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The past few years have seen an increased interest in nonreciprocal phenomena in superconductors, especially
the superconducting diode effect (SDE) characterized by the nonreciprocity of the critical current �Jc. Contrary
to the fundamental and practical significance of the SDE, the precise underlying mechanism remains unclear.
In this paper, we investigate the impact of an orbital effect on the intrinsic SDE in a bilayer superconductor
with Rashba spin-orbit coupling and an in-plane magnetic field. We show that a small orbital effect leads to
the sign reversal of �Jc and a crossover of the helical superconducting state at a lower magnetic field than the
monolayer superconductor. On the other hand, a large orbital effect induces a decoupling transition, stabilizing
a finite momentum Cooper pairing state called the orbital Fulde-Ferrell-Larkin-Ovchinnikov state, and results in
the drastic change of the SDE. Owing to the orbital effect, the field dependence of the SDE may show oscillations
several times. The results shed light on the mechanism of the SDE in atomically thin multilayer superconductors.
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I. INTRODUCTION

Recent development in condensed matter physics has clari-
fied the significance of nonreciprocal phenomena [1,2], which
enable us to explore a fertile ground for quantum materi-
als, such as the inversion and time-reversal symmetries, the
spin-orbit coupling (SOC), the quantum geometry, and the
strong correlation effect. Nonreciprocity is characterized by
the directional transport of particles or quasiparticles. As for
the nonreciprocal transport of electrons, the magnetochiral
anisotropy (MCA), which refers to the directional electric
resistance, has been observed in various noncentrosymmet-
ric materials [3–13]. In superconductors near the transition
temperature, the superconducting fluctuation also induces the
nonreciprocity of the electric conductivity, which is called
the nonreciprocal paraconductivity, a kind of MCA [10–14].
Observation of the MCA is of prime importance in detecting
an unconventional superconducting state, in particular, the
spin-singlet and -triplet mixed superconducting state [8] and
the helical superconducting state [15].

Now for nonreciprocal phenomena in superconductors, the
superconducting diode effect (SDE) has received considerable
scholarly attention in recent years [16–69]. The SDE refers
to the directional critical current for the phase transition be-
tween normal and superconducting states and is characterized
by the nonreciprocity of the critical current �Jc. The SDE
has been observed in various superconductors, such as the
Nb/V/Ta superlattice and Rashba heterostructures [16–19],
transition metal dichalcogenides NbSe2 [20,21], twisted mul-
tilayer graphene [22], conventional superconductors [23–27],
and cuprate superconductors [28]. The Josephson junction is
also a platform for the SDE, which is called the Josephson
diode effect (JDE) [29–48]. Observation of the SDE and JDE
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at high temperatures provides a path toward realizing the
dissipationless electric circuits [28,46]. Work is also currently
underway to design a device with the SDE [49].

To investigate the SDE, it is essential to ascertain what
determines the critical current. Generally speaking, the crit-
ical current is determined by the vortex mechanisms, such as
the vortex surface barrier [24,27,50], vortex ratchet [51], and
vortex-antivortex pairs [52]. Because the dynamics of vortices
depend on the experimental setup such as sample geometry
and quality, the SDE derived from the vortex mechanisms is
called the extrinsic SDE. The extrinsic SDE, however, can-
not describe all the experimental results. For example, the
oscillation of �Jc for a magnetic field [18,47] has not been
explained based on the extrinsic SDE. Another approach to
understanding the SDE is to focus on the depairing critical
current, which reflects the intrinsic properties of supercon-
ductors. The SDE determined by the nonreciprocity of the
depairing critical current is called the intrinsic SDE [53–58].
Theoretical studies on the intrinsic SDE [54,56,57] have pre-
dicted the oscillation of �Jc for a magnetic field and revealed
a close relationship between the SDE and a finite Cooper pair
momentum state dubbed as helical superconductivity [70–82].
The SDE is therefore expected to be a valuable means to detect
helical superconductivity, while it is challenging to identify
the helical superconductivity with conventional experimental
methods. Furthermore, the SDE without external magnetic
fields has been observed in some experiments [19,22,32],
which could not be described by the extrinsic SDE, and an
intrinsic mechanism is implied. However, it is challenging to
identify the intrinsic SDE because there is a dearth of informa-
tion about the precise underlying mechanism, contrary to the
fundamental and practical significance of the SDE. Further
study is eagerly awaited to solve the problem.

Many platforms of the SDE, including the Nb/V/Ta super-
lattice, are heterostructures where superconducting layers are
weakly coupled. When the thickness of each layer is smaller

2469-9950/2024/109(9)/094501(7) 094501-1 ©2024 American Physical Society

https://orcid.org/0000-0003-4629-7818
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.094501&domain=pdf&date_stamp=2024-03-01
https://doi.org/10.1103/PhysRevB.109.094501


NAKAMURA, DAIDO, AND YANASE PHYSICAL REVIEW B 109, 094501 (2024)

than the coherence length, the Abrikosov vortex cannot pen-
etrate the layers under the in-plane magnetic field. Hence
most previous studies have investigated the SDE by neglecting
the orbital effect, assuming the monolayer limit. However,
the Josephson vortex can penetrate between the layers and,
indeed, the thickness of layers in the Nb/V/Ta superlattice is
not thin enough to completely neglect the Josephson vortex
or the orbital effect [69,83]. Because the Josephson vortex
changes the order parameter of multilayer superconductors, an
intrinsic property of superconductors, it is naturally expected
that the orbital effect plays an essential role in the SDE. Con-
sistent with this, an experiment has suggested the importance
of the orbital effect on a Josephson diode effect [48]. However,
a systematic understanding of the orbital effect on the SDE is
still lacking. This naturally motivates us to gain a decipher-
ment of the orbital effect on the intrinsic SDE, which may
shed light on the precise mechanism of the experimentally
observed SDE.

In this paper, we investigate the impact of the orbital effect
on the intrinsic SDE in a bilayer system, a minimal platform of
multilayer superconductors, that is numerically tractable and
expected to exhibit universal properties of multilayer systems.
In Sec. II, we introduce a model of the SDE in bilayer s-wave
superconductors with the Rashba-Zeeman effect. The orbital
effect caused by an in-plane magnetic field is built into the
model. In Sec. III, we analyze the data gathered and address
each of the research questions in turn. We show that a small or-
bital effect results in a crossover of helical superconductivity
at a lower field than the monolayer system and a large orbital
effect induces the decoupling of two layers resulting in the
Josephson vortex state. These changes in the superconducting
state alter the behaviors of the SDE and, in turn, they can be
detected by the SDE. In Sec. IV, we summarize the paper
and discuss the experimental observations in the Nb/V/Ta
superlattice.

II. MODEL AND SETUP

In this section, we set up a model to investigate the or-
bital effect on the SDE. We study a typical platform of the
SDE, the s-wave superconductor with the Rashba and Zee-
man effects [53,54,56], and extend the model to the bilayer
structure keeping in mind the Rashba heterostructures such as
Nb/V/Ta:

Ĥ =
∑

kσσ ′m

[ξ (k+pm)δσσ ′ +{g(k+pm)−h}·σσσ ′]c†
kσmckσ ′m

− U

V

∑
k,k′,q,m

c†
k+q↑mc†

−k↓mc−k′↓mck′+q↑m

+ t⊥
∑

kσ 〈mm′〉
c†

kσmckσm′ , (1)

where k, σ =↑,↓, and m = 1, 2 are index of momentum,
spin, and layer, respectively. In the first line of Eq. (1), the
normal-state Bloch Hamiltonian of each layer is given by

Hm
N (k) = ξ (k + pm) + [g(k + pm) − h] · σ, (2)

which includes hopping energy and chemical potential

ξ (k) = −2t (cos kxa + cos kya) − μ, (3)

the Rashba SOC with

g(k) = αg(− sin kya, sin kxa, 0), (4)

and the Zeeman term h · σ. Here, the magnetic field is applied
along the y direction, h = (0, μBH, 0). The energy dispersion
of the monolayer Hamiltonian Hm

N (k) is obtained as

ξχ (k, h) = ξ (k) + χ |g(k) − hŷ|
� ξχ [k − δqχ (k, h), 0], (5)

where each band is labeled by the helicity χ = ±1, and the
helicity-dependent momentum shift due to the Zeeman effect
h = μBH is given by

δqχ (k, h) = χgy(k)h

|g(k)| · |∇kξχ (k, 0)|2 ∇kξχ (k, 0). (6)

The approximation in the second line of Eq. (5) is justified
as long as the Rashba SOC αg is sufficiently larger than the
Zeeman effect h. Note that, in addition, the approximation is
not used in our numerical calculations. However, it is helpful
to compare the momentum shift due to the Rashba-Zeeman
effect [Eq. (6)] with that due to the orbital effect [Eq. (7)]
mentioned below in the analysis of Sec. III B.

In addition, a layer-dependent momentum shift is caused
by the orbital effect arising from the in-plane magnetic field.
When the vector potential is chosen as A = (Hz, 0, 0), the
momentum shift is obtained as

pma = ea

h̄
A = eHDa

h̄

(
3

2
− m

)
x̂

≡ h

t
d

(
3

2
− m

)
x̂. (7)

Here, e, h̄, and D are the electron charge, Dirac con-
stant, and interlayer distance, respectively. The orbital effect
is parametrized by d = eDat/μBh̄. Note that the orbital effect
parameter d is independent of the magnetic field H because
d represents the relative strength of the orbital effect to the
Zeeman effect rather than the orbital effect itself as can be
seen from Eq. (7).

In the second line of Eq. (1), we adopt a pairing interac-
tion for s-wave superconductivity and a finite momentum of
Cooper pairs q which can be assumed to be q = qx̂ because
of the y mirror symmetry. The system size is represented
by V = LxLy and we adopt Lx = 3000a and Ly = 200a for
numerical calculations. We choose q to be compatible with the
periodic boundary conditions, q ∈ 2πZ/Lx. In the third line of
Eq. (1), t⊥ is an interlayer hopping and assumed to be much
smaller than the in-plane hopping t . The parameters are cho-
sen as (t, μ, α,U, t⊥, a) = (1,−1, 0.3, 1.5, 0.1, 1), and give
the transition temperature of superconductivity Tc � 0.039 at
the zero magnetic field. Note that Tc is independent of d .

We calculate the depairing critical current by using the
mean-field approximation. The gap equation for the order
parameter on each layer is introduced by

�m(q) = −U

V

∑
k

〈c−k↓mck+qx̂↑m〉. (8)
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Then, the mean-field Hamiltonian ĤMF(q) and the
Bogoliubov–de Gennes (BdG) Hamiltonian Hq(k) are
obtained as

ĤMF(q) = 1

2

∑
k

	†
q (k)Hq(k)	q(k)

+ 1

2

∑
kσm

[[
Hm

N (k)
]
σσ

+ �m(q)2/U
]
, (9)

Hq(k) =
(

H1
q (k) τ

τ H2
q (k)

)
, (10)

with the layer-dependent BdG Hamiltonian

Hm
q (k) =

(
Hm

N (k + qx̂) �m(q)iσy

−�m(q)iσy −t Hm
N (−k)

)
(11)

and the interlayer hopping Hamiltonian

τ =
(

t⊥I2 0

0 −t⊥I2

)
. (12)

The Nambu spinor is defined as

	†
q (k) = [	†

q1(k), 	†
q2(k)], (13)

	†
qm(k) = (c†

k+qx̂↑m, c†
k+qx̂↓m, c−k↑m, c−k↓m). (14)

The electric current (the sheet current density) in the x
direction is given by

j(q) = j1(q) + j2(q), (15)

jm(q) = 1

V

∑
kσσ ′

∂kx H
m
N (k)σσ ′ 〈c†

kσmckσ ′m〉

= 1

V

∑
k

〈
	†

qm(k)∂qHm
q (k)	qm(k)

〉
. (16)

The critical current along each direction is defined by

jc(+) ≡ max
q

j(q), (17)

jc(−) ≡ min
q

j(q). (18)

Thereby, the nonreciprocity of the critical current is given by

�Jc = jc(+) − | jc(−)|. (19)

It is helpful to introduce the condensation energy to clarify
the superconducting state in equilibrium and its relation to the
SDE. Condensation energy is the difference of free energy
between the superconducting and normal states. Here, the free
energy is calculated by

�(q,�(q)) = 1

2V

∑
kσm

[[
Hm

N (k)
]
σσ

+ �m(q)2/U
]

− T

2V

∑
k

tr
[
ln

(
1 + e−Hq(k)/T

)]
, (20)

where tr represents the trace over the spin and Nambu degrees
of freedom. Thereby, the condensation energy is obtained by

F (q) = �(q,�(q)) − �(q, 0) (21)

as a function of the Cooper pair momentum q. By definition,
the Cooper pair momentum minimizes the free energy in the
equilibrium state and it is q0 defined by

F (q0) ≡ min
q

F (q). (22)

III. ORBITAL EFFECT ON THE SDE

In general, the upper critical field of superconductivity
is determined by either the orbital effect, the paramagnetic
(Zeeman) effect, or a combination of them. In other words, the
orbital and paramagnetic effects are the depairing mechanisms
due to a magnetic field. For the intrinsic SDE, the depairing
mechanism due to the supercurrent is the kinetic energy of
Cooper pairs, which determines the critical current. Since the
nonreciprocity appears only under the magnetic field in our
setup, the interplay of the depairing effects by the magnetic
field and supercurrent results in the SDE. The orbital effect
is therefore expected to impact the SDE, although it was
neglected in previous studies for the intrinsic SDE [53–58].

More specifically, the intrinsic SDE is closely related to
the Cooper pair momentum. In our setup, the Cooper pairs
get finite momentum because of the deformation of the band
structure. The deformation is represented by the shift of elec-
trons’ momentum, δqχ [Eq. (6)] due to the paramagnetic
effect and pm [Eq. (7)] due to the orbital effect. Therefore,
it is naturally expected that not only the paramagnetic effect
but also the orbital effect play an essential role in the intrinsic
SDE. Note that in a monolayer system the momentum shift
pm can be erased by a gauge transformation and, therefore,
the orbital effect does not affect any physical phenomena.
However, the orbital effect cannot be neglected in multilayer
systems.

In this section, we show the orbital effect on the nonre-
ciprocal critical current �Jc [Eq. (19)] and the Cooper pair
momentum q0 [Eq. (22)]. As we mentioned above, the orbital
effect is parametrized by d [Eq. (7)]. Below we see that the
orbital effect on the SDE is qualitatively different between
the cases of small and large orbital effects. The criterion is
determined by the competition of the paramagnetic effect and
the orbital effect. Thus it is helpful to discuss separately the
two situations of whether the orbital effect is smaller or larger
than the paramagnetic effect. The critical value of d depends
on the parameters such as a transition temperature of super-
conductivity. For our choice of parameters, the paramagnetic
effect is dominant for d = 0, 1, and 1.5, while the orbital
effect is significant for d = 6, 10, 15, and 20. In Sec. III A,
we discuss the small orbital effect on the SDE and the relation
to the crossover of helical superconductivity. In Sec. III B, we
discuss the large orbital effect on the SDE and showcase a
decoupling transition.

A. Small orbital effect on the SDE

We show in Figs. 1(a) and 1(b) the nonreciprocity of the
critical current �Jc and the equilibrium Cooper pair mo-
mentum q0, respectively, under a small or vanishing orbital
effect. The results for d = 0 correspond to the paramagnetic
limit in which the orbital effect is absent. By further assum-
ing t⊥ = 0, the model is equivalent to the monolayer model
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FIG. 1. Magnetic field dependence of [(a), (c)] the nonreciproc-
ity of the critical current �Jc and [(b), (d)] the Cooper pair
momentum q0 in the equilibrium state. Colored circles, squares, and
triangles with guided lines represent �Jc(h) and q0(h) for the param-
eter of the orbital effect d = 0, 1, 1.5, 6, 10, 15, and 20. The black
dashed lines indicate Jc(h) = 0 and q0(h) = 0. Colored dashed lines
in (d) show q0(h) = dh. The temperature is set to T = 0.005, which
is much lower than the transition temperature of superconductivity
Tc � 0.039 at the zero magnetic field.

studied for the intrinsic SDE [54] and we confirmed that
our calculation reproduces the previous study in this limit.
In Fig. 1(a), the magnetic field dependence of �Jc shows
qualitatively the same behaviors for d = 0, 1, and 1.5. The
SDE shows multiple sign changes around a specific magnetic
field. In monolayer superconductors, the sign change is at-
tributed to the crossover of helical superconductivity at which
the equilibrium momentum q0 drastically changes [54,57,58].
A comparison of Figs. 1(a) and 1(b) supports this contention
even in the presence of the small orbital effect. Specifically,
the sign reversal of SDE and the crossover of helical supercon-
ductivity simultaneously occur around h = 0.063, 0.052, and
0.045 for d = 0, 1, and 1.5, respectively, indicating the intact
relationship between the SDE and helical superconductivity.
Now we see that the orbital effect influences the SDE as it de-
creases the magnetic field where the sign reversal of �Jc and
the change of q0 take place. This means that the small orbital
effect lowers the crossover field of helical superconductivity.

The origin of the crossover in the helical superconduct-
ing state has been studied in a monolayer system and it
is attributed to the paramagnetic depairing effect of Cooper
pairs on Rashba-split Fermi surfaces [54,70,71]. In bilayer
superconductors, not only the paramagnetic effect but also
the orbital effect destabilizes the Cooper pairs and these two
effects cooperatively cause the crossover of helical super-
conductivity. Therefore, a small orbital effect accelerates the
evolution of �Jc and q0 for h, resulting in the sign change of
the SDE at a lower field. Consequently, the small orbital effect
does not change the behavior of the SDE qualitatively, but it
affects the scale of the typical magnetic field.

B. Large orbital effect on the SDE

Here, we discuss the SDE when the orbital effect is larger
than the paramagnetic effect. In this subsection, the low-,

FIG. 2. q dependence of the layer-dependent order parameter,
�1(q) (red lines) and �2(q) (blue lines), and the condensation energy
F (q) (green lines). We assume a large orbital effect with d = 10
and a low temperature T = 0.005. The magnetic field is varied as
(a) h = 0.0075, (b) h = 0.01, (c) h = 0.0125, and (d) h = 0.0135.

intermediate-, and high-field regions refer to 0 < h < 0.02,
0.02 < h < 0.05, and 0.05 < h, respectively. From the con-
clusion in Sec. III A, we might expect that the large orbital
effect further enhances the depairing effect and lowers the
magnetic field for the crossover of helical superconductivity.
Contrary to this expectation, we see qualitatively different be-
haviors of �Jc(h) and q0(h) in Figs. 1(c) and 1(d). Figure 1(c)
shows the two peaks of �Jc(h) for any d—one in the low-field
region and the other in the intermediate-field region. When
we further increase the magnetic field, the sign reversal of
the SDE appears in the high-field region. In contrast to the
results in Sec. III A, the equilibrium Cooper pair momentum
q0 begins to drastically increase in the low-field region, almost
linearly with the magnetic field, as shown in Fig. 1(d). Thus
the superconducting state drastically changes in the low-field
region and it is different from the crossover of helical super-
conductivity, as we discuss below.

To understand the evolution of the superconducting state,
it is helpful to show the layer-dependent order parameter
�m(q) [Eq. (8)], the condensation energy F (q) [Eq. (21)],
and the electric current j(q) [Eq. (15)] for various values of
the magnetic field h. First, we focus on the low-field region.
Figures 2(a)–2(d) show that the condensation energy illus-
trated by the green lines is negative at q ∼ 0 and |q| ∼ 0.15,
indicating the metastable superconducting states. We see that
the superconducting states are different between q ∼ 0 and
|q| ∼ 0.15, as revealed by the order parameters �m(q) illus-
trated by the red and blue lines. In the superconducting state
near q ∼ 0, the order parameters of the layers m = 1 and 2 are
comparable, namely, �1(q) � �2(q). The bilayer coupling
stabilizes this state, called the coupled superconducting state.
On the other hand, either �1(q) or �2(q) is much larger
than the other for the large Cooper pair momentum |q| > 0.1,
representing the bilayer decoupling [84–87]. At zero and low
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FIG. 3. Electric current j(q) (orange lines) and the condensa-
tion energy F (q) (green lines) of the decoupled state with q > 0.
(a) h = 0.04, (b) h = 0.05, (c) h = 0.053, and (d) h = 0.06. j(q) and
F (q) are normalized to [−1.1]. The parameter of the orbital effect is
d = 10 and the temperature is T = 0.005.

magnetic fields, the coupled superconducting state is naturally
more stable than the decoupled superconducting state as seen
in Fig. 2(a). The increase in the magnetic field, however, sup-
presses the coupled superconducting state while it stabilizes
the decoupled state as shown in Figs. 2(b)–2(d). The strong
suppression of the coupled superconducting state is owing
to the large orbital depairing effect. Contrary to the coupled
state, an order parameter of superconductivity in either of the
two layers is suppressed in the decoupled state and, therefore,
the orbital depairing effect is almost avoided like in a mono-
layer superconductor. As a result, the stable superconducting
state changes from the coupled state to the decoupled state
as increasing the magnetic field. This is called the decoupling
transition. As shown in Figs. 1(c) and 1(d), the decoupling
transition corresponds to a peak of the nonreciprocal critical
current �Jc in the low-field region, as it is accompanied by
the drastic increase in equilibrium Cooper pair momentum q0.

Next, we discuss the intermediate- and high-field regions.
We show in Fig. 3 how the magnetic field changes the elec-
tric current j(q) and the condensation energy F (q) of the
decoupled superconducting state. The development of j(q)
and F (q) in Figs. 3(a)–3(d) is similar to that in monolayer
superconductors [54], which supports an idea that the decou-
pled state is almost identical to a superconducting state in a
monolayer system. That is why �Jc in Fig. 1(c) shows the
peak in the intermediate-field region and the sign reversal
of the SDE in the high-field region. An essential difference
from the superconducting state for d = 0 is the Cooper pair
momentum arising from the orbital effect. The momentum
shift |hd/2| from Eq. (7) is much larger than that due to
the Rashba-Zeeman effect [Eq. (6)]. Thereby, the Cooper pair
momentum q0 � hd almost linearly increases with h after the

decoupling transition, as shown in Fig. 1(d), while q0 − hd
shows the crossover behavior similar to Fig. 1(b). Note that
the shift of Cooper pair momentum is doubled from that of
electrons.

At the end of this section, we briefly discuss the rela-
tionship between the decoupled superconducting state and
the orbital Fulde-Ferrell-Larkin-Ovchinnikov state studied in
recent works [66,88,89]. Reference [66] has studied a bilayer
moiré system with the Ising SOC and an in-plane magnetic
field and suggested that an orbital effect induces a finite mo-
mentum pairing phase which is called the orbital Fulde-Ferrell
state. In the orbital Fulde-Ferrell state, Cooper pairs acquire
the momentum q ∼ eBd with the magnetic field B and the
layer separation d in the notation of Ref. [66]. Thus the mo-
mentum agrees with that of the decoupled superconducting
state. We, therefore, recognize that the orbital Fulde-Ferrell
state results from the decoupling transition. Indeed, the mo-
mentum shift through the orbital gauge field and the resulting
finite momentum Cooper pairing are ubiquitous as they occur
in systems with various symmetries [90–92]. We expect that
the SDE can be a probe of a wide range of finite momentum
Cooper pairing states as it is sensitive to the change in the
superconducting state. Note that Ref. [66] studied the SDE,
but the magnetic field dependence was not shown.

IV. SUMMARY AND DISCUSSION

In this work, we have revealed the orbital effect on the
SDE in a bilayer system with a Rashba spin-orbit coupling
and an in-plane magnetic field. The small orbital effect results
in the crossover of helical superconductivity at a lower field,
while the large orbital effect induces the decoupling transition
accompanied by linearly increasing Cooper pair momentum
q0 with the magnetic field. We have shown that the SDE dras-
tically changes around the crossover or the transition. Thus
the SDE can be a macroscopic probe of superconductivity
with finite momentum Cooper pairs. Based on these results,
we conclude that the orbital effect plays an essential role in
the SDE in multilayer heterostructures.

Interestingly, the SDE shows an oscillating behavior as
increasing the magnetic field not only around the crossover
of helical superconductivity, as shown in Ref. [54], but also
around the decoupling transition. Thus it is expected that
the SDE oscillates around the structural transition points of
Josephson vortices even in more than three layers of systems.
Based on this expectation, we can interpret the oscillating
behavior of the SDE in the Nb/V/Ta superlattice. Because
the oscillation has been observed at the magnetic field much
lower than the paramagnetic limiting field [18], the orbital
effect stabilizing the Josephson vortices is more likely to be
the origin of the oscillating SDE than the paramagnetic effect.
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