cally protected and remains stable against small perturbations.
The characteristic features of the BFS have been the subject
of theoretical studies [9–30].

In addition to these theoretical studies, the possibility of
BFSs has been experimentally implied. It has been pointed
out in some materials with unconventional superconductivity
that there exists a residual zero-energy density of states (DOS)
in the superconducting state [31–34]. Especially in Fe(Se, S),
the zero-energy DOS and the presence of low-energy carri-
ers have been observed through the tunnel conductance of
scanning tunneling spectroscopy [35], heat capacity, thermal
conductivity [36,37], and laser angle-resolved photoemission
spectroscopy [38]. As for the theoretical description of the
BFS in Fe(Se, S), the interband pairing with broken time-
reversal symmetry is suggested to play an important role for
the system having the BFS [16]. This model has succeeded
in qualitatively reproducing the behavior of the DOS and the
heat capacity.

Given the fact that the actual materials may have BFSs, it is
interesting to ask if there exists characteristic physics specific
to superconductors with BFSs. The electronic states near the
BFS are composed of Bogoliubov quasiparticles (bogolons),

which describe the low-energy excitation of the supercon-
ducting state. It is expected that the low-energy properties
are governed by the bogolon’s nature. In our previous work,
the authors pointed out that the characteristic feature of a
bogolon enters through the impurity scattering and interaction
[25]. We studied the physical properties of the Bogoliubov
Fermi liquid state near the BFS for a system with pre-
served inversion and broken time-reversal symmetries, and we
found that the pair amplitude (anomalous Green’s function) of
bogolons becomes finite. Interestingly, the pair amplitude has
a purely odd function with respect to the relative time of two
bogolons, which is called the odd-frequency pairing. The con-
cept of odd-frequency pairing has been previously examined
in relation to electrons and 3He [39–47], but in the present
context, the Cooper pair is composed of bogolons. Since the
impurity effect gives a dominant contribution at low energies,
we analyzed it in detail and found that the odd-frequency pair
induces the zero-energy peak in the single-particle DOS in
bulk. While this analysis can capture a qualitative feature of
the BFS, the origin of the impurity potential on bogolons is not
clear, which should be derived from the scattering potential
defined in terms of original electrons.

In this paper, we derive the effective low-energy model of
bogolons by starting with the tight-binding model of FeSe.
We use the realistic tight-binding model of full d-orbitals at
the Fe site generated from the first-principles calculation. We
then add the intraband and interband pair potentials following
Ref. [16] to create the BFS. We further consider the impurity
potential defined in the original normal electrons, and we
clarify its effect on the bogolons near the BFS. Although
these forms of the pair potential are not fully realistic, our
approach can estimate the order of magnitude for physical
quantities. This work also demonstrates the validity of the
phenomenological description of the low-energy physics of
bogolons given in Ref. [25].

This paper is organized as follows. In Sec. II we review
the appearance of the odd-frequency pair of bogolons and
compare it with the electrons’ Cooper pair. Sections III and

2469-9950/2024/109(9)/094502(13) 094502-1 ©2024 American Physical Society

https://orcid.org/0000-0002-9258-9478
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.094502&domain=pdf&date_stamp=2024-03-04
https://doi.org/10.1103/PhysRevB.109.094502


MIKI, IKEDA, AND HOSHINO PHYSICAL REVIEW B 109, 094502 (2024)

FIG. 1. Schematic table for the mechanism of odd-frequency pairing of bogolons and its comparison with the s-wave superconductor. The
second row (“Clean”) shows the frequency dependence of the Cooper pairs in the clean limit. The third row (“Dirty”) shows that of the dirty
superconductor. The pairs that remain after the impurity average are indicated in the fourth row.

IV are devoted to an explanation of our model of a BFS
based on FeSe. In Sec. V, we show the numerical results
for the single-particle spectra. We summarize our results in
Sec. VI. Below, we take the unit h̄ = kB = a = 1, where a is
a lattice constant. Some computational details are provided in
Appendixes A–D.

II. OVERVIEW: ODD-FREQUENCY PAIRING OF
BOGOLONS

Before we go into the details of the tight-binding model
study, we provide here an overview of the concept of our work
by comparing the two cases: electrons in the conventional
(s-wave) superconductor, and low-energy bogolons near the
BFS discussed in Refs. [25,26]. We assume that the system
with the BFS has inversion symmetry and no time-reversal
symmetry. Although the pure odd-frequency pair of bogolons
is generally induced by nonideality, i.e., disorder or interac-
tion effects [25], we limit ourselves below to the impurity
effect, which becomes dominant at low energies.

As schematically shown in Fig. 1, we consider the two
superconducting systems with an impurity potential. In both
cases, the total Hamiltonian is given in the form H = H0 +
Himp, where H0 is a clean-limit part and Himp is an impu-
rity potential part. The clean-limit part is explicitly given by
H0 = ∑

kσ (εkc†
kσ

ckσ + �c†
k↑c†

−k,↓ + H.c.) for electrons with
the single-particle energy εk, the annihilation operator ckσ ,
and the s-wave pair potential � (left column). As for the
low-energy effective model of bogolons, the Hamiltonian
is H0 = ∑

k εb
kα

†
kαk, where αk is the annihilation opera-

tor of the bogolon (right column). We note that the latter
bogolon model describes the degrees of freedom near the
BFS and does not have a spin index and an off-diagonal
part since we assume the broken time-reversal symmetry
and preserved inversion symmetry [25]. Namely, since �b

k
depends only on the wave vector, we have the identity∑

k �b
kα

†
kα

†
−k = −∑

k �b
−kα

†
kα

†
−k = 0 for �b

k = �b
−k. This

point is summarized in the second row (labeled as “Clean”) of
Fig. 1.

In the presence of impurity potentials, the Green’s func-
tions Ĝkk′ is written in the form of a 2 × 2 matrix by using

a Nambu spinor (ck↑, c†
−k↓)T for electrons with s-wave su-

perconductivity and (αk, α
†
−k)T for bogolons near the BFS,

respectively. The Green’s functions for each system satisfy the
Dyson equation, which is written as

Ĝkk′ (iωn) = Ĝ0
k(iωn)δkk′ + Ĝ0

k(iωn)
∑

k1

ûkk1 Ĝk1k′ (iωn), (1)

where ûkk′ is an impurity scattering matrix, which is to be
averaged. ωn is a fermionic Matsubara frequency.

One may wonder if the odd-frequency pair amplitude
might not arise from the static potential ûkk1 . The appearance
of the dynamical pair amplitude and pair potential can be
understood by considering the lowest-order perturbation term.
The first-order term vanishes after the random average, and
hence we consider the second-order self-energy of the impu-
rity potential:

�̂kk′ (iωn) =
∑

k1

ûkk1 Ĝ0
k1

(iωn)ûk1k′ . (2)

This self-energy includes both the even- and odd-frequency
parts originating from the Green’s function G0, and it breaks
the inversion and translational symmetry. This situation is
summarized in the third row (labeled as “Dirty”) of Fig. 1.
After taking an impurity average, the inversion and transla-
tional symmetry are recovered (see the fourth row of Fig. 1).

The above Green-function structures are the same between
electrons in an s-wave superconductor and bogolons near the
BFS. Below, we clarify the difference between the two super-
conducting systems by focusing on the detailed structures of
the Green’s functions.

A. Electrons in an s-wave superconductor

First, we consider the case of the s-wave superconductor
with inversion symmetry in the clean limit. The unperturbed
Green’s function is given by

Ĝ0
k(iωn) =

(
G0

k(iωn) F 0
k (iωn)

F 0†
k (iωn) Ḡ0

k(iωn)

)
. (3)
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The off-diagonal part is present already in the clean limit.
Now we consider the effect of nonmagnetic impurities. Since
the impurity scattering potential is gauge-invariant in terms of
electrons, ûkk′ has only the diagonal part:

ûkk′ =
(

u(k, k′) 0

0 −u(k′, k)

)
. (4)

Inserting Eqs. (3) and (4) into Eq. (2), the pair potential
[�̂kk′ (iωn)]12 can be written as

[�̂kk′ (iωn)]12 =
∑

k1

u(k, k1)F 0
k1

(iωn)u(k1, k′). (5)

We note that only the spin-singlet pair is induced for a non-
magnetic impurity. The frequency dependence enters through
F 0

k1
(iωn), which is the even function of frequency. Correspond-

ingly, the pair potential also has the even frequency functional
form after the impurity average [see the fourth row (labeled as
“Impurity averaged”) of Fig. 1].

B. Low-energy bogolons near the Bogoliubov Fermi surface

We consider next the case of a bogolon. In the clean limit,
the Green’s function is given by

Ĝ0
k(iωn) =

(
G0

k(iωn) 0

0 Ḡ0
k(iωn)

)
, (6)

where the inversion symmetry prohibits off-diagonal terms.
Since the gauge symmetry is broken, the impurity potential of
a bogolon generally has both diagonal (α†α) and off-diagonal
(α†α†) terms effectively, which are denoted by u1(k, k) and
u2(k, k′), respectively. We write the concrete form of ûkk′ as
follows:

ûkk′ =
(

u1(k, k′) u2(k, k′)

u2(k′, k)∗ −u1(k′, k)

)
. (7)

The pair potential (=anomalous self-energy) then becomes

[�̂kk′ (iωn)]12 =
∑

k1

[
u1(k, k1)G0

k1
(iωn)u2(k1, k′)

+ u2(k, k1)G0
k1

(iωn)u1(k1, k′)
]
. (8)

We note that the diagonal Green’s function G0
k1

(iωn) =
1/(iωn − εb

k ) is composed of mixed even and odd functions
of frequency. After taking the impurity average, the
inversion and translational symmetry are recovered,
i.e., [�̂kk′ (iωn)]12 ∝ [�̂k(iωn)]12δkk′ with [�̂k(iωn)]12 =
[�̂−k(iωn)]12. In addition, the pair potential obeys the Fermi-
Dirac statistics written as [�̂k(iωn)]12 = −[�̂−k(−iωn)]12.
Then, [�̂k(iωn)]12 becomes the odd function of frequency
(the fourth row of Fig. 1). The pure odd-frequency pair
of the bogolon is thus realized. We emphasize that the
pair is induced by the self-energy of the bogolon and its
ω-dependence is purely odd-frequency, which is different
from the mixed even- and odd-frequency electrons’ Cooper
pair considered in Refs. [27,28]. We note that the interaction
effect also induces the self-energies and the odd-frequency
pairing amplitude, although the impurity effect is dominant at
low-frequency and low-temperature limits [25].

FIG. 2. Flow of the calculation. The normal part is discussed in
Sec. III A, while Secs. III B and III C deal with the superconductivity
part. We list the notations of the Hamiltonians, the eigenenergies, and
vectors for each part as shown in the figure. We discuss the impurity
effect in Sec. IV.

In the following sections, in order to clarify the micro-
scopic origin of u1 and u2 and their physical consequences,
we investigate the impurity effect on the BFS based on the
realistic tight-binding model, where the impurity potential is
defined in the real-space representation in terms of the original
electrons.

III. MODEL HAMILTONIAN AND BOGOLIUBOV
FERMI SURFACE

In this section, we introduce a model for BFS. The total
Hamiltonian is composed of three parts: H = HN + H� +
Himp, where HN is a normal state Hamiltonian for the clean
limit, H� is a pair potential part, and Himp is an impurity
potential part. These are discussed, respectively, in Secs. III A,
III B, and IV. Since the procedure is complicated, we summa-
rize the calculation flow and notations in Fig. 2.

A. Normal state for the clean limit

Below, we construct the Hamiltonian with the real mate-
rial Fe(Se, S) in mind. Since the effect of the S-doping is
expected to give a chemical pressure, we assume that it does
not change the band structure significantly. Accordingly, we
use the tight-binding parameters based on the first-principles
calculation of FeSe. However, as is well known, the number
and size of the experimentally observed Fermi surfaces devi-
ate significantly from the first-principles calculations [48], so
we have adjusted their band structure here (see Appendix A
for details). Although FeSe has a nematic transition from
the tetragonal (P4/nmm) phase to the orthorhombic (Cmma)
phase, we use the hopping parameters for the tetragonal case.
This is because the finite zero-energy DOS inside the su-
perconducting phase is observed in the tetragonal phase of
Fe(Se, S) experimentally [35–37]. Below, we do not consider
the spin-orbit coupling in the normal state for simplicity.

From the band-structure calculation, we can obtain the
tight-binding Hamiltonian written by the orthogonal basis of
the Wannier function wγ (r − Rn − da), where Rn denotes the
center of each unit cell, and da (a = Fe 1, Fe 2) specifies the
position of Fe inside the unit cell measured from Rn. The
atomic orbitals are described by γ = z2, xz, yz, x2 − y2, xy.
See Appendix A for more details about the derivation of tight-
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binding model parameters. The normal state Hamiltonian is
written by the creation and annihilation operators as

HN =
∑
nm

∑
aa′γ γ ′σ

HNγ γ ′ (Rn + da′ − da)

× c†
γ σ (Rm + da)cγ ′σ (Rm + Rn + da′ )

− μ
∑
naγ σ

c†
γ σ (Rn + da)cγ σ (Rn + da). (9)

Since the original parameters have numerical errors, we use
the parameters averaged by the symmetry operation as ex-
plained in Appendix B.

Performing the Fourier transformations with respect to the
lattice vector Rn, we obtain the Fourier component of the
Hamiltonian expressed by HNaγ ,a′γ ′ (k). Then we diagonalize
the matrix HNaγ ,a′γ ′ (k) at each k point, and we calculate the
electron band energies numerically. We express this as

V̂ (k)†ĤN(k)V̂ (k) = ÊN(k)

= diag (εk1, . . . , εkM ), (10)

where the hat (̂ ) symbol represents an M × M matrix,
where M = ∑

aγ 1 = 10. Then, we obtain the diagonalized
Hamiltonian as

HN =
∑

k

∑
λσ

(εkλ − μ)c†
kλσ

ckλσ , (11)

where λ is a band index. The Fermi surfaces in the normal
state are shown in Fig. 3(a) with gray solid lines. The two hole
pockets appear around the � point, and the electron pocket
appears around the M point.

To introduce the pair potential in the band basis, we need to
identify which bands are connected to each other at different
k points, especially when two bands are crossed. For this
identification, we consider the eigenvector v(k)λ written as

v(k)λ = (
[V̂ (k)]a1γ1,λ, . . . , [V̂ (k)]aMγM ,λ

)T
. (12)

We determine which band (λ′) at k + �k connects to the band
λ at k by using the inner product of the eigenvectors. Namely,
for a given v(k)λ, we choose the index λ′ which maximizes the
magnitude of |v(k + �k)λ′ · v(k)λ|. Thus we make the band
structure smooth for each band index.

B. Pair potential part

Here, we consider the pair potential part phenomeno-
logically, following the procedure given in Ref. [16]. It is
important to consider the interband pairing with time-reversal
symmetry breaking for BFSs. Below, for convenience of ex-
planation, we assume that the bands with the indices λ =
1, 2, 3, 4 constitute the normal Fermi surfaces, which are
shown in Fig. 3(a) with gray lines. λ = 1, 2 corresponds to
the two Fermi surfaces around the � point, where the small
one is labeled as λ = 1 and the large one as λ = 2. Similarly,
λ = 3, 4 makes the Fermi surfaces around the M point (the
curved one at the corner is labeled as λ = 3, and the straight
one as λ = 4).

(b)

(a)

(c)

CΓ

CΓ

CM2CM1

CM1 CM2

λ = 2
λ = 1

λ = 3

λ = 4

FIG. 3. (a) Normal Fermi surfaces (gray) and BFSs (red). The
magnified view of the BFSs is shown in (b). (c) Zero-energy spectral
function for the clean limit. The horizontal axis path labeled as k‖ is
shown by the black arrows in (b), where the beginning of the path
is shown by a black point. The characteristic k points are indicated
by green arrows in (b), and the corresponding k points are shown by
the same symbols in (b). The number of k‖ mesh in (c) is 88 on the
BFSs. The energy unit is taken as eV.

The pair potential term is written in the form:

H� =
∑

k

∑
σσ ′

[(δσ x + i�0σ
y)iσ y]σσ ′

×
( ∑

λ<λ′

′
c†

kλσ
c†
−kλ′σ ′ −

∑
λ>λ′

′c†
kλ′σ c†

−kλσ ′

)
+ H.c.

+
∑

k

∑
λ∈FS

�λ(k)c†
kλ↑c†

−kλ↓ + H.c., (13)

where the summation of λ ∈ FS is taken over FS =
{1, 2, 3, 4}, which reflects the fact that the electrons
constituting the Fermi surfaces participate in the Cooper-pair
condensation.

∑′
λ≷λ′ indicates that the summation is

taken if at least one of the bands λ and λ′ has a Fermi
surface. �0, δ are interband pair potentials, and �λ(k)
is an intraband pair potential. σ x and σ y are x and y
components of the Pauli matrices, respectively. Note
that the interband pairing term breaks the time-reversal
symmetry, because this term has a form of ∼σ x + iσ y. Since
these microscopic parameters are not explicitly known,
we take the extended s-wave intraband pair potential
�λ(k) = �0λ + �1λ cos(kx/2) cos(ky/2) (λ ∈ FS) for a
concrete calculation and for estimation of the order of
magnitude of physical quantities. Each parameter is chosen
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as follows: δ = �0 = 0.03, �0,λ=1 = 0.03, �0,λ=2 =
0.07, �0,λ=3 = 0.05, �0,λ=4 = 0.05, �1,λ=1 =
0.01, �1,λ=2 = 0.01, �1,λ=3 = −0.02, �1,λ=4 = −0.02.
(The unit is eV.) The resulting BFSs [shown in Fig. 3(a)]
resemble the one shown in Ref. [16].

We define the Nambu spinor by 
�k =
(ck1↑, ck1↓, ck2↑, . . . ckM↓, c†

−k1↑, . . . , c†
−kM↓)T, with

Mb = 2 × 2 × M components (each of which corresponds to
Nambu, spin, and band spaces). Then, the BdG Hamiltonian
is written as

H0 = HN + H�

=
∑

k∈HBZ


�†
k Ȟ0(k) 
�k, (14)

where the summation of k is taken over the half Brillouin zone
(HBZ, ky < 0). We introduced the matrix representation of
the Hamiltonian at k as Ȟ0(k) = τ 0 ⊗ ĤN(k) ⊗ σ 0 + Ȟ�(k),
where Ȟ�(k) is the matrix form of the pair potential part
defined in Eq. (13) in the Nambu basis, and τ 0, σ 0 are two-
dimensional identity matrices in Nambu space and spin space,
respectively. We also define the unitary transformation to the
bogolon basis as

[ 
�k] j =
∑

b

[Ǔ (k)] jb
αkb. (15)

where 
αk = (αk1, . . . , αk2M, α
†
−k1, . . . , α

†
−k2M )T. j =

1, . . . , Mb is an index of the spinor in the electron basis,
while b = 1, . . . , Mb is an index of the spinor in the bogolon
basis. Then, Eq. (14) can be rewritten as

H0 =
∑

k∈HBZ


α†
k Ě (k)
αk, (16)

where

Ǔ (k)†Ȟ0(k)Ǔ (k) = Ě (k)

= diag (Ek1, . . . , EkMb ). (17)

Figure 3(a) shows the BFSs (red lines) together with the
normal Fermi surfaces (gray solid lines). The magnified view
of the BFSs is shown in (b), and the k-dependent spectra are
also shown in (c). Since the BFSs are topologically protected,
we have identified the Bogoliubov Fermi wave vector by the
sign change of the Pfaffian Pf (H̄0(k)) for the antisymmetrized
Hamiltonian [7,8,16,49]

H̄0(k) = W̌ Ȟ0(k)W̌ †, (18)

where

W̌ = 1√
2

(
1 1
i −i

)
⊗ I ⊗ σ 0. (19)

I is the identity matrix with the dimension M (band space).
We note that the eigenvalues Ekb of the Kramers pair states are
not degenerate because of the time-reversal symmetry broken
pair potential in Eq. (13). Therefore, there are two bands
of bogolons b = 1, 2 crossing at the Fermi level (one is the
particle band and the other is the antiparticle band), which
constitute the BFSs.

C. Phase of the wave function at each k

Since we consider the local impurity in this paper, we
need to define the impurity potential in the Wannier func-
tion basis, as will be mentioned in Sec. IV B. On the other
hand, the pair potential is defined in the band basis (λ), and
then the phase of the eigenfunctions in the normal state must
be determined with careful thought. Namely, although the
transformation v(k)λ → eiθλ(k)v(k)λ (i.e., ckλσ → eiθλ(k)ckλσ )
makes the eigenenergy invariant, the spectral function with
local impurity depends on the choice of the phase of the
normal state wave function v(k)λ.

We note that the fourfold rotational symmetry can be
broken when we introduce the impurity potential in the Wan-
nier function basis. This is because we choose the phase of
v(k)λ without fourfold symmetry as explained below, which
will affect the spectral functions [see Fig. 4(b)]. If we gave
the impurity potential in the band basis, the spectral function
would depend only on the superconducting state wave func-
tion U (k), and the fourfold symmetry could be preserved. In
this paper, we do not respect the fourfold symmetry, which
is consistent with the absence of fourfold symmetry in the
experimental results [38].

Let us now discuss a specific methodology for determining
the phase. As will be discussed in Sec. V, we will concentrate
on the low-energy contribution near the BFSs, and hence it is
necessary to construct a smooth function for the paths along
BFSs C�,CM1,CM2 [shown in Figs. 3(a) and 3(b)]. We also
choose the phase so as to preserve the inversion symmetry
with which the theoretical results are consistent with the ex-
periment [38]. Since our motivation is order estimation of
the impurity effect on the single-particle spectral function,
we take a simple setup, and no further symmetry constraint
is imposed. More specifically, we consider a (nontwisted)
parallel-transport gauge for CM1,CM2 and a twisted parallel-
transport gauge with inversion symmetry for C� [50]. Let us
write the eigenvector with the parallel-transport gauge as v̄(k)
and the numerically obtained one as vnum(k). We fix the phase
at the beginning point k0 for each path as v̄(k0)λ = v(k0)λ
[indicated by the black dot in Fig. 3(b)]. The phase of the next
k-point is chosen as it is parallel to the previous point. For this
purpose, we first introduce the relative phase between k and
k + �k as

ϕλ(k) = −Im ln v̄(k)λ · vnum(k + �k)λ. (20)

This quantity corresponds to the Berry connection in a
continuous limit. Then we define the eigenvector with a
parallel-transport gauge at k + �k as

v̄(k + �k)λ = eiϕλ(k)vnum(k + �k)λ. (21)

In this gauge, v̄(k)λ and v̄(k + �k)λ become parallel:

−Im ln v̄(k)λ · v̄(k + �k)λ = 0. (22)

The Berry phase φC can be calculated numerically by the
summation of the left-hand side of Eq. (22) taken over the
closed paths C = CM1,CM2 (defined in ky < 0). We obtain
φC = 0 because of the inversion symmetry and time-reversal
symmetry of the normal state. For their counterparts (ky > 0),
we can obtain the smooth and inversion symmetric eigenvec-
tors by using the symmetry operation defined in Eq. (B7).
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For unclosed paths C� [see Fig. 3(b)], we choose the
twisted parallel transport gauge ṽ(k) constructed from v̄(k).
In numerical calculation, we calculate v̄(k0)λ, . . . , v̄(kN�−1)λ
on the path C� , and we determine v̄(−k0)λ by using inversion
symmetric operation for v̄(k0)λ [see Eq. (B7) in Appendix B].
Then, we calculate the relative phase between v̄(kN�−1)λ and
v̄(−k0)λ, which is written as

ϕ′
λ = −Im ln v̄(kN�−1)λ · v̄(−k0)λ. (23)

Finally, we define the twisted parallel transport for the nth
point (n = 0, . . . , N� − 1) of the path by twisting the phase
at each point

ṽ(kn)λ = eiϕ′
λn/N� v̄(kn)λ. (24)

This choice of gauge results in a smooth and inversion-
symmetry-preserved eigenvector.

IV. IMPURITY EFFECTS AND GREEN’S FUNCTIONS

In this section, we proceed to a concrete analysis of the
impurity effects. We use the Green’s function method, which
is appropriate for the analysis of the impurity effect on the
superconducting system [51,52]. We calculate the spectral
function, which is an experimentally observable quantity.

A. Definition of Green’s functions and self-energies

First, we define the Green’s function as

Ǧk(τ ) = −〈T 
�k(τ ) 
�†
k 〉 =

(
Gk(τ ) Fk(τ )
F †

k (τ ) Ḡk(τ )

)
, (25)

where T represents imaginary time ordering, 〈· · · 〉 is a sta-
tistical average, and A(τ ) = eτH Ae−τH is the Heisenberg
representation with imaginary time. Gk, Fk correspond to
the normal and anomalous Green’s functions, respectively,
and their conjugate quantities are Ḡk, F †

k . The Fourier trans-
formation from imaginary time to Matsubara frequency is
defined as

Ǧk(iωn) =
∫ 1/T

0
dτ Ǧk(τ )eiωnτ , (26)

where T is a temperature. Using the clean limit Hamiltonian
Ȟ0(k) in Eq. (14), the self-energy is also introduced by

Ǧk(iωn)−1 = iωn1̌ − Ȟ0(k) − �̌k(iωn). (27)

Each component of the self-energy is expressed as �̌k =
(�k Sk

S†
k �̄k

).

B. Impurity potential

We now explain the impurity potential part. It is convenient
to deal with the real-space representation for the disorder
potential. We start from the expression written by the field
operator ψ,ψ† as follows:

Himp =
∑

i

∑
σσ ′

∫
dr ψ†

σ (r)U σσ ′
imp (r − ri )ψσ ′ (r), (28)

where U σσ ′
imp (r − ri ) is an impurity potential with spin σ, σ ′,

and ri is a scattering center. We can move to the Wannier
function basis from Eq. (28) by expanding the field operator,
which is written as

ψσ (r) =
∑

n

∑
aγ

wγ (r − Rn − da)cγ σ (Rn + da). (29)

Inserting Eq. (29) into Eq. (28), we obtain the impurity poten-
tial part of the Hamiltonian,

Himp =
∫

dq
(2π )3

∑
k,k′

∑
λ,λ′,σ,σ ′

∑
aa′γ γ ′

ρqU
σσ ′
imp (q)

× f kk′
aγ ,a′γ ′ (q)[V̂ (k)†]λ,aγ [V̂ (k′)]a′γ ′,λ′c†

kλσ
ck′λ′σ ′,

(30)

where the form factor f kk′
aγ ,a′γ ′ (q) can be written as

f kk′
aγ ,a′γ ′ (q) = 1

N

∑
n,m

∫
drw∗

γ (r − Rn − da)

× wγ ′ (r − Rm − da′ )eiq·r−ik·Rn+ik′ ·Rm , (31)

and ρq = ∑
i e−iq·ri is a structure factor for the impurity con-

figuration ri. N is the number of unit cells. Note that q is
defined in an infinite reciprocal space, while k is defined in
the Brillouin zone.

Now we apply the random average for the impurity config-
uration,

ρqρq′ = V nimpδq,−q′ , (32)

where nimp = V −1 ∑
i 1 (V is a system volume). We consider

the second-order self-energy with respect to the impurity

potential as follows:

�kλσ,λ′σ ′ (iωn) = 1

N

∑
k1∈HBZ

∑
λ1λ2σ1σ2

[
Uλσ,λ1σ1,λ2σ2,λ′σ ′ (k, k1, k1, k)

× Gk1λ1σ1,λ2σ2 (iωn) − Uλσ,λ1σ1,λ2σ2,λ′σ ′ (k,−k1,−k1, k)Ḡk1λ2σ2,λ1σ1 (−iωn)
]
, (33)

Skλσ,λ′σ ′ (iωn) = − 1

N

∑
k1∈HBZ

∑
λ1λ2σ1σ2

[
Uλσ,λ1σ1,λ′σ ′,λ2σ2 (k, k1,−k,−k1)

× Fk1λ1σ1,λ2σ2 (iωn) − Uλσ,λ1σ1,λ′σ ′,λ2σ2 (k,−k1,−k, k1)Fk1λ2σ2,λ1σ1 (−iωn)
]
, (34)
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where

Uλ1σ1,λ2σ2,λ3σ3,λ4σ4 (k1, k2, k3, k4) = nimpN
∫

dq
(2π )3

∑
a1···a4

∑
γ1···γ4

U σ1σ2
imp (q)U σ3σ4

imp (−q)[V̂ (k1)†]λ1,a1γ1

× [V̂ (k2)]a2γ2,λ2 [V̂ (k3)†]λ3,a3γ3 [V̂ (k4)]a4γ4,λ4 f k1k2
a1γ1,a2γ2

(q) f k3k4
a3γ3,a4γ4

(−q)δk1+k3,k2+k4 . (35)

We also obtain �̄kλσ,λ′σ ′ (iωn) and S†
kλσ,λ′σ ′ (iωn) in a similar

manner to the above expressions. We note that δk1+k3,k2+k4 in
(35) originates from the recovered-translational symmetry af-
ter the random average. Since Eqs. (33) and (34) include k and
−k in U , we need to evaluate V (k) in the full Brillouin zone,
while k in the left-hand side of Eqs. (33) and (34) is defined in
the half-Brillouin zone. Therefore, the phase of V (k) is fixed
in the full Brillouin zone in a manner similar to Sec. III C. If
we regard G, F, Ḡ, F † as unperturbed Green’s functions, we
obtain the self-energy of the Born approximation. On the other
hand, if we regard them as dressed Green’s functions, we ob-
tain the self-energy of the self-consistent Born approximation.

C. Evaluation of self-energies

To evaluate the self-energies, we need to define the specific
form of the impurity potential Uimp(q). First, we consider the
case of nonmagnetic impurity (later we will also discuss the
case of magnetic impurity). The impurity potential is given by

U σσ ′
imp (q) = Uimpδσσ ′, (36)

which is q-independent and is frequently used for an electron
gas model. Uimp is a magnitude of the potential. Although this
is not a realistic impurity potential, we can further analyze the
model in a simple form and make a semiquantitative estimate
of the effect of impurities.

The concrete form of the form factor in Eq. (35) is written
using the Wannier functions as∫

dq
(2π )3

f k1k2
a1γ1,a2γ2

(q) f k3k4
a3γ3,a4γ4

(−q)δk1+k3,k2+k4

= 1

N2

∑
n1,··· ,n4

∫
dr w∗

γ1

(
r − Rn1 − da1

)
× wγ2

(
r − Rn2 − da2

)
w∗

γ3

(
r − Rn3 − da3

)
× wγ4

(
r − Rn4 − da4

)
× e−ik1·Rn1 +ik2·Rn2 −ik3·Rn3 +ik4·Rn4 δk1+k3,k2+k4 , (37)

where we have performed q integration. To proceed further,
we use the two approximations. First, we observe that the
above quantity is expected to become largest when the lo-
cality condition Rn1 = Rn2 = Rn3 = Rn4 , a1 = a2 = a3 = a4

is satisfied. Hence, we assume that the integration of r takes
finite value only if it satisfies this condition. Second, although
the integral can be evaluated by using the Wannier function
in principle, we replace the Wannier function wγ (r − Rn −
da) with the atomic orbital function φγ (r − Rn − da) for
simplicity. We write the atomic orbital function as φγ (r) =
R(r)�γ (θ, ϕ), where R(r) is a radial wave function and
�(θ, ϕ) is the cubic harmonics for the d-orbital, whose spe-
cific form is shown in Appendix C. Then we can evaluate the

integral with respect to θ, ϕ by using Eq. (C7), and obtain

Uλ1σ1,λ2σ2,λ3σ3,λ4σ4 (k1, k2, k3, k4)

= �Fλ1σ1,λ2σ2,λ3σ3,λ4σ4 (k1, k2, k3, k4), (38)

where

� = 5nimpU 2
imp

28π

∫
dr r2|R(r)|4 (39)

and

Fλ1σ1,λ2σ2,λ3σ3,λ4σ4 (k1, k2, k3, k4)

=
∑

a1···a4

∑
γ1···γ4

[V̂ (k1)†]λ1,a1γ1 [V̂ (k2)]a2γ2,λ2

× [V̂ (k3)†]λ3,a3γ3 [V̂ (k4)]a4γ4,λ4

× (
δγ1,γ2δγ3,γ4 + δγ1,γ3δγ2,γ4 + δγ1,γ4δγ2,γ3

)
× δa1,a2δa2,a3δa3,a4δσ1σ2δσ3σ4 . (40)

Once this form factor is obtained, we can immediately evalu-
ate the self-energies by using Eqs. (33) and (34).

In this paper, we consider the two types of magnetic
impurity (Heisenberg type, Ising type) in addition to nonmag-
netic impurity. In the case of the isotropic magnetic impurity
(Heisenberg type), we replace the form factor of the spins in
Eq. (40) as

δσ1σ2δσ3σ4 → σσ1σ2 · σσ3σ4 = 2δσ1σ4δσ2σ3 − δσ1σ2δσ3σ4 (41)

for spin S = 1/2. We can also consider the magnetic impurity
with anisotropy in the z-direction (Ising type):

δσ1σ2δσ3σ4 → σ z
σ1σ2

σ z
σ3σ4

. (42)

Thus, the parameters that control the impurity effect are the
scattering strength � and the type of the impurity potential
(nonmagnetic or Ising type/Heisenberg type).

In the next section, Sec. V, we will discuss the parameter
� dependence of single-particle spectra.

V. NUMERICAL RESULTS FOR SINGLE-PARTICLE
SPECTRA

In the above, we have formulated the theory of the dis-
ordered BFS. Here we explain the method of calculation
for the physical quantities such as single-particle excitation
spectra. We also show the numerical results in the following
subsections.

A. Single-particle spectra near the Fermi level

From the Green’s function, we can calculate the DOS.
Using the retarded Green’s function Ǧk(ω + i0+) obtained by
the analytic continuation from imaginary axis to real axis, we
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define the DOS as

D(ω) = − 1

Nπ
Tr Im

∑
k∈HBZ

Ǧk(ω + i0+). (43)

Similar to the Fermi liquid theory of electrons, the low-energy
contributions are extracted in order to see the detailed struc-
ture near the BFSs. The concrete calculation procedure is
shown in Appendix D. We write down the final result,

D(ω) = D0

∑
C

∫
C

dkAk(ω), (44)

where

Ak(ω) =
∑

b∈BFS

Vc

(2π )2|vb(k)|D0

× Re

[
sgn Im εk+(ω+i0+)−sgn Im εk−(ω + i0+)

εk+(ω + i0+) − εk−(ω + i0+)

× (2ω − [�̌′
k(ω + i0+)]11 − [�̌′

k(ω + i0+)]22)

]

(45)

is the wave-vector-resolved spectral function, and

D0 =
∑

C

∫
C

dk
Vc

2π2|vb(k)| (46)

is a zero-energy DOS in the clean limit.
∫

C dk is the path
integral along the BFS, which is taken over the specific path
C = C�,CM1,CM2 [see Fig. 3(b)]. �̌′

k is the self-energy of
a bogolon defined by Eq. (D1) in Appendix D, where the
prime (′) symbol indicates the basis of the bogolon picture.
εk± is a quantity dependent on the self-energies defined in
Appendix D. In the clean limit, it reduces to

A0
k = Vc

π2D0|vb(k)| (47)

whose values are plotted in Fig. 3(c). Since the k dependence
originates only from the velocity vb(k), A0

k has fourfold sym-
metry if the energy eigenvalue Ekb is fourfold symmetric in
k-space. A0

k in (c) has characteristic peaks in CM1 and CM2

(indicated by green arrows). These peaks correspond to the
points where the BFS has a large curvature. In contrast, the
behavior of A0

k in C� is nearly constant, where the curve of the
BFS is gentle.

Here, let us comment on the relevance to experimen-
tal observation. To compare directly with the experimental
result such as the tunneling experiment, we need to cal-
culate the DOS only for the electron component, which
is expressed as Dexp(ω) = − 1

Nπ

∑
k∈BZ Im Tr Gk(ω + i0+) =

− 1
Nπ

∑
k∈HBZ Im Tr [Gk(ω + i0+) − Ḡk(−ω − i0+)]. On the

other hand, our definition of the DOS written by Eq. (43) cor-
responds to the direct summation of electron and hole compo-
nents. The two expressions D(ω) and Dexp(ω) are connected
by the relation D(ω) + D(−ω) = Dexp(ω) + Dexp(−ω). This
relation needs to be used when comparing the results with
experiments.

(a)

(b)

FIG. 4. Comparison between different kinds of impurities.
(a) Energy dependence of the density of states, (b) wave-vector-
dependent spectral function on the BFSs. The horizontal axis of (b) is
taken in the same way as Fig. 3(c).

B. Born approximation

Substituting the Green’s function in the clean limit to the
self-energies in Eqs. (33) and (34), we obtain the self-energies
in the Born approximation. We note that the self-energies do
not have ω-dependence in the present setup (it appears in the
self-consistent Born approximation, as shown later). Inserting
the self-energies into Eq. (45), we obtain the spectral function.

Figure 4(a) shows the DOS defined in Eq. (43) (the more
specific form is shown in Appendix D). Here the value is
normalized by the one in the clean limit [Eq. (46)], and we
consider the three kinds of impurities explained in Sec. IV C.
We find the zero-energy peak in the DOS, which is absent
in the clean limit. It is notable that the peak height does not
depend on the impurity density and the magnitude of the
impurity potential, since �̌′ ∝ �(∝ nimpU 2

imp) [see Eqs. (33),
(34), (38), and (39)] and then � is canceled in Eq. (D7).
This fact will be checked again by using the spectral function
written by the bogolon basis in Eq. (50). On the other hand,
the peak height changes depending on the type of impurity
potential. With these results, we can roughly estimate the
order of this peak height: it is about 1% of the clean-limit
DOS D0 in the case of nonmagnetic impurity.

Figure 4(b) shows the wave-vector-resolved spectral func-
tions at each k point on the BFSs. To see the effect of impurity,
the difference between the spectral function with and with-
out impurities is plotted. The differences Ak‖ (0) − A0

k‖ vary
depending on the type of impurity, and the relative height
varies across different regions within the Brillouin zone. The
results in Fig. 4(b) are correlated with Fig. 3(c): the deviation
Ak‖ (0) − A0

k‖ is large when the spectral function in the clean
limit is large.

Next, we discuss the self-energies near the BFSs.
Since the self-energies of the bogolon satisfy the
relations [�̌′

k(ω + i0+)]11 = −[�̌′
k(−ω + i0+)]∗22 and

[�̌′
k(ω + i0+)]12 = −[�̌k(−ω + i0+)]∗21 from hermiticity
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FIG. 5. Self-energies of the bogolon obtained by the Born ap-
proximation for (a) the normal part, (b) the anomalous part, and
(c) the ratio of the normal and anomalous parts. The horizontal axis
is taken in the same way as Fig. 3(c).

and inversion symmetry, the spectral function in Eq. (45) is
determine by the following two quantities:

− i�1k(ω) = [�̌′
k(ω + i0+)]11, (48)

− i�2k(ω) = [�̌′
k(ω + i0+)]12. (49)

�1k, �2k are identical, respectively, to the normal and anoma-
lous self-energies for bogolons at the low-energy regime as
discussed in Sec. II. The zero-energy limit of the spectral
function is given as follows:

Ak(ω → 0)

A0
k

= 1√
1 − [|�2k(ω → 0)|/Re �1k(ω → 0)]2

,

(50)

where the spectral function is controlled by the ratio �2k/�1k.
We note that this expression can be used for �k1 > 0. Since
�1k and �2k are proportional to �, Ak(ω → 0) does not
depend on the impurity density and the magnitude of the im-
purity potential as mentioned above. While the k dependence
is neglected in Ref. [25] for simplicity, this paper takes full
account of it on the BFSs.

Figure 5 shows the wave-vector-dependent self-energies
of the bogolon for the Born approximation, where the
ω-dependence is absent. Figures 5(a), 5(b) and 5(c) corre-
spond to the normal part |�1k|, the anomalous part |�2k|,
and their ratio |�2k/�1k|, respectively. The anomalous part
|�2k| has a stronger k‖-dependence in comparison to the nor-
mal part |�1k|. Then the k‖-dependence of |�2k/�1k|, which
determines the height of the spectral function according to
Eq. (50), resembles that of |�2k|. The absolute values can be
roughly estimated as |�1k|/� ∼ 1, |�2k|/� ∼ 0.1, and then
|�2k/�1k| ∼ 0.1. Since the square of |�2k/�1k| (∼0.01) de-
termines the spectral functions, the peak value in the DOS
becomes 0.5% of that in the clean limit, as shown in Fig. 4(a).

Although the detection of such a small change in the DOS
might be difficult experimentally, our result indicates that,
upon systematically increasing the impurity scattering, the
DOS peak height remains unchanged while the peak width
increases. This behavior originates from the impurity effect
characteristic for BFSs, where the odd-frequency pair poten-

(a) (b)

(c) (d)

CΓ CM1 CM2

FIG. 6. (a)–(c) ω-dependence of self-energies for bogolons
obtained by the self-consistent Born approximation, which is nor-
malized by the value for the Born approximation. The colors and
symbols of each line correspond to those of C�,CM1,CM2 shown in
the bottom of the figure. (d) Density of states. The number of k‖ mesh
is 18 on the BFSs.

tial (�2k) is involved. We note that these results are obtained
based on an effective theory with low-energy degrees of free-
dom near BFSs in the presence of a weak impurity scattering.
Although the pair breaking effect from the interaction may
also be expected, this effect will vanish in the low-frequency
limit within the Bogoliubov Fermi liquid theory [25].

We also comment on the relation to our previous work [25],
in which we studied the impurity effect on BFSs by using a
simplified low-energy effective model of a bogolon. We have
neglected the k-dependence of �1k and �2k for simplicity and
observed a peak structure in the DOS. This behavior is qual-
itatively consistent with the results of the DOS in the present
paper. Here we have further clarified the k‖-dependence of the
self-energies and estimated the order of magnitude of spectra.

C. Self-consistent Born approximation

Next, we consider the self-consistent Born approximation.
We obtain the self-energies by solving Eqs. (33) and (34) self-
consistently. The concrete forms of the Green’s functions are
shown in Appendix D.

Figures 6(a)–6(c) show the ω-dependence of the self-
energies of a bogolon, which are normalized by the value for
the Born approximation. We have chosen several k points on
the BFSs C�,CM1,CM2 shown in the bottom part of Fig. 6.
We confirm that each quantity coincides with that of the
Born approximation at large ω, as expected. On the other
hand, these quantities change at small frequencies because
of the mixing of normal and anomalous parts by the self-
consistent calculation. |�1k(ω)| is not much changed from
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the Born approximation as seen from Fig. 6(a). On the con-
trary, |�2k(ω)| becomes larger at low frequency for C� . Hence
|�2k(ω)/�1k(ω)| becomes larger. This behavior results in the
larger peak height of the DOS as shown in Fig. 6(d) compared
to the Born approximation. This is because the peak height is
determined by �2k(ω → 0)/�1k(ω → 0) as discussed in the
previous subsection.

We comment on a spectrum in the experimental setup.
The observed DOS has a finite resolution �ω, which is de-
termined by the detailed experimental condition. Then, the
expected behavior of the observed DOS becomes Dobserved =

1
�ω

∫ �ω/2
−�ω/2 dωD(ω), which smoothly goes to the clean limit

if � � �ω. We expect the presence of a zero-energy peak
when � � �ω, whereas in the opposite case � � �ω, the
peak will be masked.

Finally, we mention the two kinds of solutions in the self-
consistent Born approximation as proposed in Ref. [25]. In our
former study, we applied the self-consistent Born approxima-
tion for an effective low-energy model for bogolons, where
the k dependence in self-energies is neglected. With this
simplified setup, we have scanned the parameter space and
found two kinds of solutions: one is a Born-approximation-
like solution with �1,2(ω) ∼ const (first-kind), and the other
is characterized by �1,2(ω) ∝ 1/ω (second-kind) at low ω

[25]. In the present analysis, we obtain the solution of the
first-kind as shown in Figs. 6(a)–6(c), while the solution of
the second-kind is not realized at least in our analysis based
on iron-based superconductors.

VI. SUMMARY AND DISCUSSION

In this paper, we have analyzed the impurity effect on the
Bogoliubov Fermi surface using a realistic model for iron-
based materials combined with the Born approximation. We
have investigated the detailed structure for the single-particle
spectra at low energies. Based on the tight-binding parameters
obtained from first-principles calculations, we have calculated
the wave-vector-dependent dynamical self-energy focusing
on the low-energy regime near the Bogoliubov Fermi sur-
faces. To evaluate the self-energies, we assume weak impurity
scattering, which allows us to employ a conventional Born
approximation as in usual metals, while the large scattering
center may create an impurity bound state.

We have found that the zero-energy peak appears in
the density of states as induced by the off-diagonal self-
energy for bogolons. Furthermore, we have estimated an
order of magnitude of the peak. The peak height is about
0.5% of the density of states in the clean limit and is indepen-
dent of the impurity density and the magnitude of the potential
in the Born approximation. On the other hand, the peak height
varies with the type of nonmagnetic or magnetic impurities.

These features are unique to the Bogoliubov Fermi surface.
Hence, a systematic study of impurity effects may provide
experimental confirmation of the presence of the Bogoliubov
Fermi surface in Fe(Se, S). Although we have assumed a
specific pair potential in this paper, the present method can
be applied to other superconducting states.
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APPENDIX A: DETAILS OF THE FIRST-PRINCIPLES
CALCULATIONS

We performed the first-principles calculations of FeSe us-
ing QUANTUM ESPRESSO (QE) [53] and constructed the
tight-binding Hamiltonian with WANNIER90 [54]. In QE calcu-
lations, we used the exchange-correlation functional proposed
by Perdew, Burke, and Ernzerhof [55], and the ultrasoft
pseudopotentials [56] provided in PSLIBRARY [57]. The plane-
wave cutoff energy and charge-density cutoff values were set
to be 46 and 240 Ry, respectively. The crystal structure pa-
rameters of FeSe were obtained from experimental data [58].
However, two Fe sites were placed at (0,0,0) and (0.5,0.5,0) to
increase the accuracy of the calculation in WANNIER90. Then,
we constructed maximally localized Wannier functions for ten
orbitals of Fe(3d ). However, as is well known, the obtained
band structure deviates significantly from experimental obser-
vations. Here, we have adjusted the band structure by referring
to Ref. [48]; the xz/yz and x2 − y2 site energies of the two
Fe sites in the unit cell were added by +0.1 and +0.04 eV,
respectively. The (1,0,0) and corresponding hopping integrals
of the xz/yz and x2 − y2 orbitals were added by −0.009 and
−0.018 eV, respectively. The Fe(I)-Fe(II) nearest-neighbor
hopping integrals for the xz/yz and x2 − y2 orbitals were
added by −0.05 eV.

APPENDIX B: SYMMETRY OPERATION

We perform a symmetry operation for an annihilation op-
erator

cγ σ (Rn + da) →
∑
γ1

(eiθ·L)γ γ1 cγ1σ [α(Rn + da) + b], (B1)

where α is an orthogonal matrix (for inversion, mirror, rota-
tion, and these combinations) with the rotation vector θ, L is
an angular momentum for the d-orbital, and b is a translation
vector. We perform this symmetry operation to Eq. (9), and
then we obtain

∑
nmγ γ ′σaa′

HNγ γ ′ (Rn + da′ − da)
∑
γ1γ2

c†
γ1σ

[α(Rn + da) + b](eiθ·L)γ1γ (e−iθ·L)γ ′γ2 cγ2σ [α(Rn + Rm + da′ ) + b]

=
∑

nmγ γ ′σaa′

∑
γ1γ2

(eiθ·L)γ1γ HNγ γ ′ [α−1(Rn + da′ − b) − α−1(da − b)](e−iθ·L)γ ′γ2 c†
γ1σ

(Rn + da)cγ2σ (Rn + Rm + da′ ). (B2)
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After the symmetry operation α−1(Rn + da′ − b), we can de-
fine a new lattice vector Rñ′ and position of sublattice d ã′ , i.e.,
α−1(Rn + da′ − b) = Rñ′ + d ã′ . Similarly, we write α−1(da −
b) = Rñ + d ã. Then we obtain

Eq. (B2) =
∑

nmγ γ ′σaa′

∑
γ1γ2

(e−iθ·L)γ1γ HNγ γ ′ (Rñ′ − Rñ + d ã′ − d ã)

× (eiθ·L)γ ′γ2 c†
γ1σ

(Rn + da)cγ2σ (Rn + Rm + da′ ).
(B3)

We can conclude that HNγ γ ′ (Rn + da′ − da) needs to have the
symmetry

HNγ γ ′ (Rn + da′ − da)

=
∑
γ1γ2

(e−iθ·L)γ γ1 HNγ1γ2 (Rñ′ − Rñ + d ã′ − d ã)(eiθ·L)γ2γ ′ .

(B4)

Next, we consider the symmetry operation for the eigenvector
V̂ (k). Using V̂ (k), we perform the unitary transformation
from the Wannier basis to the band basis,

ckaγ σ =
∑

λ

[V̂ (k)]aγ ,λckλσ . (B5)

Since the annihilation operator is transformed as Eq. (B1), we
can write

c†
kλσ

= 1√
N

∑
aγ

c†
γ σ (Rn + da)eik·Rn [V̂ (k)]aγ ,λ

→ 1√
N

∑
aγ γ1n

c†
γ1σ

[α(Rn + da) + b](e−iθ·L)γ1γ

× eik·Rn [V̂ (k)]aγ ,λ

= 1√
N

∑
aγ γ1n

c†
γ1σ

(Rñ + d ã)ei(αk)·Rñ (e−iθ·L)γ1γ

× eik·[α−1(d ã−b)−da][V̂ (k)]ã−1γ ,λ, (B6)

where Rñ + d ã′ = α(Rn + da) + b and α−1(da − b) =
Rñ−1 + d ã−1 . Then we can obtain the eigenvector at αk,

[V̂ (αk)]ãγ ,λ =
∑
γ1

(e−iθ·L)γ γ1 eik·[α−1(d ã−b)−da][V̂ (k)]ã−1γ1,λ.

(B7)

APPENDIX C: CUBIC HARMONICS

We list the cubic harmonics for d-orbital as follows:

�z2 (θ, ϕ) =
√

5

16π
(3 cos2 θ − 1), (C1)

�xz(θ, ϕ) =
√

15

4π
sin θ cos θ cos ϕ, (C2)

�yz(θ, ϕ) =
√

15

4π
sin θ cos θ sin ϕ, (C3)

�x2−y2 (θ, ϕ) =
√

15

16π
sin2 θ cos 2ϕ, (C4)

�xy(θ, ϕ) =
√

15

16π
sin2 θ sin 2ϕ. (C5)

These functions satisfy the orthogonal relation as∫
dθdϕ sin θ�m(θ, ϕ)�m′ (θ, ϕ) = π2δmm′ . (C6)

Furthermore, we can evaluate the following integral:∫
dθdϕ sin θ�γ1 (θ, ϕ)�γ2 (θ, ϕ)�γ3 (θ, ϕ)�γ4 (θ, ϕ)

= 5

28π
(δγ1,γ2δγ3,γ4 + δγ1,γ3δγ2,γ4 + δγ1,γ4δγ2,γ3 ). (C7)

In this basis, angular momentum is given by

Lx =

⎛
⎜⎜⎜⎜⎝

0 0
√

3i 0 0
0 0 0 0 i

−√
3i 0 0 −i 0

0 0 i 0 0
0 −i 0 0 0

⎞
⎟⎟⎟⎟⎠, (C8)

Ly =

⎛
⎜⎜⎜⎜⎝

0 −√
3i 0 0 0√

3i 0 0 −i 0
0 0 0 0 −i
0 i 0 0 0
0 0 i 0 0

⎞
⎟⎟⎟⎟⎠, (C9)

Lz =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 −i 0 0
0 i 0 0 0
0 0 0 0 −2i
0 0 0 2i 0

⎞
⎟⎟⎟⎟⎠. (C10)

APPENDIX D: CALCULATION OF SINGLE-PARTICLE
SPECTRA

1. Density of states

We perform the summation of k in Eq. (43) focusing on
the low energy. It is convenient to introduce the short-hand
notation for the self-energy of a bogolon as

�̌′
k(iωn) = Ǔ (k)†�̌k(iωn)Ǔ (k). (D1)

Using this, the Green’s function is written as follows:

Ǧk(iωn) = Ǔ (k)

[
iωn1̌ − Ě (k) − �̌′

k(iωn)

]−1

Ǔ (k)†. (D2)

Since the contribution near the BFSs becomes larger, we ex-
tract two low-energy bands of bogolon b ∈ BFS = 1, 2 which
make the BFSs. For the calculation of the DOS, we change the
coordinate of k as (kx, ky) → (k‖, k⊥), where k‖ is a parallel
component to the BFSs and k⊥ is its perpendicular compo-
nent. Then the integral around the path C can be rewritten
by using the energy of the bogolon ε (= Eb) as dkβ‖dkβ⊥ =
dkβ‖dε/|vb(kβ‖)| with Fermi velocity of the bogolon vb(kβ‖).
A similar method is used in Ref. [20]. There are three paths of
the BFSs, C = C�,CM1,CM2 [see Figs. 3(a) and 3(b)], in the
half-Brillouin zone.
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With these preliminaries, we finally obtain

D(ω) = − 1

π
Im

∑
C

∫
C

dk
Vc

2π2|vb(k)|
∑

b′∈BFS

∫ ωc

−ωc

dε[(ω + i0+)1̌ − Ě (k) − �̌′
k(ω + i0+)]−1

b′b′ , (D3)

where ωc is a cutoff energy and Vc = V/N .
∫

C dk is the integral of the k‖ direction, which is taken over the path C. Below we
evaluate a summation of b′ in Eq. (D3). The 2 × 2 matrix, which is enclosed in [· · · ], is expressed as

[(ω + i0+)1̌ − Ě (k) − �̌′
k(ω + i0+)]−1

bb′ = − 1

[ε − εk+(ω + i0+)][ε − εk−(ω + i0+)]

×
(

ω + i0+ + ε − [�̌′
k(ω + i0+)]22 [�̌′

k(ω + i0+)]12

[�̌′
k(ω + i0+)]21 ω + i0+ − ε − [�̌′

k(ω + i0+)]11

)
bb′

, (D4)

where we use ε1 = −ε2 ≡ ε for the inversion symmetry, and εk± is defined as

εk±(z) = 1

2
(−[�̌′

k(z)]11 + [�̌′
k(z)]22) ± 1

2
[([�̌′

k(z)]11 − [�̌′
k(z)]22)2

+ 4((z − [�̌′
k(z)]11)(z − [�̌′

k(z)]22) − [�̌′
k(z)]12[�̌′

k(z)]21)]1/2. (D5)

Performing the integration of ε in Eq. (D3), we obtain

D(ω) = D0

∑
C

∫
C

dk
Vc

2π2|vb(k)|D0
Re

[
sgn Im εk+(ω + i0+) − sgn Im εk−(ω + i0+)

εk+(ω + i0+) − εk−(ω + i0+)

× {
2ω − [�̌′

k(ω + i0+)]b1b1 − [�̌′
k(ω + i0+)]b2b2

}]
. (D6)

2. Self-energies

We proceed to an evaluation of the self-energies. We deal with the k summation in a similar manner to Eq. (D6). Then we
rewrite the self-energy Eq. (33) as

�kλσ,λ′σ ′ (ω + i0+) � �D0

∑
C

∫
C

dk1
Vc

2π2|vb(k1)|D0

(
Fλσ,λ1σ1,λ2σ2,λ′σ ′ (k, k1, k1, k)

∑
b′,b′′

[Ǔ (k1)]λσ,b′[Ǔ (k1)†]b′′,λ′σ ′

×
∫ ωc

−ωc

dε
[
(ω + i0+)1̌ − Ě (k1) − �̌′

k1
(ω + i0+)

]−1

b′b′′ − Fλσ,λ1σ1,λ2σ2,λ′σ ′ (k,−k1,−k1, k)

×
∑
b′,b′′

[Ǔ (k1)]λσ+M,b′[Ǔ (k1)†]b′′,λ′σ ′+M

∫ ωc

−ωc

dε
[
(−ω − i0+)1̌ − Ě (k1) − �̌′

k1
(−ω − i0+)

]−1

b′b′′

)
. (D7)

We extract the contribution near the BFSs in a similar manner to Eq. (D4). Then, we obtain

�kλσ,λ′σ ′ (ω + i0+) = −iπ�
∑

λ1λ2σ1σ2

∑
C

∫
C

dk1
Vc

2π2|vb(k1β‖)|D0

×
(

Fλσ,λ1σ1,λ2σ2,λ′σ ′ (k, k1, k1, k)
∑
b′b′′

[Ǔ (k1)]λ1σ1,b′
[
Gbog

k1
(ω + i0+)

]
b′b′′ [Ǔ (k1)†]b′′,λ2σ2

− Fλσ,λ1σ1,λ2σ2,λ′σ ′ (k,−k1,−k1, k)
∑
b′b′′

[Ǔ (k1)]λ2σ2+M,b′
[
Gbog

k1
(−ω − i0+)

]
b′b′′ [Ǔ (k1)†]b′′,λ1σ1+M

)
, (D8)

where

Gbog
k (z) = sgn Im εk−(z)σ z + sgn Im εk+(z) − sgn Im εk−(z)

εk+(z) − εk−(z)

(
z − [�̌′

k(z)]22 + εk+(z) [�̌′
k(z)]12

[�̌′
k(z)]21 z − [�̌′

k1
(z)]11 − εk+(z)

)
. (D9)

Solving Eq. (D8) on the BFSs, we can determine �kλσ,λ′σ ′ (ω + i0+) self-consistently. We also calculate Sk, �̄k, S†
k in a similar

manner. Inserting these self-energies into Eq. (45), we obtain the spectral function Ak(ω).
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