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2 string correlations and singlet-triplet gaps of frustrated ladders with ferromagnetic legs

and alternate ferromagnetic and antiferromagnetic rungs
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The frustrated ladder with alternate ferromagnetic exchange −JF and antiferromagnetic exchange JA to first
neighbors and ferromagnetic exchange −JL to second neighbors is studied by exact diagonalization and density
matrix renormalization group calculations in systems of 2N spins- 1

2 with periodic boundary conditions. The
ground state is a singlet (S = 0) and the singlet-triplet gap εT is finite for the exchanges considered. Spin- 1

2
string correlation functions g1(N ) and g2(N ) are defined for an even number N of consecutive spins in systems
with two spins per unit cell; the ladder has string order g2(∞) > 0 and g1(∞) = 0. The minimum N∗ of
g2(N ) is related to the range of ground-state spin correlations. Convergence to g2(∞) is from below, and g1(N )
decreases exponentially for N � N∗. Singlet valence bond (VB) diagrams account for the size dependencies. The
frustrated ladder at special values of JF , JL , and JA reduces to well-known models such as the spin-1 Heisenberg
antiferromagnet and the J1-J2 model, among others. Numerical analysis of ladders matches previous results
for spin-1 gaps or string correlation functions and extends them to spin- 1

2 systems. The nondegenerate singlet
ground state of the ladder is a bond-order wave, a Kekulé VB diagram at JL = JF /2 � JA, that is reversed on
interchanging −JF and JA. Inversion symmetry is spontaneously broken in the dimer phase of the J1-J2 model
where the Kekulé diagrams are the doubly degenerate ground states at J2/J1 = 1/2.
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I. INTRODUCTION

The spin- 1
2 Heisenberg antiferromagnet (HAF) with

isotropic AF exchange J1 > 0 between first neighbors has
been central to theoretical studies of correlated many-spin
systems, including the famous exact 1D solution based on
the Bethe ansatz [1] and the magnetism of inorganic [2]
and organic [3] materials that contain 1D spin- 1

2 chains. The
addition of AF exchange J2 > 0 between second neighbors
introduces frustration and leads to interesting ground-state
properties such a bond-order waves [4], spiral phases [5–7],
and spin liquids [8] due to quantum fluctuations. The J1-J2

model has been successfully applied to the magnetism of
crystals with 1D chains of S = 1

2 of transition metal ions such
as Cu(II) [9,10].

Dimerized chains have lower symmetry and different J1

with neighbors to the right and left. The AFAF model [11] has
alternate JA = 1 to one neighbor and variable −JF to the other.
The model has attracted much attention since its approxi-
mate realization in some materials, e.g., Na2Cu2TeO6 [12,13],
CuNb2O6 [14], and (CH3)2NH2CuCl3 [15]. The AFAF model
is the frustrated F-AF ladder in Fig. 1 with spin Sr = 1

2 at
site r and JL = 0. The recent study [16] of weakly doped
Sr14Cu24O41 using resonant inelastic x-ray scattering illus-
trates the scope spin- 1

2 ladders. Other two-leg ladder singlet
ground states may exhibit superconductivity on tuning the
exchange interactions [17–19].
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The JF → ∞ limit of the AFAF model is the spin-1 HAF
that has been intensively studied theoretically and numerically
since Haldane predicted it to be gapped [20]. The ground
state of the AFAF model with exchange −JL between second
neighbors has interesting topological properties [21,22] as do
AFAF models [22] with spins S > 1

2 , which are the focus of
current research. The topological properties of AFAF models
with J2 < 0 pose open problems.

We study in this paper the F-AF ladder in Fig. 1 with
three isotropic exchanges: F exchange −JL between neighbors
r, r + 2 in legs, F exchange −JF at rungs 2r − 1, 2r, and
AF exchange JA at rungs 2r, 2r + 1. We consider parameters
JL, JF and JA = 1 leading to a singlet (S = 0) ground state
G(JL, JF ). The ladder reduces to important models in special
cases. These are the spin- 1

2 HAF at JL = 0 and −JF = JA with
one spin per unit cell and the AFAF model at JL = 0 and
−JF �= JA with two spins per unit cell. The ladder is frustrated
except when JL = 0 or JF = 0. The limit JF → ∞ is the spin-
1 HAF with J = (1 − 2JL )/4 > 0 between adjacent F rungs.
The limit JL → ∞ is a J1-J2 model with J1 = (1 − JF )/2 >

0 and J2 = −JL. The symmetry is higher [23] at infinite
JF or JL.

The spin Hamiltonian with JA = 1 as the unit of energy is

HF−AF (JL, JF ) =
N∑

r=1

(�S2r · �S2r+1 − JF �S2r−1 · �S2r )

− JL

2N∑
r=1

�Sr · �Sr+2. (1)
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FIG. 1. (a) The F-AF spin- 1
2 ladder with F exchange −JL < 0

between spins r and r + 2 in either leg, F exchange −JF in rungs
2r − 1, 2r, and AF exchange JA in rungs 2r, 2r + 1. (b) Kekulé
diagrams |K1〉 and |K2〉 with singlet-paired spins (2r − 1, 2r) and
(2r, 2r + 1), r = 1 to N .

The total spin S � N and its z component Sz are conserved.
We consider systems of 2N spins with periodic boundary
conditions and seek the thermodynamic limit N → ∞. The
ground state G(JL, JF ) in that limit has two noteworthy fea-
tures. First, it is either a singlet or ferromagnetic [24] for any
JL, JF and JA = 1. Second, the exact G(JL, JF ) is a product
of singlet-paired spins along a line where F exchanges cancel
exactly. Both are central in the following. A product of singlet-
paired spins is the exact ground state at special points of other
1D and 2D spin- 1

2 systems [22,25–34].
We develop three themes. The first is string correlation

functions in spin- 1
2 chains. Den Nijs and Rommelse [35] and

Tasaki [36] pointed out a hidden Z2 × Z2 symmetry that can be
measured by string correlation functions. Oshikawa [37] gen-
eralized the symmetry to Haldane chains with arbitrary integer
S > 1. The critical theory of quantum spin chains by Affleck
and Haldane [38] includes models with half-integer S and
Z2 symmetry. All the models considered [37,38] have equal
isotropic exchange between either integer or half-integer S.
The F-AF ladder has instead alternate −JF and JA = 1 be-
tween first neighbors. It has two spins per unit cell in general,
two string correlation functions, and Z2 symmetry only in
limits with one spin per unit cell.

The string correlation function O(p − p′) between consec-
utive spins from p to p′ in the spin-1 HAF is finite in the
limit |p − p′| → ∞. Hida [11] adapted the spin-1 expression
to string correlation functions of the AFAF model [JL = 0 in
Eq. (1)] with open boundary conditions. The string correla-
tion functions O(r − r′) necessarily have an even number of
consecutive spins- 1

2 in Eq. (2) of Ref. [11].
We use this expression in general. The string correlation

function for an even number N of consecutive spins- 1
2 is

g1(N ) = 〈G| exp

⎛
⎝iπ

N∑
j=1

Sz
j

⎞
⎠|G〉. (2)

The expectation value is with respect to the ground state in the
thermodynamic limit or in finite systems with periodic bound-
ary conditions. The general expression for spin- 1

2 strings is
well defined without reference to the spin-1 HAF. The initial
spin is arbitrary in systems with one spin per unit cell. Since
the F-AF ladder has two, the string correlation function g2(N )
runs from j = 2 to N + 1 in Eq. (2). In either case string
correlation functions of 2p � 2N spins can be evaluated for
2N-spin ladders. The choice 2p = N is convenient for taking
the thermodynamic limit.

The exact ground state along the line JL = JF /2 � 1 is
the Kekulé valence bond (VB) diagram |K2〉 in Fig. 1 with
singlet-paired spins 2r, 2r + 1 shown as lines, and as shown
in Sec. IV, g2(N ) = 1, g1(N ) = 0 at any system size. To eval-
uate string correlation functions, we obtain the ground state
G(JL, JF , 2N ) in increasingly large systems of 2N spins using
exact diagonalization (ED) and density matrix renormaliza-
tion group (DMRG) calculations. We interpret the results in
terms of VB diagrams.

VB diagrams are an explicit general way to con-
struct [39,40] correlated many-spin states in real space with
conserved S � N for 2N spins- 1

2 . The spins are placed at the
vertices of the regular 2N polygon. A line (m, n) between
vertices m and n represents normalized singlet-paired spins
whose phase is fixed by m < n,

(m, n) = (αmβn − βmαn)/
√

2. (3)

A legal (linearly independent) singlet diagram |q〉 has N lines
(m, n), an N-fold product of singlet-paired spins, that connects
all 2N vertices once without any crossing lines. Diagrams with
crossing lines are not linearly independent since they can be
resolved into legal diagrams. The normalized singlet ground
state is formally a linear combination of singlet diagrams,

|G(JL, JF , 2N )〉 =
∑

q

C(q, JL, JF )|q〉. (4)

The sum is over R0(2N ) singlet diagrams that depends only on
system size. The coefficients C(q, JL, JF ) depend on models,
parameters, and boundary conditions as well as system size.
We find below the diagrams |q〉 that are eigenfunctions of the
string operator in Eq. (2). The VB analysis accounts for the
remarkable result of increasing string correlation functions
g2(N ) with system size. Convergence to string order g2(∞)
is from below.

The second theme is to recognize three regimes of the
F-AF ladder in the positive quadrant of the JL, JF plane.
Near the origin, in Eq. (1) is a system of N dimers with
exchange JA = 1 between spins 2r, 2r + 1, a singlet ground
state, and frustrated F interactions between adjacent dimers.
The singlet-triplet gap εT (JL, JF ) is large, spin correlations are
short ranged, and small systems suffice for the thermodynamic
limit. Increasing JF > 1 while maintaining a singlet ground
state leads to N rungs 2r − 1, 2r with triplet (S = 1) ground
states and net AF exchange 1 − 2JL > 1 between adjacent
rungs. Increasing JL > 1 while maintaining a singlet ground
state leads to F legs with net AF exchange 1 − JF > 0 be-
tween spins in different legs. Results for general JL, JF are
understood qualitatively this way.
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The third theme is dimerization. The nondegenerate singlet
ground state of Eq. (1) is a bond-order wave (BOW). The bond
orders along the line JL = JF /2 � 1 are 〈S2 · S3〉 = −3/4 for
singlet-paired spins and 〈S1 · S2〉 = 0 due to canceling F ex-
changes. Interchanging −JF and JA = 1 reverses the BOW
without changing the energy spectrum. Increasing JF reduces
the BOW to [23] 〈S1 · S2〉 = 1/4 and 〈S2 · S3〉 = −0.350 in
the limit JF → ∞. Increasing JL to infinity leads to 〈S1 · S2〉 =
〈S2 · S3〉 = −1/4 and suppresses dimerization.

We discuss F-AF ladders with parameters JL, JF in in
Eq. (1) leading to singlet ground states. The paper is organized
as follows. Section II summarizes the numerical methods
used to obtain thermodynamic limits. Section III presents
the singlet-triplet gap εT (JL, JF ) in the three regimes. String
correlation functions g1(N ) and g2(N ) are defined in Sec. IV
for spin- 1

2 systems with two spins per unit cell. The g2(N )
minimum at N∗ is a collective estimate of the range of ground-
state spin correlations, while g1(N ) decreases exponentially
with system size for N � N∗. In Sec. V we consider string
correlation functions of the J1-J2 model with one spin per
unit cell and spontaneous dimerization for some parameters.
Section VI is a brief summary.

II. METHODS

We use two numerical methods, ED and DMRG, to solve
Eq. (1) at JA = 1 and variable JL, JF in sectors with Sz = 0 or
1 for 2N spins- 1

2 or for the HAF with n spins-1. ED up to 24
spins- 1

2 is sufficient for the thermodynamic limit of systems
with short-range correlations or large εT (JL, JF ). DMRG with
periodic boundary conditions is used for larger systems. The
ground state is a singlet when the lowest energy in the Sz =
0 sector does not appear in other sectors. We also perform
VB calculations to obtain the coefficients C(q) in Eq. (4) in
systems of 2N � 16 spins.

DMRG is a well-established numerical technique for the
ground state and low-lying excited states of correlated 1D
systems [41–43]. We use a modified DMRG algorithm that
adds four new sites (instead of two) to the superblock at each
step [44]. This avoids interaction terms between old blocks
in models with second-neighbor exchange, here −JL. All cal-
culations are performed with periodic boundary conditions.
We obtain truncation errors of 10−10 or less on keeping 512
eigenvectors of the density matrix and 4 or 5 finite sweeps.
Systems up to 2N = 192 spins- 1

2 or n = 64 spins-1 were used
for finite-size scaling.

There are additional external and internal checks on the
accuracy of DMRG calculations. External checks are spin-1
calculations using other numerical methods [36,45] or DMRG
with open boundary conditions [46]. Excellent agreement for
spin correlation functions to 6 or 7 decimal places is due at
least partly to the large Haldane gap [46] of the spin-1 HAF.
Internal checks rely on the singlet/F boundary [24] at

JF = 2JL/(2JL − 1), 2JL, JF � 1. (5)

The F energy per dimer is independent of system size,

εF (JL, JF ) = −(2JL + JF − 1)/4. (6)

The singlet ground state per dimer, ε0(JL, JF , 2N ), is size
dependent in general but must become size independent at

TABLE I. Ground-state energy ε0 per dimer at constant J+ and
J− = ±J+. ED at system sizes 16 and 24; the J2

− term of Eq. (7).

J+ = JL J− = JL ε0(16) ε0(24) J2
− term,

+JF /2 −JF /2 +3/4 +3/4 Eq. (7)

0.4 0.4 −0.0486 −0.0486 −0.05
−0.4 −0.0498 −0.0498 −0.05

0.8 0.8 −0.1604 −0.1599 −0.1714
−0.8 −0.1679 −0.1678 −0.1714

1.2 1.2 −0.3069 −0.3046 −0.3375
−1.2 −0.3220 −0.3217 −0.3375

1.6 1.6 −0.4742 −0.4695 −0.5333
−1.6 −0.4945 −0.4939 −0.5333

the boundary. ED returns two states with Sz = 0 and one with
Sz = 1 at ε0 = εF . There are additional Sz = 0 and 1 states
just above εF . The DMRG accuracy at 2N = 32 drops to 4 or
5 decimal places for the dense spectrum at the boundary.

III. SINGLET-TRIPLET GAP

Near the origin of the JL, JF plane, the singlet ground
state energy per dimer is conveniently written in terms of
J± = JL ± JF /2,

ε0(JL, JF ) = −3

4
− 3J2

−
4(2 + J+)

+ 0(J3
−). (7)

Spins 2r, 2r + 1 are dimers with exchange JA = 1 and JL, JF

cancel exactly when J− = 0. The range of J− at constant J+
is from −J+ at (0, JF ) to J+ at (2JL, 0). The ground state is
a singlet for J+ � 2, degenerate with εF = −3/4 at JL = 1,
JF = 2. The virtual states at (2 + J+) in second-order per-
turbation theory are singlet linear combinations of adjacent
triplet dimers. ED results for ε0(JL, JF , 2N ) + 3/4 are listed
in Table I for 2N = 16 and 24 at constant J+ and J− = ±J+.
The size dependence is weak. Differences at J− = ±J+ are of
order J3

−.
The upper panel of Fig. 2, shows εT (JL, JF ) at constant

J+ for 2N = 16 and 24 as a function of −J+ � J− � J+.
The gap decreases from εT (0, 0) = 1 with increasing J+ and
is asymmetric in J−. The size dependence is weak except
at J+ = 2, J− > 0. The cusp at J− ≈ 0 and J+ = 0.4 is due
to lifting the N-fold degeneracy of localized triplets at 2r,
2r + 1. The lowest triplet is nondegenerate with wave vector
k = 0 or π that switches from π to 0 with increasing J−.

The lower panel of Fig. 2 zooms in on εT (JL, JF , 2N ) at
J+ = 2.0 and −0.4 � J− � 0.4, which includes the singlet/F
boundary at J− = 0. The crossing points at positive and neg-
ative J− are due to finite size. The singlet and F ground
states are extensive while εT is intensive. In finite systems,
the extensive difference N (εF − ε0) at the singlet/F bound-
ary is a parabola, −N times the J2

− term of Eq. (7). The
calculated εT (JL, JF , 2N ) at J+ = 2, J− = 0 are εT (20) =
0.0118, εT (24) = 0.0037, and εT (32) ≈ 0.0031 ± 0.001. As
mentioned in Sec. II, the dense spectrum at the boundary
limits the numerical accuracy. The gaps of finite ladders in the
lower panel are well approximated by parabolas with finite
εT ≈ 0.003 at J− = 0, crossing points at εT = N (εF − ε0),
and asymmetry due to J3

−.
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FIG. 2. (a) Singlet-triplet gap εT (JL, JF ) vs J− = JL − JF /2 at
constant J+ = JL + JF /2 and system sizes 2N = 16 and 24. The
range is −J+ � J− � J+, and εT (0, 0) = 1. (b) εT (JL, JF ) at constant
J+ = 2 vs −0.4 � J− � 0.4 at 2N = 20, 24, and 32. The crossing
points are εT = N (εF − ε0).

The size dependence of εT (JL, JF ) is much weaker at
JF > 2 than at JL > 1. In either case the singlet/F boundary,
Eq. (5), limits the magnitude of the other exchange. Figure 3
shows εT (JL, JF ) at system sizes 2N = 16 and 24 as a function
of JL at the indicated JF . The maximum gap decreases and
broadens with increasing JF where triplets with different wave
vectors are closely spaced. The k = 0 triplet is lowest when
the gap is decreasing and (almost) vanishes at the singlet/F
boundary. The k = π triplets at JL = 0 have the strongest size
dependence.

The spins 2r − 1, 2r form triplets when JF is large; the
ground-state degeneracy is 3N at JA = JL = 0. To study the
large-JF regime of the ladder, we rewrite Eq. (1) as

HF−AF (JL, JF ) = −JF

N∑
r=1

�S2r−1 · �S2r + (1 − 2JL )/4

×
N∑

r=1

(�S2r−1 + �S2r ) · (�S2r+1 + �S2r+2) + V ′.

(8)

The first term corresponds to noninteracting dimers with
triplet ground states. The second term is the spin-1 HAF with

FIG. 3. Singlet-triplet gap εT (JL, JF ) vs JL at constant JF and
system sizes 2N = 16 and 24. The gaps are <0.005 at the singlet/F
boundary, 2JL = JF /(JF − 1). The dashed line is (1 − 2JL )�(1)/4
where �(1) = 0.4105 is the Haldane gap [46]; the crosses at JL = 0
and 0.25 are for JF = 200 and 2N = 64.

exchange J = (1 − 2JL )/4 > 0 between neighboring rungs
2r, 2r − 1. The operator V ′ contains all other exchanges.
The coefficients are (3 + 2JL )/4 for exchange between spins
2r, 2r + 1; −(1 + 2JL )/4 for exchange between spins r and
r + 2; and −(1 − 2JL )/4 for exchange between spins 2r − 1
and 2r + 3. Virtual excitations at finite JF lead to effective
Hamiltonians with excitations of order 1/JF . Equation (8)
adiabatically connects ladders with finite JF and 2JL < 1 to
the spin-1 HAF with V ′ = 0 in the limit JF → ∞.

DMRG with open boundary conditions returns [46]
�(1) = 0.4105 for the Haldane gap. We find �(1) = 0.4106
for 48 spins-1 and periodic boundary conditions. The dashed
line in Fig. 3 is (1 − 2JL )�(1)/4. The gaps indicated by
crosses at JL = 0 and 1/2 are 0.1055 and 0.0538, respectively,
at JF = 200 and system size 2N = 64.

The size dependence of εT (JL, JF ) is shown in Fig. 4 at
constant JL = 1.5, variable JF in the upper panel and at con-
stant JF = 1.5, variable JL in the lower panel. The singlet/F
boundary is (1.5, 1.5) where the estimated gap is <0.005.
Both panels show εT (JL, JF , 2N ) minima in finite ladders
and increasing gaps with weak size dependence at (1.5, 1.45)
or (1.45, 1.5). The dashed lines are 1/N extrapolations. The
remarkably small gap in Fig. 4(a) has been noted [21] pre-
viously using DMRG with open boundary conditions. Small
εT (JL, JF ) with a minimum are found at JA = 1 and compara-
ble JL, JF with JL + JF ≈ 2.8. We do not have an explanation
for a minimum gap.

Figure 5 shows the JL dependence of εT (JL, JF ) for the
indicated JF at 2N = 16 and 24 in the upper and lower panels,
respectively. The ladder with −JF = 1 in Eq. (1) is a J1-J2

model with J1 = 1 and J2 = −JL. Ladders with other JF have
two spins per unit cell and correspond to alternating J1-J2

models with J1 = (1 − JF )/2 and alternation ±(1 + JF )/2.
Since the J1-J2 model has noninteracting legs at J1 = 0, the
gap at JF = 1 is entirely due to alternation. The gaps at JF = 0
and 1/2 in Fig. 5 are equal at 1/JL = 0. As expected, alternat-
ing exchanges increase the gap when JL is finite.
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FIG. 4. Size dependence of singlet-triplet gaps εT (JL, JF ) at
(a) constant JL = 1.5, variable JF and (b) constant JF = 1.5, vari-
able JL . The dashed line is the 1/N extrapolation from 2N = 24 to
2N = 64 or 96.

Equation (1) conserves total S but not the spins SA = SB �
N/2 of each leg. Equal J ′ between all spins in different legs
leads to separately conserved S, SA, and SB. Angular momen-
tum addition returns εT = J ′ when J ′ > 0. The mean-field
approximation for −JF and JA = 1 is J ′ = (1 − JF )/N . The
same result holds for the J1-J2 model with 2N exchanges
J1 = (1 − JF )/2. In the limit JL → ∞, the gap at system size
2N is

εT (JF , 2N ) = (1 − JF )/N, JF � 1, JL → ∞. (9)

Equation (9) agrees quantitatively with the numerical results
at 1/JL = 0 in Fig. 5 for ladders and J1-J2 models. Alternation
increases εT .

The mean-field approximation has apparently not been
recognized in systems with F exchange −JL in legs. The
ladder with JF = 0 and JA > 0 in Fig. 1 has been studied
numerically [47] and field-theoretically [48]. The F state is
unconditionally unstable when JA > 0, as expected on general
grounds; it can be stabilized [47,48] by an Ising contribution
to the isotropic exchange −JL. Equation (9) is consistent with
general expectations and provides quantitative gaps for finite
ladders with −JF � 1 in Eq. (1). The mean-field εT (JF , 2N )
is elementary at 1/JL = 0 and rigorously decreases as 1/N . It
is a good approximation to at least 1/JL = 0.1.

FIG. 5. Singlet-triplet gaps εT (JL, JF ) vs 1/JL = −1/J2 at con-
stant JF = −1, 0, 0.5, and 1 at system sizes 2N = 16 in (a) and 24
in (b). Open symbols refer to J1-J2 models with J1 = (1 − JF )/2 and
J2 = −JF . The ladder at JF = −1 is a J1-J2 model. The 1/JL = 0
gaps are (1 − JF )/2N for both. The JF = 1 gap is finite in ladders,
zero in J1-J2 models.

We conclude this section by highlighting the difference
between no net AF exchange and no exchange. The lad-
der at JF → ∞ is a spin-1 HAF with J = (1 − 2JL )/4. The
singlet/F boundary is at J = 0 where the energy per dimer is
ε0 = εF = −JF /4. Since the boundary in Eq. (5) is at 2JL > 1
when JF is finite, the ground state is a singlet at 1 − 2JL = 0
and no net exchange, with per dimer energy

ε0(1/2, JF )/JF = −1/4 − c/J2
F . (10)

The first-order energy of Eq. (8) is zero at 2JL = 1. There is
a second-order correction because JA = 1 and −JL = 1/2 are
between different spins, 2r, 2r + 1 for JA and r, r + 2 for JL.
Equation (10) holds for JF > 10 with c = 0.516 at both 2N =
16 and 24.

The JL → ∞ limit of the ladder is a J1-J2 model. The
singlet/F boundary is at J1 = 0 with ε0 = −JL/2 when JF =
1. The boundary of the ladder, 2JL = JF /(JF − 1), is at JF >

1 when JL is finite. The ground state is a singlet at JF = 1 and
no net exchange between legs. But ε0(JL, 1) has second-order
corrections in 1/JL since JA and JF are between different
spins. We find ε0(JL, 1)/JL = −1/2 − d/J2

L for JL > 10 with
d = 0.271 and 0.282 at 2N = 16 and 24.
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IV. STRING CORRELATION FUNCTIONS

We obtain an explicit relation between spin-1 and spin- 1
2

string correlation functions. Girvin and Arovas define [49]
string correlation functions of consecutive s = 1 spins as

g̃(n) = −
〈

sz
1

⎛
⎝exp iπ

n∑
j=2

sz
j

⎞
⎠sz

n+1

〉
. (11)

The expectation value is with respect to the singlet ground
state in the thermodynamic limit or in finite chains with peri-
odic boundary conditions. The (n − 1) spins-1 in the exponent
can be written as 2(n − 1) spins- 1

2 with s j = S2 j−1 + S2 j . The
other spins are s1 = S1 + S2 and sn+1 = S2n+1 + S2n+2. To
have strings of consecutive spins- 1

2 , Hida [11] chose spins S2

and S2n+1 and used the spin- 1
2 identity,

−4Sz
mSz

n = exp iπ
(
Sz

m + Sz
n

)
, (12)

to shift those spins into the exponent. This leads to g2(N )
with N consecutive spins from 2 to N + 1 in Eq. (2). As
anticipated [11] on including the factor of 4, the string order
g2(∞) in the limit JF → ∞ is equal to g̃(∞).

The spin- 1
2 string correlation function defined in Eq. (2)

is not limited to either JF → ∞ or N → ∞. Systems with
two spins per unit cell have two strings of N spins. The
string g1(N ) in Eq. (2) has N/2 exchanges −JF and N/2 − 1
exchanges JA = 1 while g2(N ) has N/2 exchanges JA and
N/2 − 1 exchanges −JF . The size dependencies of g1(N ) and
g2(N ) are very different.

The string operator ĝ1(N ) has an even number N of consec-
utive spins from 1 to N . Singlet VB diagrams |q〉 in systems of
2N spins have N lines (m, n) that correspond to singlet-paired
spins in Eq. (3). Repeated use of Eq. (12) leads to

exp

⎛
⎝iπ

N∑
j=1

Sz
j

⎞
⎠|q〉 = |q〉, 1 � m, n � N,

= |q〉T , otherwise. (13)

Diagrams |q〉 with 1 � m, n � N are eigenfunctions with unit
eigenvalue. The factor of 4 in Eq. (12) is required for normal-
ization, 〈q|q〉 = 1. The eigenfunctions are all possible singlets
based on spins in the string.

Diagrams |q〉 that are not eigenfunctions contain one or
more pairs of bridging lines (m, n) with only one spin in the
string. Then ĝ1(N )|q〉 generates a diagram |q〉T with triplet-
paired spins (m, n)T = (αmβn + βmαn)/

√
2 at all bridging

lines. Spin orthogonality ensures 〈q|q〉T = 0 but finite 〈q′|q〉T

is possible with other singlets |q′〉. The Appendix summa-
rizes two general properties of singlet VB diagrams: overlaps
and dimensions. Overlaps Sq′q = 〈q′|q〉 are needed to evalu-
ate expectation values. R0(2N ) in Table II is the number of
singlet diagrams at system size 2N . A string of N spins has
R0(N ) eigenfunctions, each R0(N )-fold degenerate, without
any bridging lines. The relative number of diagrams with
bridging lines increases with system size as indicated by the
decreasing ratio R0(N )2/R0(2N ) in Table II.

We compute the string correlation functions g2(N ) and
g1(N ) of the F-AF ladder with 2N spins Eq. (1). The upper
panel of Fig. 6 shows the size dependence of g2(N ) as 1/(2N )

TABLE II. R0(2N ) is the number of singlet VB diagrams for
2N spins. R0(N ) is the number of eigenstates of an N-spin string.
Equation (A4) is Stirling’s approximation.

2N R0(2N ) R0(N ) R0(N )2/R0(2N ) Eq. (A4)

12 132 5 0.189 0.199
16 1430 14 0.137 0.143
20 16796 42 0.105 0.109
24 208012 132 0.0838 0.0861

from 2N = 12 to 144 at JL = 0 and JF = 2, 5, and 50. The
lower panel shows g1(N ) on a logarithmic scale. At any sys-
tem size, g2(JF ) is larger than g1(JF ) and decreases with JF

while g1(JF ) increases with JF . Although not evident on the
scale of Fig. 6, g2(N ) at JF = 2 increases from 0.789978 at
2N = 12 and extrapolates to g2(∞) = 0.794918. At JF = 5
and 50, g2(N ) has a shallow minimum at N∗ = 8 and 12,
respectively. Convergence to g2(∞) is again from below.

The following statements summarize results for other
parameters JL, JF . String correlation functions satisfy the
inequality

1 � g2(N ) > g1(N ) � 0. (14)

FIG. 6. (a) String correlation functions g2(N ) at system size 2N ,
JL = 0, and JF = 2, 5, and 50; linear extrapolation to string order
g2(∞). (b) g1(N ) for the same JL, JF with solid symbols for N �
N∗, the minimum of g2(N ), open symbols for N < N∗. The lines are
Eq. (15) with the indicated ξ .
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FIG. 7. Representative singlet VB diagrams |q〉 with N lines
(m, n) in ladders with 2N spins and CN translational symmetry: |a2〉
has one line (2, 5) of length 3 and (N − 1) lines of unit length;
|a1〉 has one line (1, 4) of length 3; |b2〉 has one line (2, N + 1) of
length N − 1, the maximum length; |c〉 has two lines of length N − 1,
(2, N + 1), and (N + 2, 1).

The function g2(N ) has a shallow minimum at system
size 2N∗. The size dependence of g1(N ) is exponential for
N � N∗,

g1(N ) = g1(N∗) exp[−2ξ (N − N∗)], N � N∗. (15)

The g2(N ) minima in Fig. 6 are N∗ = 4, 8, and 12, respec-
tively, for JF = 2, 5, and 50. The lines for N � N∗ in the lower
panel are Eq. (15) with the indicated ξ .

We interpret g2(N ) and g1(N ) in terms of the VB ground
state, Eq. (4), with coefficient C(q) for diagram |q〉. The exact
ground state is |K2〉 when JL = JF /2 � 1, with C(K2) = 1
and C(q) = 0 for all other |q〉. The expectation values are
g2(N ) = 1 and g1(N ) = 0 independent of system size. The
shortest string is N = 4 since consecutive spins return the spin
correlation function −4〈Sz

1Sz
2〉.

The ground state is a linear combination of singlet dia-
grams |q〉 when |JL − JF /2| > 0. The representative singlet
VB diagrams |q〉 in Fig. 7 have N lines (m, n); lines not shown
explicitly are between neighbors (m, m + 1). The diagram
|a2〉 differs from |K2〉 by two lines, (2, 5) and (3, 4). The N
symmetry-related diagrams with a line (2r, 2r + 3) have equal
C(q). The N diagrams |a1〉 in Fig. 7 with a line (2r − 3, 2r)
have equal C(a1) < C(a2) since only line (2, 3) is shared
with |K2〉. Diagram |b2〉 has a line (2r, 2r + N − 1) of length
N − 1, the longest at system size 2N . Diagram |c〉 has two
lines of length N − 1 and (N − 2) lines of unit length.

TABLE III. Ground-state coefficient C(q) of diagrams |q〉 in
Eq. (1) with JL = 0, JF = 5, and 2N spins. |K1〉 and |K2〉 are shown
in Fig. 1, and |a2〉, |a1〉, |b2〉, and |c〉 in Fig. 7.

C(q)\2N 8 12 16

C(K2) 0.7583 0.6454 0.5607
C(K1) 0.1188 0.0217 0.0034
C(a2) 0.2981 0.2545 0.2213
C(a1) 0.0763 0.00556 0.00027
C(b2) 0.2981 0.0833 0.00045
C(c) 0.1172 0.0109 0.00144

Table III shows the size dependence of selected coefficients
C(q) at JL = 0, JF = 5. The strong decrease of C(K1) with
system size is due to the overlap 〈K1|K2〉 = (−2)−(N+1).
The decrease of C(a1) is also due to overlap. As shown in
the Appendix, diagrams |q〉 that differ from |K2〉 by a finite
number of lines are asymptotically orthogonal to diagrams
|q′〉 that differ from |K1〉 by a finite number of lines. The
size dependence of C(b2) illustrates the range of spin cor-
relations, which is short at JL = 0, JF = 5, consistent with
large εT (0, 5) in Fig. 3. Diagram |c〉 has two lines of maxi-
mum length, and short-range spin correlations explain its size
dependence.

Turning to string correlation functions, we note that (N −
2) of the diagrams |a2〉 are eigenfunctions of ĝ2(N ) while two
diagrams have bridging lines, either (2N, 3)(1, 2) or (N, N +
3)(N + 1, N + 2). The relative number of bridging lines in
|a2〉 decreases with system size. On the other hand, only two
diagrams |b2〉 are eigenfunctions of ĝ2(N ); the other (N − 2)
have bridging lines. As seen in Table II, the relative number
of diagrams with bridging lines increases with system size,
and so do their coefficients C(q) for parameters JL, JF that
increase the range of spin correlations.

Since the ladder is gapped, spin correlations are finite-
ranged and C(q) must be small for diagrams with lines (m, n)
that exceed the range. We suppose N∗ to be an estimate of
the range. Then g2(N ) and g1(N ) decrease with system size
up to 2N∗ because the bridging lines increase more rapidly
than eigenstates in Table II. By hypothesis, C(q) is negligible
for diagrams with lines longer than N∗. Then g2(N ) increases
when N > N∗ because diagrams with lines shorter than N∗
are only bridging at the ends of increasingly long strings. The
range N∗ limits finite C(q) to diagrams that differ from |K2〉
by a specified number of lines. The exponential decrease of
g1(N ) for N > N∗ in Eq. (15) is consistent with the asymptotic
orthogonality of diagrams such as |a2〉 and |a1〉 that differ
from |K2〉 and |K1〉, respectively, by two lines. It follows that
g1(∞) = 0 and that C(q) = 0 in the thermodynamic limit for
the R0(2N )/2 diagrams |q〉 whose squared overlap is larger
with |K1〉 than with |K2〉.

The panels of Fig. 8 show the size dependence of g2(N ) and
g1(N ) in ladders with 2N spins, JF = 0, and JL = 1, 2, and 3.
The g2(N ) minima are N∗ = 4, 16, and 48 for JL = 1, 2, and
3. Larger systems are required for accurate extrapolation of
g2(N ) at JL = 3. The solid lines g1(N ) in the lower panel are
Eq. (15) with the indicated ξ .

Table IV lists the string order g2(∞), the minimum N∗
of g2(N ), and the spin gap εT for representative parame-
ters JL, JF . We recall that g2(∞) = 1 = C(K2) when JL =
JF /2 � 1 while εT decreases from 1 at the origin to ≈0.003
at the singlet/F boundary. A g2(N ) minimum at N∗ requires
JL, JF that lead to significant C(q) for diagrams |q〉 with lines
(m, n) longer than 4, the shortest string. The first two entries at
|JL − JF /2| = 0.25 have almost equal g2(∞) but quite differ-
ent gaps; g2(N ) has a minimum at 2N = 8 for the smaller εT

but not for the larger one, and the coefficients C(K2), C(a2)
are by far the largest in either case. Systems with N∗ = 4
or 8 in the table return g2(∞) > 0.75 or >0.5, respectively.
The exponential decrease of g1(N ) for N � N∗ in Figs. 6(b)
and 8(b) starts around g1(N∗) ≈ 0.1. The interpretation is
that C(q) is small for diagrams with lines (m, n) longer than
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FIG. 8. (a) String correlation functions g2(N ) at system size
2N and JF = 0, JL = 1, 2, and 3. Linear extrapolation to string or-
der g2(∞). (b) g1(N ) for the same JL, JF ; solid symbols for N �
N∗, open symbols for N < N∗. The lines are Eq. (15) with the
indicated ξ .

N∗. String order g2(∞) < 0.25 indicates longer-ranged spin
correlations with N∗ > 50 and gaps εT < 0.1.

The g2(N∗) minimum is exceptionally shallow at JL = 0.5
and JF = 5. Short-range correlations are to be expected at
zero net exchange 1 − 2JL between F rungs. We find con-

TABLE IV. String order g2(∞), minimum N∗ of g2(N ), and gap
εT in the thermodynamic limit for JL, JF in Eq. (1).

JL JF g2(∞) N∗ εT

0.25 1 0.98144 0.777
1 1.5 0.98143 4 0.242
1 1 0.941 4 0.340
0.5 0 0.926 4 0.610
1 0 0.797 4 0.370
0 2 0.795 4 0.416
0.5 5 0.675 6 0.183
0.25 5 0.634 6 0.196
0 5 0.585 8 0.225
2 0 0.503 16 0.110
2 0.5 0.490 24 0.053
2 1 <0.09 >100 0.016
0 50 0.396 12 0.11
3 0 ∼0.31 48 0.038

FIG. 9. Size dependence of g2(N ) at JL = 0 and the indicated JF

from 2N = 12 to 96. The string correlation function g̃(N/2) is for the
HAF with N spins-1. The magenta point at 2N = 96 is for JF = 400.

stant g2(N ) for N � N∗ to three decimal places, very small
g1(N∗) < 0.02, and the only deviation from exponential be-
havior seen so far. Spin correlations at JF = 5 in Table IV are
shorter-ranged at JL = 0.5 than at JL = 0.

There is no net exchange between legs when JF = 1. The
JL = 2 gaps in Table IV decrease from JF = 0 to JF = 1. In
contract to zero net exchange between rungs, however, N∗ at
JL = 2 increases from 16 at JF = 0 to 24 at JF = 0.5 and
exceeds 100 at JF = 1. Longer ladders than 2N ≈ 200 will
be required for g2(∞) < 0.25. For example, g2(N ) is still
decreasing at 2N = 192 at JL = 1.5, JF = 1.3 or at JF = 1.5,
JL = 1.35, the parameters with εT < 0.01 in Fig. 4.

We now turn to the JF → ∞ limit of the ladder, the spin-1
HAF with J = 1/4 at JL = 0. Figure 9 compares the size
dependence of g2(N ) at system size 2N , JL = 0, and JF with
g̃(N/2), Eq. (11), the string correlation function for N spins-1.
Note the expanded scale. The string orders g̃(∞) and g2(∞)
are equal in the limit JF → ∞ by construction [11], as dis-
cussed above, but g2(N ) is not equal to g̃(N/2) at either finite
JF or finite N . The g̃(N/2) minimum occurs at N = 16 spins-
1. The string order is [46] g̃(∞) = 0.374325 while we obtain
g̃(∞) = 0.37427 at 48 spins-1. We find g2(48) = 0.37692 for
96 spins- 1

2 and JF = 400, and string order 0.37427 on linear
extrapolation to 1/JF = 0.

The g̃(N/2) minimum is a new result. Previous studies
considered g̃(p) at constant system size n and hence constant
spin correlations with periodic [49] or open [46] boundary
conditions; g̃(p, n) decreases with p up to n/2 in small cyclic
systems or to g̃(∞) as shown in Fig. 5 of Ref. [46]. The
corresponding spin- 1

2 function g2(2p, 2N ) has variable p at
constant system size 2N , and it also decreases to 2p = N or to
g2(∞) in the thermodynamic limit. We have instead studied
the size dependence of g2(N, 2N ) and found an unanticipated
minimum at N∗. Convergence to string order g2(∞) is from
below. The VB analysis rationalizes the size dependencies of
both g2(N, 2N ) and g̃(n/2, n).

Finite string order g2(∞) and gap εT are expected on
general grounds in dimerized ladders with −JF �= JA and two
spins per unit cell. The ground state is a BOW. The limit JF →
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FIG. 10. Size dependence of the string correlation function
g−(N ) of J1-J2 models with 2N spins, J1 = 1, and J2 = 0, −2, and
−4. The J2 = 0 expression [11] is used at J2 = −2 and −4.

∞ generates inversion centers at the centers of rungs, and the
ladder becomes a spin-1 HAF with J = (1 − 2JL )/4 > 0 and
Z2 symmetry.

V. SPONTANEOUS DIMERIZATION

The F-AF ladder, Eq. (1), has two string correlation func-
tions with an even number N of consecutive spins- 1

2 . The
nondegenerate ground state is a BOW due to alternate first-
neighbor exchanges −JF and JA = 1. We set −JF = 1 in this
section and discuss the J1-J2 model with J1 = 1 and J2 = −JL.
The model has one spin per unit cell, C2N translational sym-
metry, and inversion symmetry σ at sites. The ground state
for 2N spins, N even, is odd under inversion, σ = −1. The
coefficients of |K1〉 and |K2〉 or of |a2〉 and |a1〉 in Table III
are then equal with opposite sign. We have C(q′) ± C(q)
for symmetry-adapted linear combinations of singlets |q〉 and
|q′〉 = σ |q〉. The lowest singlet excited state has σ = 1 sym-
metry and C(q′) = C(q).

The string correlation function g−(N ) is the ground-state
expectation value. Hida [11] applied field theory to the spin- 1

2
HAF (J2 = 0) and concluded that g−(N ) is proportional to
N−1/4, consistent with ED up to 2N = 24. Figure 10 shows
the size dependence of g−(N ) at J2 = 0 from 2N = 12 to 192,
The exponent γ (0) = 0.270 is the best fit, in good agreement
with field theory. Since the model with J2 < 0 is not frus-
trated, the size dependence of g−(N ) at J2 = −2 and −4 in
Fig. 10 is also fitted as AN−γ .

The J1-J2 model is frustrated when J2 > 0. The ground
state is doubly degenerate in the dimer phase [50] Jc =
0.2411 � J2 � 1/2. In finite systems, the singlets σ = −1
and +1 are the ground and first excited states, respec-
tively. They are degenerate at J2 = 1/2, the Majumdar-Ghosh
point [25], where the exact σ = ±1 ground states are the plus
and minus linear combinations of |K1〉 and |K2〉. The system
is spontaneously dimerized.

The broken-symmetry state |K2〉 at J2 = 1/2 returns
g2(N ) = 1, g1(N ) = 0 as discussed for the ladder while |K1〉
has g1(N ) = 1, g2(N ) = 0. Due to overlaps, the string corre-
lation functions g±(N ) are size dependent. A straightforward

FIG. 11. String correlation function g−(N ) at J2 = 0.2 in the
gapless phase, fitted as in Fig. 10. Solid and dashed lines are g−(N )
and g+(N ) at J2 = 0.35 and 0.45 in the gapped dimer phase. The
point at J2 = 0.5 is exact. The lines at J2 = 0.35 are to guide the eye.

calculation leads to

g−(N ) = 1/2 + 1/(2N + 2). (16)

The g+(N ) expression has a minus signs in Eq. (16). Conver-
gence to the thermodynamic limit is exponential.

Figure 11 shows the size dependence of g−(N ) at J2 =
0.20 < Jc in the gapless phase and both string correlation
functions at J2 = 0.45 and 0.35 in the dimer phase. The
g−(N ) points at J2 = 0.20 are fitted to AN−γ as in Fig. 10
with γ = 0.257. The point at 0.50 is exact for J2 = 0.5. The
g−(0.45, N ) and g+(0.45, N ) curves cross twice before con-
verging to string order g−(∞) = g+(∞) = 0.485. Rapid size
convergence and slightly reduced string order are expected
close to J2 = 1/2. We did not anticipate curve crossing; the
ground state is odd under inversion at all system sizes.

The J2 = 0.35 string correlation functions in Fig. 11 cross
at system size 2N ≈ 32. The functions g+(N ) and g−(N ) are
expected to have equal string order g(∞) > 0. The difference
g+(N ) − g−(N ) increases to 0.029 at 2N = 144 and decreases
to 0.026 at 2N = 192. Larger systems are required to evalu-
ate the string order. The small gap εT (1, 0.35) = 0.006 also
points to long but finite-ranged spin correlations.

VI. SUMMARY AND CONCLUSIONS

We have presented spin- 1
2 string correlation functions and

string order in general. The F-AF ladder, Eq. (1), at specific
parameters JL, JF and JA = 1 reduces to important spin- 1

2
models with singlet ground states. It has two N-spin string
correlation functions, g1(N ) and g2(N ), at system size 2N , N
even. Since the ladder is gapped, with εT (JL, JF ) > 0 except
in the limit JL → ∞, the string order is g2(∞) > 0, g1(∞) =
0. As shown in Fig. 9, the string order g2(∞) in the limit
JF → ∞ is equal to g̃(∞) of the spin-1 HAF, and the limits
are approached from below.

The ground state near the origin of the JL-JF plane consists
of rungs with AF exchange JA that are weakly coupled by
frustrated F exchanges −JL and −JF in Fig. 1. Short-range
spin correlations are indicated by the gaps εT (JL, JF ) in Fig. 2,

094439-9



CHATTERJEE, KUMAR, AND SOOS PHYSICAL REVIEW B 109, 094439 (2024)

by string order g2(∞) > 3/4, and by convergence to the ther-
modynamic limit at system size 2N = 24. The regime JF > 3,
JL � 1/2 has reduced εT (JL, JF ), finite g2(∞), and spin corre-
lations of intermediate range as indicated by the minimum N∗
of g2(N ). The regime JL > 2, JF � 1 has small εT (JL, JF ) that
vanishes as 1/JL in Fig. 4. The range of spin correlations is
N∗ ≈ 50 at JL = 3 and increases rapidly with JL. The gapless
J1-J2 model with J2 = −JL is the limit JL → ∞. The model is
frustrated when J2 > 0 and illustrates spontaneous dimeriza-
tion in the dimer phase with finite εT and string order.

String correlation functions of the F-AF ladder directly
probe ground-state spin correlations and their range. They
afford more nuanced information than the binary choice of
finite range in gapped systems and infinite range in gapless
systems. The estimated range of spin correlations at JL, JF

and JA = 1 in Eq. (1) is N∗, the minimum of g2(N ). The
VB interpretation accounts for convergence to string order
g2(∞) from below and the exponential decrease of g1(N ) for
N � N∗. Ranges up to N∗ ∼ 100 are accessible in DMRG
calculations up to system size 2N = 200.

The spin-1 HAF has one spin-1 per unit cell and can be
written in terms of two spins- 1

2 as s j = S2 j−1 + S2 j with F ex-
change −JF in rungs and AF exchange J/4 between adjacent
rungs. There are now two spins per unit cell and JF → ∞
excludes singlet-paired rungs. In the VB treatment of finite
spin-1 HAFs, Eq. (1) was expressed [51] in terms of spin- 1

2
operators in a way that gave vanishing matrix elements for di-
agrams |q〉 with singlet-paired rungs 2 j − 1, 2 j. F alignment
in rungs clearly requires AF exchange and two spins per unit
cell in order to have a singlet ground state.

ACKNOWLEDGMENTS

Z.G.S. thanks D. Huse for fruitful discussions. M.K. thanks
SERB for financial support through Grant Sanction No.
CRG/2020/000754. M.C. thanks DST-INSPIRE for financial
support.

APPENDIX

We summarize the overlap of singlet VB diagrams and the
size dependence of the singlet sector. In systems of 2N spins,
singlet diagrams |q〉 have N lines (m, n) that correspond to
normalized singlet-paired spins in Eq. (3) and connect the
vertices of the 2N polygon without any crossing lines. The

overlaps are

Sq′q = 〈q′|q〉 = (−2)−N+I (q′,q). (A1)

I (q′, q) is the number of disconnected lines called islands by
Pauling when the diagrams are superimposed. The superposi-
tion of any diagram with itself generates N islands of doubled
lines (m, n) and unit overlap. The other extreme, illustrated by
〈K1|K2〉 = (−2)−N+1, is a single island for diagrams without
any (m, n) in common. I (q′, q) is the number of shared lines
(m, n) plus the number of islands with lines connecting ver-
tices at unshared (m, n). The Kekulé diagrams have no shared
(m, n); their overlap of any |q〉 satisfies the relation

I (q, K1) + I (q, K2) = N + 1. (A2)

Overlap magnitudes are necessarily larger with one of the
Kekulé diagrams when N is even, and overlap magnitude
uniquely relates half of the diagrams to |K1〉, the other half to
|K2〉. The Kekulé diagrams are orthogonal in the thermody-
namic limit, as are diagrams that differ from either by a finite
number of lines (m, n).

All eigenfunctions |q〉 of the string operator ĝ1(N ) in
Eq. (13) have 1 � m, n � N . All other |q〉 have one or more
pairs of bridging lines (m, n) with only one end in the
string 1 to N . Then ĝ1(N )|q〉 generates triplet-paired spins
(m, n)T = (αmβn + βmαn)/

√
2 at all bridging lines. For ex-

ample, ĝ1(N )|K2〉 generates diagram |K ′〉 with unchanged
(m, n) except for two bridging lines that become (2N, 1)T and
(N, N + 1)T . The overlap of diagrams with triplets is zero
unless the triplets are in the same island, in which case Sqq′

is Eq. (A1). We have 〈K ′|K2〉 = 0 due to spin orthogonality
and 〈K ′|K1〉 = (−2)−N+1 since both triplets are in the same
island.

The dimensions of the VB basis have long been known.
The number of singlet diagrams in systems of 2N spins is

R0(2N ) = (2N )!

N!(N + 1)!
. (A3)

The string operator for N spins has R0(N ) eigenfunctions |q〉
with N/2 lines in the string. The degeneracy of each is R0(N )
since |q〉 also has N/2 lines with (m, n) not in the string. The
ratio of eigenstates to the total number of singlets is, using
Stirling’s approximation,

R0(N )2

R0(2N )
≈ 8e(N + 1)N+3/2

√
π (N + 2)N+3

. (A4)
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