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Recent studies identified spin-order-driven phenomena such as spin-charge interconversion without relying
on the relativistic spin-orbit interaction. Those physical properties can be prominent in systems containing light
magnetic atoms due to sizable exchange splitting and may pave the way for realization of giant responses
correlated with the spin degree of freedom. In this paper, we present a systematic symmetry analysis based
on the spin crystallographic groups and identify the physical property of a vast number of magnetic materials
up to 1500 in total. By decoupling the spin and orbital degrees of freedom, our analysis enables us to take a
closer look into the relation between the dimensionality of spin structures and the resultant physical properties
and to identify the spin and orbital contributions separately. In stark contrast to the established analysis with
magnetic space groups, the spin crystallographic group manifests richer symmetry including spin-translation
symmetry and leads to emergent responses. For representative examples, we discuss the geometrical nature of the
anomalous Hall effect and magnetoelectric effect and classify the spin Hall effect arising from the nonrelativistic
spin-charge coupling. Using the power of computational analysis, we apply our symmetry analysis to a wide
range of magnets, encompassing complex magnets such as those with noncoplanar spin structures as well as
collinear and coplanar magnets. We identify emergent multipoles relevant to physical responses and argue that
our method provides a systematic tool for exploring sizable electromagnetic responses driven by spin order.
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I. INTRODUCTION

Spintronics has experienced tremendous growth, and the
concept has been discussed in various fields including topo-
logical electronic systems and superconductors. In recent
years, spin-orbit coupling (SOC), a relativistic interaction be-
tween the charge and spin degrees of freedom, is particularly
of matter due to its rich physical consequences. Search for
candidate materials has taken place to maximize the physi-
cal responses associated with spin-orbit interaction in these
decades. For example, giant spin-momentum splittings have
been identified in systems with heavy atoms having large
SOC. Their strong spin-orbit entanglement has been demon-
strated by spectroscopy [1,2] and transport measurements [3].
The progress may let us consider the possibility of physics
originating from SOC covering a broader range of materials
other than what consists of heavy atoms, such as materials
based on 3d transition metal elements with negligible rela-
tivistic SOC.

To this end, a concept of nonrelativistic spin-charge lock-
ing has been proposed in theories [4–7]. This coupling arises
from the spontaneous magnetic ordering without the help
of SOC and thereby can exhibit exchange splitting energy
comparable to that of the Coulomb interaction. The con-
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cept illuminates the potential impacts of light elements for
the spintronic application and further identified advantageous
properties compared to conventionally studied materials, e.g.,
strong exchange splitting energy and large transition tempera-
ture. Notably, the magnetic order gives rise to characteristic
spin-momentum-locking structure due to coupling between
the order and structural property of crystals as found in
antiferromagnetic materials. These aspects are valuable for
applications in the field of antiferromagnetic spintronics gath-
ering considerable interest as an emerging field in condensed
matter physics [8–10]; for instance, various physical phe-
nomena free from SOC have been clarified in the previous
works such as the spin-polarized current induction [11–15],
nonlinear response [16,17], piezomagnetic effect [4,18,19],
and magnetoresistance [20].

Released from the SOC constraint, the array of localized
spins does not have any favorable orientation described by
the crystal structure. The decoupling between spin and orbital
degrees of freedom leads to a magnetic symmetry higher than
the conventional magnetic space-group symmetry (Shubnikov
group). Such magnetic symmetry without SOC is covered
by the spin crystallographic group such as spin space group
and spin point group [21,22] which includes a richer group
structure due to the absence of SOC. The spin crystallographic
groups have applied to analyzing the electronic structure mod-
ified by the spontaneous spin order, particularly in the case of
simple spin configurations [4,5,7,23–25]. For instance, recent
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studies identified a series of spin crystallographic symmetries
providing the nonrelativistic spin-charge coupling by which
the degeneracy at each crystal momentum is lifted. The ma-
terials manifesting such spin crystallographic symmetry are
characterized by a collinear antiferromagnetic structure whose
magnetic unit cell is the same as the chemical one due to
the zero propagation vector. Candidate materials such as
MnTe for the so-called altermagnets belong to this class
[10,25–29].

One can expect that there exist rich physical consequences
of nonrelativistic spin-charge coupling in other kinds of
collinear magnets as well as more complex spin-ordered sys-
tems (e.g., spin structure with nonzero propagation vectors),
which have not been rarely investigated from the viewpoint
of spin crystallographic group. The latter class encom-
passes intriguing systems such as noncollinear, noncoplanar,
and multiferroic magnets [11]. A prototypical phenomenon
unique to these materials is the geometrical Hall effect [30].
The effect occurs in magnets with noncoplanar spin structure
observed in materials such as systems with a triangular or
kagome net. The resultant time-reversal-symmetry breaking
resembles the orbital-flux order proposed in Ref. [31], and
does not require the relativistic SOC effect [32]. The SOC-
free nature is in high contrast to the well-known anomalous
Hall effect arising from the collinear and coplanar spin order
[32–34] and may be responsible for the anomalous Hall re-
sponses of magnetic skyrmion crystals [35,36]. These prior
studies indicate that the dimension of the spin structure is
key to identifying the emergent physical responses induced
by the spin order without the help of SOC. In this regard,
the spin crystallographic group is advantageous compared
to the widely used magnetic space group because its group
symmetry reflects a given spin-structure dimension.

In this paper, we present the spin crystallographic group
symmetry analysis covering not only the simple magnetic
materials having collinear and coplanar spin structures with
the zero propagation vector but also complex spin-ordered
systems such as noncoplanar magnets and those with nonzero
propagation vectors. The analysis incorporates the dimension-
ality of the spin structure and hence provides a convenient
tool for identifying the emergent symmetry breaking and
associated phenomena which cannot be distinguished from
the SOC-assisted contribution in terms of the SOC-accounted
symmetry analysis based on magnetic space group and mag-
netic point group [37].

Specifically, we demonstrate the following points of the
present symmetry analysis: by separating the spin and or-
bital spaces, we can identify the contribution of each degree
of freedom to physical responses. Our symmetry analysis
identified nontrivial spin crystallographic symmetry where
the spin space symmetry is kept highly symmetric to be un-
expected by its crystal structure, e.g., the cubic spin space
symmetry despite the axial symmetry of the crystal. Despite
the inactive spin-related quantities, the symmetry does not
forbid physical phenomena involving the orbital degree of
freedom such as the geometrical Hall effect. Such nontriv-
ial spin crystallographic symmetry enables us to explore the
spin-geometry-induced response so as to unambiguously dis-
tinguish it from the relativistic SOC effect. The orbital-active
but spin-inactive aspects highlight the significance of magnets

with nonzero propagation vectors and are in sharp contrast
to the previously identified SOC-free physical property, that
is, spin-active but orbital-inactive property [12]. Furthermore,
our result suggests that emergent physical responses can be
examined in a semiquantitative manner by combining the spin
crystallographic group symmetry analysis with the physical
insights into spin fluctuations correlated with the dimension-
ality of a spin structure. We explain these features by taking
several physical properties such as the anomalous Hall effect,
magnetoelectric effect, and spin Hall effect. The symme-
try analysis is computationally performed with the use of
the algorithm for searching the spin space group developed
by Shinohara et al. [38]. By classifying a vast number of
magnetic materials (∼1500), we systematically clarify the
SOC-free emergent properties of real magnetic materials.

The organization of the paper is the following. In Sec. II,
we overview the spin space group and introduce the symmetry
analysis with it. Based on the spin point group, the symmetry
analysis is applied to some of ferromagnetic and antiferro-
magnetic materials and their physical responses in Sec. III.
Section IV is devoted to a high-throughput symmetry analysis
of magnetic materials listed in MAGNDATA [39,40]. In light
of emergent magnetic multipoles and rotators for spin-charge
coupling, we investigate the SOC-free physical properties
and demonstrate that our symmetry analysis clarifies the im-
portance of the spin-structure dimension. We summarize the
contents in Sec. V. The procedure of the symmetry analysis is
sketched in Fig. 1.

The symmetry analysis with given spin space group G and
magnetic space group G are automatically computed on the
basis of SPGLIB [41,42] and SPINSPG [38]. Terms on group
theory can be found in Appendix A.

II. SPIN-GROUP OPERATIONS AND SPIN
CRYSTALLOGRAPHIC GROUP

We introduce the transformation property of symmetry
operations and overview the spin crystallographic symmetry
such as the spin space group and spin point group. We not only
explain the spin space group but also introduce the spin and or-
bital parts of the spin crystallographic group to disentangle the
spin and orbital contributions to physical phenomena. We con-
cisely introduce the notations of spin crystallographic groups
we adopt, while the terminology related to the group theory
and its mathematical aspect are summarized in Appendix A.
Concerning the crystallographic property, interested readers
can refer to Refs. [22,43].

Owing to the absence of generic spin-orbital coupling, the
rotation operation separately acts on the spin and orbital space
in terms of the spin-group symmetry. Let g = (R,W ) be the
combination of symmetry operations R and W acting on the
orbital and spin space, respectively.

First, we consider the point-group symmetry with ro-
tation operations (R,W ) and raise some examples of the
basic transformation property such as position r, momentum
p, and spin s. For instance, let us take the orbital space-
only operation gorb = (R, 1), the time-reversal operation θ =
(1,−1), and spin space proper rotation gsp = (1,W ) (det
W = +1). Note that the time-reversal operation is denoted
by the space-inversion operation in the spin space by follow-
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FIG. 1. Procedure of symmetry analysis. (a) Input of crystal and
spin structures. Dozens of data imported from MAGNDATA. (b) Spin
space group G and magnetic space group G computationally iden-
tified. The effect of spin-orbit coupling (SOC) is not considered in
G but is taken into account in G. The spin space-group symmetry is
given by the spin rotation (W ) and by orbital-space operations such as
rotation (R) and translation (t) operations. The magnetic-space group
is comprised of the orbital space operations (R, t ) with or without the
time-reversal operation θ such as R′ = θR. For the magnetic-space
group G, the orbital-space operations R, R′ also act on spins due to
the SOC constraint. (c) The space group is reduced to its point group
by omitting the translation operation t . Spin (P) and magnetic (P)
point groups are obtained from G and G, respectively. The spin point
group is further divided into (Psp,Porb) consisting of either spin or
orbital space symmetry. The spin crystallographic groups (G,P) are
reduced to the spin-orbital-coupled groups (G, P) by SOC. (d) The
symmetry-adapted form of a given tensor χ̂ obtained by the spin
or magnetic point-group symmetry. The red-colored components
(χsp, χorb) originate from the spin-order-induced symmetry breaking
without SOC, and the origin of each component is further attributed
to the spin (χsp) and orbital (χorb) degrees of freedom. SOC entangles
the spin contribution with the orbital (χ1, χ4) and induces additional
components (χ2, χ3).

ing Refs. [38,44]. The operators are transformed under each
symmetry operation as shown in Fig. 2. When the improper
property holds for the spin space operation as det W = −1,
the operation g includes the time-reversal operation θ such as
that with the spin space space inversion (W = −1) and mirror
operation (W = m). It follows that g with det W = +1 (det
W = −1) is unitary (antiunitary). Owing to the time-reversal
operation θ , the operation g with det W = −1 can act on the
orbital space as it flips the time-reversal-odd quantities, e.g.,
p [Fig. 2(b)] and orbital magnetization. On the other hand,
the proper rotation in the spin space does affect only the
spin degree of freedom [Fig. 2(c)]. For a spin-group operation
g = (R,W ), the operators are transformed as

gra g−1 = rbTba(R), (1)

g pa g−1 = detW pbTba(R), (2)

gsa g−1 = sbTba(W ), (3)

FIG. 2. Spin-group transformation of electron depicted by po-
sition r, momentum p, and spin s. The spin-group operation g =
(R,W ) (R is orbital space rotation, W is spin space rotation). (a) Or-
bital space operation acting on position and momentum while leading
to no action on spins (W = 1). (b) Spin space inversion operation
same as the time-reversal operation (R = 1, W = −1) flipping the
time-reversal-odd quantities such as r and s. (c) Spin space operation
satisfying R = 1 and the proper rotation condition (det W = +1). It
gives no transformation related to the orbital space objects.

where we introduced the three-dimensional orthogonal ma-
trices T̂ (u) [u ∈ O(3)] in accordance with the vectorial
symmetry of each object such as T̂ (−1) = −1 for the inver-
sion operation (1 is the identity matrix in three-dimensional
system).1

We generalize the symmetry argument to the case of the
tensor quantity Oabc.... The transformation is written by

gOabc... g−1 = Oa′b′c′...D
(A)
a′a (g)D(B)

b′b (g)D(C)
c′c (g) . . . , (4)

where we introduced the representation matrices for physi-
cal quantities A, B,C, . . . labeled by the indices a, b, c, . . . ,
respectively. For the aforementioned three quantities, the rep-
resentation matrices are explicitly given by

D̂(r)(g) = T̂ (R), D̂(p)(g) = detW · T̂ (R), D̂(s)(g) = T̂ (W ).
(5)

Taking the operations depicted in Fig. 2, the representation
matrices are explicitly given by

D̂(r)(gorb) = T̂ (R), D̂(p)(gorb) = T̂ (R), D̂(s)(gorb) = 1,

(6)

D̂(r)(θ ) = 1, D̂(p)(θ ) = −1, D̂(s)(θ ) = T̂ (W ), (7)

D̂(r)(gsp) = 1, D̂(p)(gsp) = 1, D̂(s)(gsp) = T̂ (W ), (8)

by which, for instance, the spin space mirror operation (R =
1, W = m) is obtained by combining the representation ma-
trices of θ with that of gsp. Then, in the absence of SOC,
the transformation property of spins under W can be given
similarly to that of a polar vector. Owing to the irrelevant role
of proper spin-space rotations in the transformation of r and
p [Eq. (5)], the system has the orbital time-reversal symmetry
if there exists a symmetry operation given by g = (1,W ) (det
W = −1).

1Note that the representation matrices are in the Cartesian coordi-
nates though they are usually in the basis spanned by the Bravais
vectors in the field of crystallography. This is because the spin space
operations do not necessarily belong to the Bravais class same as that
for a given crystal structure in the framework of spin crystallographic
group.
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Next, we consider the structure of the spin crystallographic
group. In terms of the space-group symmetry, the orbital
space operation h is comprised of the point-group operation R
and the translation operation t as h = (R, t ). The spin space
group G is a set of symmetry operations g = (h,W ) under
which crystal structures and spin configuration dwelling on
each magnetic atom are invariant. In stark contrast to the
well-known magnetic space group (Shubnikov group) G [45],
we can take symmetry operations acting on objects in the
orbital and spin space independently [43]. The difference can
be inferred from the adopted Hamiltonian as follows.

Let us consider the Hamiltonian manifesting the spin
space-group symmetry. The Hamiltonian not only consists of
kinetic and potential Hamiltonians H0 for paramagnetic states
but also takes into account the spontaneous spin ordering by
the molecular field. The total Hamiltonian is given by

HSG = H0 + Hmag, (9)

where the molecular-field term is

Hmag =
∑

i

B(i) · s(i), (10)

with indices for the sites i. The exchange-splitting field B(i)

is defined at each magnetic site (B(i) = 0 for nonmagnetic
atoms). The Hamiltonian [Eq. (9)] is invariant under the as-
sociated spin space group as

g ∈ G, gHSG g−1 = HSG. (11)

The paramagnetic part satisfies the following relation for g =
(h,W ) ∈ G as

H0 = (h,W )H0(h,W )−1 = (h, 1)H0(h, 1)−1, (12)

where the spin rotation W is irrelevant. The orbital space
part h is therefore restricted by the atomic configuration and
generated by the space group of a given crystal structure.
On the other hand, the exchange Hamiltonian is transformed
under both h and W as

g

(∑
i

B(i)
a s(i)

a

)
g−1 =

∑
i

B(i)
a

(
gs(i)

a g−1) (13)

=
∑

i

B(i)
a s(ih )

b Tba(W ). (14)

The orbital space operation permutes the sites as h : ri �→
rih = h−1 ri h. Owing to Eq. (11), the spin-group operations
should satisfy

T̂ (W ) B(i) = B(ih ) (15)

for every site, and the coupling arises between the orbital
and spin degrees of freedom. As the result, the spin space
operations are determined by Hmag, whereas orbital space
operations are by the total Hamiltonian. Importantly, the oper-
ations h and W are taken independently as long as they satisfy
Eq. (15). The property clearly distinguishes the spin space
group from the magnetic space group. We note that the spin
space-group symmetry holds in general if one properly takes
into account the spin order in a SOC-free manner, while the
spin-ordering effect is simply taken as the molecular field for
illustrative purposes.

For the case of the magnetic space group, we similarly treat
the magnetic order as the molecular fields and add spin-orbit
interaction HSOC to the Hamiltonian. The Hamiltonian reads
as

HMG = H0 + Hmag + HSOC, (16)

where the SOC Hamiltonian is given by

HSOC = λL · s. (17)

L denotes the atomic orbital angular momentum and λ is
the strength of SOC. The additional symmetry constraint by
the SOC Hamiltonian leads to the group-subgroup relation
G (G < G). In sharp contrast to the spin space group G,
the SOC Hamiltonian imposes the following constraint on
(h,W ) = ((R, t ),W ) ∈ G:

detR R = detW W. (18)

That is, the proper rotation parts of h and W should be the
same as each other [38]. Equation (18), along with Eq. (15),
ties the orbital space with the spin space.

Then, let us overview the group structure of spin space
group G which has been investigated in Refs. [43,46]. G con-
tains the spin-only group Gso as a normal subgroup (G�Gso).
The spin-only group solely consists of the spin symmetry
operations such as

Gso = ((1, 0),Pso) = {((1, 0),W )|W ∈ Pso}. (19)

The group is determined by the dimension of a given spin
configuration, which we call the spin-structure dimension
Dsp [22]. For one-dimensional magnets (collinear magnets)
denoted by Dsp = 1, the magnetic moments are parallel or
antiparallel to the axis n in the spin space. The spin-only group
is given by an internal semidirect product,

Pso = SO(2) � {1, m‖}, (20)

by which the vector n is invariant. We can take rotation oper-
ations along n with an arbitrary angle and mirror reflection
m‖ whose mirror plane contains the axis n. For the two-
dimensional case (Dsp = 2, noncollinear but coplanar), the
spin-only group is

Pso = {1, m⊥}. (21)

The mirror operation m⊥ shares its plane with the spins
spanning the two-dimensional plane. Lastly, in the three-
dimensional case (Dsp = 3, noncoplanar), the spin-only group
trivially consists of only the identity operation

Pso = {1}. (22)

Note that the orbital time-reversal symmetry is preserved in
collinear magnets as well as coplanar magnets due to the spin
space mirror operation. By using the spin-only group, the spin
space group is decomposed as [46]

G = Gso × G. (23)

As a result, we obtain the nontrivial spin space group G whose
spin space operation W is intimately coupled to the orbital
space operation h = (R, t ) such as the combined operation of
spin rotation and translation g = ((1, t ),W ), i.e., the symme-
try operation ((R, t ),W ) with W 	= 1 satisfies (R, t ) 	= (1, 0).
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The set of spin-translation operations {((1, t ),W )} in
G forms the group which we denote the nontrivial spin-
translation group Gst. When the spin order does not modify the
paramagnetic unit cell, the nontrivial spin-translation group is
reduced to the translation group T = {((1, t ),1)}. The non-
trivial spin-translation group is a normal subgroup of the
nontrivial spin space group (G �Gst). Thus, we decompose
G by Gst as

G =
⋃

i

gi Gst. (24)

The representative gi = ((R, t ),W ) indicates that the spin
space operation is coupled to the orbital space point-group op-
erations, otherwise it is the identity (W = 1); in other words,
the orbital space point-group operation in gi is nontrivial (R 	=
1) except for the identity operation ((1, 0), 1). Note that one
can obtain another decomposition of the spin space group by
the spin-translation group defined by Gst = Gso × Gst (see also
Appendix A). To corroborate the effect of the spin-structure
dimension Dsp on emergent responses, we here utilize the de-
composition of Eq. (23) in the following. The spin space group
G for given crystal and spin structures can be computationally
obtained [38].

For instance, we consider the body-centered-cubic Fe
(space group Im3̄m, No. 229) whose ferromagnetic spin po-
larization is along the [001] axis. The magnetic space group
G = I4/mm′m′ indicates the spontaneous crystalline symme-
try reduction from the cubic to tetragonal under the SOC
effect. On the other hand, the spin space group G retains
high symmetry in the ordered state. The spin space group
comprises the spin-only group Gso given by Eq. (20) with the
spin space axis n = [001]. By dividing G by the spin-only
group, we obtain the nontrivial spin space group G [Eq. (23)].
Since the ferromagnetic order does not modify the unit cell,
the spin-translation group is the translation group Tbcc for the
bcc centering. Then, the nontrivial spin space group is

G =
⋃

i

gi Gst =
⋃

i

giTbcc, (25)

where {gi} forms the cubic point group same as that for the
paramagnetic state (m3̄m). As a result, the nontrivial spin
space group is the same as paramagnetic one G = Im3̄m (each
spin space operation is the identify operation and hence omit-
ted), and the overall spin space-group symmetry is given by

G = {(h,W )| h ∈ Im3̄m, W ∈ SO(2) � {1, m‖}}. (26)

The orbital space cubic symmetry is intact in its spin space
group. The symmetry restoration results from releasing the
system from the SOC constraint of Eq. (18). The restoration
is observed for many magnetic materials as well as the ferro-
magnet.

The macroscopic physical properties are of our interest,
and thus it is enough to take into account the spin point group
given by ignoring the translation operations as

P (G) = {(R,W )|((R, t ),W ) ∈ G}. (27)

According to Eq. (23), the spin point group is similarly de-
composed as

P (G) = Pso × P . (28)

In the right-hand side, P is derived from the nontrivial spin
space group G similarly to Eq. (27).

Following the convention in Ref. [44], the spin point group
is denoted by the paired operations W R for g = (R,W ). For
example, when the spin point group is obtained such as

22/−1m, (29)

it is generated by a set of operations

(2, 2), (m,−1). (30)

The orbital point-group symmetry is given by 2/m whose
twofold rotation and mirror reflection are connected with the
spin space twofold rotation and space inversion, respectively.

Bearing in mind that the time-reversal operation is related
to improper rotations in the spin space, we reduce a given spin
crystallographic point group to the point groups consisting of
either spin space or orbital space operations. The spin space
part is defined by

Psp(P ) = {W |(R,W ) ∈ P}, (31)

where the orbital space operations (R) are irrelevant. The
orbital space part corresponds to a well-known magnetic point
group and similarly reads as

Porb(P ) = {RW |(R,W ) ∈ P}, (32)

where RW = R for det W = +1 and RW = R′ ≡ θR for det
W = −1, e.g., RW = 1′ = θ is the orbital time-reversal opera-
tion. We again note that the improperness of the spin space
operation W should be incorporated into the orbital space
symmetry to respect the effect of the time-reversal operation.
Similarly to the case with SOC, we refer to the orbital part
as either colorless, gray, or black and white in terms of the
orbital time-reversal operation RW = 1′ (see Appendix A). For
the example of Eq. (29), the spin space and orbital space point
groups are, respectively, given by

Psp(P ) = 2/m (33)

and

Porb(P ) = 2/m′. (34)

The obtained orbital part is a black and white group.
To demonstrate the role of spin-group-symmetry analysis,

it is better to make a comparison to the conventional analysis
based on magnetic point groups with the SOC effect. The
spin-orbital-coupled (SO-coupled) magnetic point group P is
derived from P by respecting the SOC constraint of Eq. (18).
Corresponding to Eq. (30), we obtain the colorless magnetic
point group

P = 2, (35)

where no operation involving the time-reversal operation ex-
ists in contrast to the black and white point group of Eq. (34).
The series of magnetic symmetry is summarized in Figs. 1(b)
and 1(c).

We aim to identify the physical phenomena emerging from
the spin order without relying on SOC, and the series of point
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groups (P,Psp,Porb, P) are convenient. The orbital (spin)
part of the spin point group suffices to analyze the symmetry
of the object in the orbital (spin) space, while that of the
SO-entangled object is determined by the overall spin point
group. For instance, recalling the transformation property of
objects depicted in Fig. 2, each transformation in Eq. (5) is
sufficiently described by the group of Eq. (31) for spin space
objects and of Eq. (32) for orbital space objects, respectively.
On the other hand, for an example of SO-coupled operator, the
spin current (Jsb

a ∼ {pa, sb}/2) manifests the transformation
property given by the direct product of representation matrices
as D̂(p)(g) × D̂(s)(g). Thus, the spin point group [Eq. (27)] is
indispensable to describe the representation matrix for Jsb

a . In
the following parts, we raise examples of spin crystallographic
groups. The group symmetry is identified by the computa-
tional methods proposed in Refs. [38,41,42], and hence we
do not show explicit derivations.

III. SPIN-GROUP CLASSIFICATION
OF PHYSICAL PROPERTY

We consider the physical properties of the magnetic ma-
terials with or without SOC on the basis of Sec. II. First, we
present the spin point-group symmetry analysis of the linear
response function as well as that with the SO-coupled mag-
netic point group [37]. We classify the response into T -even
and T -odd contributions, which are allowed without and with
the time-reversal-symmetry breaking, respectively [47–50].
By generalizing the previous classification of dc responses
[47,48], we present the classification taking account of the
frequency dependence (Sec. III A).

In particular, we identify two aspects of the spin-group-
symmetry analysis through the comparative study with the
magnetic point group: (1) intact symmetry in the orbital space
leads to vanishing responses irrelevant to the spin degree of
freedom, while it is not the case for spin-related phenomena;
(2) the nontrivial spin-translation symmetry makes the spin
space highly symmetric even in the presence of the spon-
taneous spin order and hence severely forbids spin-related
phenomena such as the spin magnetoelectric effect and spin
Hall effect. These contrasting circumstances are facilitated to
identify through the identification of the spin space group
which can be comprised of the nontrivial spin-translation
group while preceding symmetry analysis is for the magnetic
materials with the zero propagation vector [11,12]. We also
introduce multipolar degrees of freedom relevant to those
responses. The identification of a given physical property is
based on the developed computational method.

A. Response function and T -even and T -odd decomposition

We consider the linear response formula to illustrate the
symmetry of the transport phenomena. The formula reads as

Xi(ω) = χXY
i j (ω)F (Y )

j (ω), (36)

where the physical quantities Xi,Yj and the force F (Y )
j conju-

gate to Yj are in the frequency (ω) domain. In the framework
of the linear response theory [51], we can derive the constraint
on the response coefficient from the preserved symmetry in
a quantum-mechanical manner [52]. Applying the symmetry

operation g of a given point group G, we obtain the symmetry
constraint

χXY
i j (ω) = χXY

kl (ω)D(X )
ki (g)D(Y )

l j (g) (37)

for the unitary operation and

χXY
i j (ω) = χY X

kl (ω)
(
D(Y )

k j (g)
)∗(

D(X )
li (g)

)∗
(38)

for the antiunitary operation. We introduced the representation
matrices for Xi and Yj as in Eq. (4). The antiunitary symmetry
relates the response function χXY

i j with χY X
ji for the inverse

response Yj = χY X
ji F (X )

i , in which the force F (X ) is required
to be conjugate to X . When the current participates in the
response such as the electric conductivity Ji = σi jE j , it is
convenient to rewrite the response function by the canonical
correlation function. The symmetry argument is similarly de-
scribed for the canonical correlation (see Appendix B).

Furthermore, one can decompose the response into the
symmetric and antisymmetric parts [48]. The Lehmann rep-
resentation of the response function is

χXY
i j (ω) =

∑
ab

ρa − ρb

ω + iη + εa − εb
〈a | Xi | b〉〈b |Yj | a〉 (39)

≡
∑

ab

ρab

ω + iη + εab
X i

abY
j

ba, (40)

with the adiabaticity parameter η = +0 and with ρab = ρa −
ρb. The indices a, b are for the eigenstates of the many-body
Hamiltonian in equilibrium, εa is the eigenenergy, and ρa

is the Boltzmann factor parametrized by εa. The symmetric
(s) and antisymmetric (a) parts are defined by dividing the
prefactor into

ρab

ω + iη + εab
= ω + iη

(ω + iη)2 − ε2
ab

ρab − εab

(ω + iη)2 − ε2
ab

ρab

(41)

= κa
ab + κs

ab. (42)

These terms show the odd or even parity under the per-
mutation of indices (a, b), and thereby we obtain the
decomposition as χXY

i j = χXY,s
i j + χXY,a

i j . Similarly partition-
ing the product of matrix elements of Xi and Yj ,

X i
abY

j
ba = 1

2

(
X i

abY
j

ba + X i
baY

j
ab

) + 1
2

(
X i

abY
j

ba − X i
baY

j
ab

)
(43)

≡ {Xi,Yj}ab + [Xi,Yj]ab. (44)

After the summation over (a, b), the surviving terms are
κs

ab{Xi,Yj}ab and κa
ab[Xi,Yj]ab. It indicates that the symmetric

and antisymmetric parts of the indices (a, b) are, respectively,
the symmetric and antisymmetric terms with respect to the
permutation of the response and field (Xi,Yj). As a result, the
symmetric and antisymmetric parts of χXY

i j are recast as

χXY,s
i j (ω) = 1

2

(
χXY

i j (ω) + χY X
ji (ω)

)
, (45)

χXY,a
i j (ω) = 1

2

(
χXY

i j (ω) − χY X
ji (ω)

)
. (46)

When the time-reversal symmetry is intact, we obtain

X i
abY

j
ba = θX θY X i

b̄āY
j

āb̄
, (47)

where ā is the time-reversal partner for the eigenstate a and θX

is the parity of X under the time-reversal operation. Since the
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TABLE I. Classification of the response function by symmetric and antisymmetric parts. The frequency dependence for the ac response
χ̂ (ω) and relaxation-time dependence for the dc response χ̂dc are listed. The symmetric and antisymmetric terms are further categorized by the
T -even and T -odd contributions in the light of the total time-reversal parity θtot = θX θY . We tabulate some specific classifications for (X,Y )
denoted by the pair of response X and field Y .

Antisymmetric Symmetric

χ̂ (ω) ω2n+1 ω2n

χ̂dc τ 2n+1 τ 2n

θtot +1 −1 +1 −1
T odd T even T even T odd

(X ,Y )
(J, E ) Drude Hall
(M, E ) Magnetogalvanic Magnetoelectric
(ε̂, E ) Magnetopiezoelectric Piezoelectric
(ε̂, H ) Kinetically piezomagnetic Piezomagnetic

paired states have the same energy (εa = εā), it is shown that
only the symmetric part survives for the case of θX θY = +1
while the antisymmetric part does when θX θY = −1. Once
the time-reversal symmetry is lost, we obtain the other con-
tributions, that is, the symmetric term for θX θY = −1 and
the antisymmetric for θX θY = +1. We label the contributions
allowed in time-reversal-symmetric systems by T-even con-
tributions and those arising from the time-reversal-symmetry
breaking by T-odd contributions. Note that one can utilize
the orbital time-reversal symmetry g = (1,W ) (det W = −1)
instead of the time-reversal symmetry g = (1,−1), when X
and Y are in the orbital space. Keeping the symmetric and
antisymmetric decomposition of Eqs. (45) and (46) in mind,
the T -even contribution gives rise to χXY,s

i j for θX θY = +1

and χXY,a
i j for θX θY = −1. On the other hand, the T -odd con-

tribution is complementary to the T even, that is, χXY,s
i j for

θX θY = −1 and χXY,a
i j for θX θY = +1.

The symmetric-antisymmetric partition and even-odd clas-
sification with respect to the time-reversal operation imply
the frequency dependence of the response. To be more spe-
cific, each term is even or odd order in the frequency ω as
χ̂ a ∼ ω2n+1 and χ̂ s ∼ ω2n in the limit of η → 0 [Eq. (42)].
Considering the static limit (ω → 0), two parts similarly in-
dicate the dependence on the relaxation time τ . This can be
intuitively understood by replacing the adiabaticity parameter
η with the phenomenological scattering rate as η → τ−1. For
instance, the antisymmetric part is recast as

χXY,a
i j →

∑
a,b

−iτ−1

τ−2 + ε2
ab

[Xi,Yj]ab, (48)

whose equienergy matrix elements give rise to contribution
∼τ 1 such as the Drude term of electric conductivity. The
antisymmetric term leads to the term O(τ 2n+1) which may
be characteristic of the transport phenomena in metals, and
the symmetric term corresponds to the contributions as large
as O(τ 2n) including what may appear in insulators such as
anomalous Hall conductivity. In some cases, the dc antisym-
metric term is labeled by an extrinsic (dissipative, absorptive)
effect, while the symmetric is intrinsic (dissipationless, reac-
tive) [47,48].

It is noteworthy that the symmetric responses are related to
equilibrium properties of materials, that is physical quantities
one can observe without dissipation, in some cases. When we
assume equilibrium conditions for Eq. (36), that is, the dc limit
and zero antisymmetric contribution, the remaining term is
solely symmetric and satisfies

χXY
i j = χY X

ji . (49)

The symmetry of (Xi,Yj) implies the phenomenological free
energy given by

FXY = −χXY
i j F X

i FY
j . (50)

The relation of Eq. (49) is reproduced by the free energy
because Xi = −∂FXY /∂F X

i and Yi = −∂FXY /∂FY
j . The dis-

cussion can be applied to various equilibrium properties such
as piezoelectric, piezomagnetic, magnetoelectric effects, and
so on [37].

In Table I, we summarize the classification in terms of
the symmetric and antisymmetric parts. We also list some
examples of the T -even and T -odd classification by taking
(X,Y ) = (J, E ) (electric conductivity), (M, E ) (magneto-
electric effect [53], magnetogalvanic effect [54–56]), (ε̂, E )
with strain εi j (piezoelectric and magnetopiezoelectric effect),
and (ε̂, H ) (piezomagnetic and kinetically piezomagnetic
effect). The T -odd contribution for (ε̂, E ), called magne-
topiezoelectric effect, has recently been proposed by theories
[48,57] and demonstrated in experiments [58–60].

We introduce the symmetry of response functions based on
the unitary and antiunitary properties of symmetry operations
without specifying the group. Thus, the symmetry argument
works in the case with and without SOC. We also note that the
decomposition plays a powerful role in the nonlinear response
as well [61–63]. In the same spirit of the T -even and T -odd
decomposition, theoretical studies have been presented in a
diagrammatic fashion [64,65].

B. Geometrical Hall effect and spin and orbital magnetization

We revisit the relation between the Hall response and the
magnetization from the viewpoint of the spin crystallographic
group. The Hall response reads as

Ji = εi jkσ
H
k E j, (51)
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where the Hall conductivity may be classified into three parts
σH = σn + σKL + σg [66]: normal Hall effect σn allowed un-
der the external magnetic field, Karplus-Luttinger (KL) Hall
effect σKL, and geometrical (spontaneous, topological) Hall
effect σg. The latter two contributions result from the mag-
netic ordering and are therefore summarized to the anomalous
Hall effect, while they differ with respect to the role of SOC
[10,30]. The KL Hall effect can appear in the presence of SOC
as investigated in diverse magnetic materials such as ferro-
magnets, those with weak ferromagnetism, and compensated
collinear and coplanar antiferromagnets [67–72]. The contri-
bution may be appreciable in systems having large uniform
spin magnetization (Msp) as observed that the SOC-assisted
anomalous Hall conductivity is typically proportional to their
uniform magnetization [73]. We note that the empirical rule
is not applicable to some series of antiferromagnetic materials
such as Mn3Sn. For instance, the magnetic multipolar fields
offer the anomalous Hall response with the help of SOC
but without the net magnetization [74]. In contrast, the geo-
metrical Hall effect is characteristic of noncoplanar magnets
whose geometrical texture of spins allows quasiparticles to be
deflected without the help of SOC. We identify the anomalous
Hall effect driven by the spin order without SOC as the geo-
metrical Hall effect by referring to the nontrivial geometrical
texture irrespective of intrinsic or extrinsic cause, which is a
noncoplanar spin structure. The definition covers the known
mechanism for the SOC-free anomalous Hall effect such as
that induced by the fictitious magnetic flux arising from the
spin order [32].

The Hall conductivity σH is an axial and time-reversal-
odd vector defined in the orbital space, coinciding with the
symmetry of the orbital magnetization Morb. Then, we can
verify the anomalous Hall effect by Morb of a given magnetic
material. Beyond the symmetry, the correlation between or-
bital magnetization and anomalous Hall effect can be found as
clarified by the well-known Středa formula [75]. The orbital
magnetization may cover a broad range of materials hosting
the anomalous Hall effect such as systems with orbital flux
[31] and graphene-based ferromagnetic systems [76]. The
symmetry-adapted form of Morb is computationally identified
by Eq. (4) with a given magnetic symmetry. We note that the
orbital magnetization exists while the localized magnetic mo-
ments are attributed to the spin degree of freedom [Eq. (10)]
with quenched atomic orbital angular momentum.

It is of paramount interest how the KL and geomet-
rical terms are distinguished since the distinction clarifies
the SOC effect on emergent physical responses. For in-
stance, the geometrical effect has been intensively studied
in early works, e.g., those with the pyrochlore ferromag-
nets such as Nd2Mo2O7 [32,34,66,77]. Nd2Mo2O7 undergoes
the ferromagnetic order of Mo atoms and subsequently the
noncoplanar magnetic order of Nd atoms as temperature de-
creases. The two magnetic states with different spin-structure
dimensions are labeled by the same magnetic point group in
the SO-coupled case. Two types of anomalous Hall responses
therefore cannot be distinguished by the symmetry in the
conventional context. This is, however, not the case in the
framework of the spin crystallographic group.

Considering the ferromagnetic Fe of Eq. (26), we derive
the orbital part of the spin point group Porb by Eq. (32) to

identify the symmetry of orbital magnetization Morb dwelling
on the orbital space. The obtained Porb is a gray group written
by

Porb = m3̄m1′, (52)

in which the orbital time-reversal symmetry (1′) comes from
the spin space mirror symmetry in the spin-only group of
Eq. (20). It indicates the zero orbital magnetization and van-
ishing anomalous Hall effect which are odd parity under the
orbital time-reversal operation, consistent with the symmetry
analysis presented in Ref. [12]. On the other hand, once the
SOC is switched on, the ferroic spin magnetization is admixed
with the orbital magnetization and manifests the favorable
direction with respect to the crystal axes. The resultant point-
group symmetry is reduced to the tetragonal magnetic point
group P = 4/mm′m′ allowing for the spin-orbital-entangled
magnetization along the fourfold rotation axis as derived in
the established symmetry analysis [37].

As a result, the Hall response of Fe is attributed to
the KL contribution (σKL 	= 0, σg = 0). This argument can
be applied to spin space groups for all the one- and two-
dimensional spin configurations [Eqs. (20) and (21)]. Then,
if the magnetic moments spanning low-dimensional structure
are supposed to originate from the spin magnetization, it
can be said that the ordered state preserves the orbital time-
reversal symmetry. It follows that the corresponding orbital
space point group is gray in terms of the magnetic point
group. It similarly indicates the absence of physical phenom-
ena originating from the violation of the orbital time-reversal
symmetry such as the orbital piezomagnetic effect (Sec. III)
and orbital magnetoelectric effect (Sec. III C).

The anomalous Hall response does not suffer from such
a severe symmetry constraint in the case of the noncoplanar
magnets because of the trivial spin-only group [Eq. (22)]. It
is noteworthy that the nontrivial spin-translation symmetry
realizes the orbital magnetization not admixed with the spin
counterpart. Let us consider a layered material CoTa3S6 for
an example [78,79] (Fig. 3). After the computational search
for the magnetic symmetry [42], the magnetic space-group
symmetry is identified to

G = P32′. (53)

The associated SO-coupled magnetic point group P = 32′
leads to the conclusion that the spin (Msp) and orbital magne-
tization (Morb) can concurrently show up along the threefold
rotation axis. Thus, we cannot distinguish the KL and geomet-
rical contributions to the Hall effect within the conventional
magnetic point-group analysis.

Next, we consider the spin crystallographic group symme-
try identified by the method proposed in Ref. [38]. Owing to
the noncoplanar spin structure, the spin-only group is trivial
(Pso = {1}), and thereby the spin space group is coincident
with the nontrivial spin space group G = G in Eq. (23). For
the (nontrivial) spin-translation group, we similarly obtain
Gst = Gst. The spin space group is written by the internal
semidirect product of the spin-translation group Gst and the
remaining part H:

G = Gst � H. (54)
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FIG. 3. (a) Crystal (left panel) and spin (right panel) structures of CoTa3S6. (b) The tetrahedron spanned by four spins in the magnetic
structure. The black lines denote the twofold rotation axes relevant to the spin-translation group.

Since we are interested in the macroscopic physical property,
it is sufficient to take into account the point-group symmetry.
The point group is obtained from Eq. (54) as

P = Pst � PH. (55)

The point groups Pst and PH are, respectively, derived from
Gst and H as in Eq. (27). The spin-translation part Pst gives
rise to the spin-only-group symmetry written by

Pst = {(1,W )|W ∈ {1, 2X , 2Y , 2Z}}. (56)

The point group 222 = {1, 2X , 2Y , 2Z} is given by the mu-
tually orthogonal twofold rotation axes (X,Y, Z ) by which
four orientations of Co spins are interchanged [Fig. 3(b)]. The
remaining part is

PH =3 6 m(100) 2 m(010) 2. (57)

We notice that the sixfold symmetry of the crystal (space
group P6322, No. 182) is intact in the ordered phase without
the SOC effect.

We are interested in the spin and orbital magnetizations
which are related to the KL and geometrical Hall effects,
respectively. Then, it is enough to consider the spin and orbital
parts projected from P as in Eqs. (31) and (32). The spin part
is

Psp(P ) = 222 � 3m = 4̄3m, (58)

and the orbital part is

Porb(P ) = 62′2′. (59)

The spin-translation symmetry of Eq. (56) leads to the cubic
symmetry Psp = 4̄3m despite the hexagonal crystal structure
of CoTa3S6. The spin point-group symmetry enhanced by the
spin-translation symmetry has not been addressed in previous
studies of emergent responses. On the other hand, the orbital
part manifests the axial symmetry whose rotation axis is [001]
similar to the SO-coupled case of Eq. (53). Using the spin and
orbital parts in the spin point group, we identify the allowed
spin and orbital magnetization,

Msp = 0, Morb ‖ [001]. (60)

As a result, the anomalous Hall conductivity vector σH ‖
[001] can appear without the help of SOC (σg 	= 0). Fur-
thermore, the zero spin magnetization follows from the cubic
symmetry in the spin space. These properties indicate that the
anomalous Hall effect of CoTa3S6 can be attributed to the ge-
ometrical Hall effect (σg) and that the KL contribution (σKL)

may be suppressed due to vanishing spin polarization since
it is empirically expected to be proportional to the uniform
magnetization.

We have clarified two characteristic aspects of spin group
symmetry in this section. The spin-only group associated
with low-dimensional spin configuration gives rise to strong
constraints on the orbital-space objects, forbidding physical
responses arising from the violation of the orbital time-
reversal symmetry. On the other hand, the noncoplanar spin
structure may lead to such emergent responses from orbital
degrees of freedom, while the responses relevant to the spin
degree of freedom may vanish due to the high symmetry of
the spin space originating from the spin-translation group.
These contrasting situations are systematically understood by
the spin crystallographic group symmetry analysis incorporat-
ing more details of spin structures such as the spin-structure
dimension Dsp and spin-translation symmetry beyond the
magnetic space group.

C. Magnetoelectric effect and spin and orbital magnetic
quadrupole moments

The spin crystallographic group symmetry analysis distin-
guishes the role of spin and orbital degrees of freedom in the
magnetoelectric effect because it separately identifies the spin
and orbital magnetizations as in Eq. (60). We here consider the
correlation between magnetization and electric polarization
written by

Pi = χPM
i j Hj, Mi = χMP

i j E j . (61)

The frequency dependence is suppressed. In particular, the
symmetric term is called magnetoelectric effect and the anti-
symmetric is the inverse magnetogalvanic effect [53,55] (see
also Table I). In the following, we focus on the dc magne-
toelectric effect αi j = χMP,s

i j (ω = 0), which appears even in
systems with no electric conductivity, that is, insulators at
the zero temperature. The magnetoelectric effect is further
divided into the spin and orbital parts as

αi j = α
sp
i j + αorb

i j . (62)

where the spin and orbital magnetizations participate in the
response, respectively. In light of the spin crystallographic
group, the symmetry of spin and orbital magnetoelectric effect
is, respectively, determined by the whole of and orbital part of
the spin point group since the former is a spin-orbital-coupled
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FIG. 4. (a) Crystal and spin structures of Cr2O3 where spins are collinear along the [001] direction. (b), (c) Chirality of the crystal structure
of CoTa3S6 implied by TaS6 prism with the twisted coordination of Co atoms. The twisting arrangement determines the chirality χ = ±1.
When orbital magnetization (blue-colored vector) is formed along the [001] direction due to its noncoplanar spin ordering, (b) the toroidal
moment (red-colored vector) is antiparallel to it, (c) while it is parallel with the opposite chirality.

response and the latter consists of only the orbital degree of
freedom.

First, we consider a prototypical magnetoelectric mate-
rial Cr2O3 [80,81] [Fig. 4(a)]. Its collinear antiferromagnetic
order does not break translation symmetry due to the zero
propagation vector of the spin configuration, and the non-
trivial spin-translation group is equal to the translation group
for the paramagnetic state as Gst = T . Supposing that the
spins are aligned to the [001] axis in the spin space, the spin
crystallographic point group is

P = Pso × P, (63)

where the spin-only group Pso is for the one-dimensional spin
configuration [Eq. (20)]

Pso = SO(2) � {1, m‖}. (64)

The remaining part is

P =3̄ 3̄mm. (65)

The spin part associated with P manifests centrosymmetric
point-group symmetry as

Psp(P ) = O(2) � {1, m‖}, (66)

and the orbital part is given by a centrosymmetric gray group

Porb(P ) = 3̄m1′, (67)

which differs from the noncentrosymmetric black and white
point group P = 3̄′m′ for the SO-coupled case.

The absence of orbital contribution (αorb
i j = 0) follows from

either of the space-inversion or time-reversal symmetry in
the orbital part of the spin point group [Eq. (67)] because
of the odd parity under those operations [53]. On the other
hand, when taking into account the spin space proper rota-
tions, the spin point group of Eq. (63) does not preserve the
time-reversal or space-inversion symmetry as −11,1 −1 	∈ P
and may allow for finite spin magnetoelectric effect. The
symmetry of the spin contribution is obtained as follows. In
the SO-coupled case with the magnetic point group P = 3̄′m′,
the allowed SO-entangled magnetoelectric effect is given by
all the diagonal components αxx, αyy, αzz [37]. In the absence
of SOC, one should consider additional constraints due to the
spin-only group [Eq. (64)]. The SO(2) symmetry in the spin-
only group forbids the spin-polarization response transverse

to the collinear axis (αsp
y j, α

sp
z j = 0) but allows the longitudinal

as α
sp
z j 	= 0. The symmetry analysis is summarized as

αsp
zz 	= 0 otherwise α

sp
i j = 0, αorb

i j = 0. (68)

As a result, only the longitudinal magnetization can respond
to the applied electric field in a SOC-free manner and is purely
ascribed to the spin origin.

Although we assumed the dc case, the symmetry analysis
similarly holds for the ac responses. The ac magnetoelectric
effect denoted by χMP,h

i j (ω) triggers the nonreciprocal optical
activity [82–84]. Owing to the effective space-inversion (W 1̄
with det W = 1) and orbital time-reversal symmetry (W 1 with
det W = −1) in the spin point group of Eq. (63), the optical
activity arises solely from the spin magnetic-dipole transition
but does not include the orbital magnetic-dipole or electric-
quadrupole effects in the absence of SOC.

Next, we again consider CoTa3S6 to demonstrate the role
of spin-translation symmetry in the magnetoelectric effect.
Similarly to zero spin magnetization, the cubic spin space
symmetry [Eq. (58)] forbids the spin magnetoelectric effect
α

sp
i j = 0. On the other hand, the orbital part of Eq. (59) leads

to finite orbital magnetoelectric effects αorb
xy = −αorb

yx . Then,
the magnetoelectric effect of CoTa3S6 is summarized as

α
sp
i j = 0, αorb

xy = −αorb
yx 	= 0. (69)

In the SO-coupled point-group symmetry of Eq. (53), αxy =
−αyx is similarly allowed while the spin effect is admixed.

The symmetry analysis shows the possibility of the
SOC-free magnetoelectric effect dominated by the orbital
contribution. Among known mechanisms for the magneto-
electricity [85], the identified response may originate from
the exchange striction mechanism [86,87] and the dynamical
phase [88] which do not require SOC. Note that we here
discussed the orbital magnetoelectric effect induced by the
noncoplanar spin order [89] rather than that what arises from
the orbital-current order [90].

We took the overview of the relation between the anoma-
lous Hall effect and orbital magnetization in Sec. III B.
A similar discussion can be found in the case of the
magnetoelectricity; the response may be correlated with
higher-order anisotropy of magnetic charge, that is, the mag-
netic quadrupole moment Qi j [91,92]. The symmetry of
Qi j is schematically given by the tensor product of the
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magnetization and position as Qi j ∼ Mir j . According to
the space-time symmetry, we can find the correspondence
between the magnetic quadrupole moments and the magne-
toelectric effect given by

Qi j ↔ αi j . (70)

The magnetization Mi can be classified into the spin and or-
bital contributions in terms of the spin crystallographic group.
Then, the symmetry analysis of the allowed magnetoelectric
effect can be reproduced by identifying the relevant spin and
orbital magnetic quadrupole moments with the use of Eq. (4).

For instance, let us consider the multipolar degree of free-
dom corresponding to the magnetoelectric effect of CoTa3S6.
The allowed multipole moment is the orbital toroidal moment
Qorb

xy − Qorb
yx ∼ (Morb × r)z where the toroidal moment is a

time-reversal-odd polar vector. The symmetry of the toroidal
moment is consistent with that of the orbital magnetoelec-
tric effect in Eq. (69). The toroidal moment polarized along
the [001] direction can be intuitively understood by its or-
bital magnetization and crystal structure. The space-group
symmetry of CoTa3S6 (No. 182, P6322) does not have any
improper rotation symmetry in the orbital space [93], and
hence every axially symmetrical quantity can be coupled to
the corresponding polar-symmetry quantity with preserving
the time-reversal parity. In the present case, the orbital mag-
netization (time-reversal-odd axial vector) is coupled to the
orbital toroidal moment(time-reversal-odd vector) as in the
case of magnetochiral anisotropy [94] [Figs. 4(b) and 4(c)].
In the present case, the orbital magnetization (time-reversal-
odd axial vector) is coupled to the orbital toroidal moment
(time-reversal-odd polar vector) as in the case of magne-
tochiral anisotropy [94] [Figs. 4(b) and 4(c)]. The coupling
between the orbital magnetization and toroidal moment is a
consequence of its chiral crystal structure, and the ligands sur-
rounding magnetic Co atoms play essential roles. We checked
that the noncoplanar spin structure of Co atoms does give
rise to orbital magnetization but manifests no orbital toroidal
moment without Ta and S atoms. Interestingly, beyond the
symmetry analysis, recent theoretical studies identified that
the magnetic quadrupole moment [95–98] covers not only
the magnetoelectric effect, but also other cross-correlated re-
sponses [99] when the system is insulating.

D. Spin Hall response and rotators

Let us consider another spin-related response, the electric-
field (Ej) induction of spin-polarized current Jsk

i . The spin-
polarized current may be given by Jsk

i = {Ji, sk}/2 which is
comprised of the spin and orbital space objects. The response
formula reads as

Jsk
i = σ k

i jE j . (71)

The parity under the time-reversal symmetry is θJsθE = +1,
and the T -even contribution is symmetric while the T -odd
is antisymmetric according to the classification in Sec. III A.
For the Hall response (εi j pσ

k
i j) in the dc limit, the T -even

effect includes the well-known spin Hall effect prominent in
the spin-orbit-coupled semiconductors [100,101], while the
T -odd called the magnetic spin Hall effect is unique to mag-
netic metals [11–13,102–104]. The absence of SOC and spin

FIG. 5. (a) Spin structure of Mn3Sn. (b) Transverse conversion
between the charge and spin currents denoted by the rotator Ri j . The
Hall plane perpendicular to the xi direction is for the current whose
spin is polarized along the x j direction in the spin space.

order, indicating the isotropic spin space symmetry, leads to
the vanishing response.

We refer to the symmetry analysis of Refs. [11,12] and
decompose σ k

i j into the T -even and T -odd components. The
target material, a noncollinear but coplanar magnet Mn3Sn, is
attracting a lot of attention because of its potential application
for spintronic and magneto-optical components [Fig. 5(a)]
[10,73]. The spin crystallographic point group is given by

P = Pso × P . (72)

The spin-only group is

Pso = {(1,W )|W ∈ {1, m(001)}} (73)

for a two-dimensional spin structure. The remaining part is
[24]

P =3 6/1mm(120) mm(110) m, (74)

where the spin configuration is taken to preserve the spin
point-group symmetry for g = (2[100], 2[100]). The spin part
associated with P is

Psp(P ) = m(001) × 3m = 6̄2m, (75)

and the orbital part is

Porb(P ) = 6/mmm1′, (76)

coinciding with the SO-coupled magnetic point group for
the paramagnetic state, while the SO-coupled magnetic point
group for the magnetic state shows the crystal-class reduction
from hexagonal to orthorhombic as P = mm′m′. Thus, as far
as only the orbital degrees of freedom are concerned, the
antiferromagnetic state of Mn3Sn does not show any physical
phenomena arising from the symmetry breaking. On the other
hand, owing to the spontaneously emerged anisotropy in the
spin space, the electric field can stimulate the spin-polarized
current. The response is explicitly given by

σ z
xy = −σ z

yx (77)

for the T -even contributions and

σ x
xx = σ y

xy = σ y
yx = −σ x

yy (78)

for the T -odd components. These spin-orbit-free components
may overwhelm those requiring the SOC effect [11,12].

Following the discussion parallel to those in the previous
Secs. III B and III C, the symmetry analysis is applicable to
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more complex spin structures and can be extended to cover
the orbital counterpart such as the orbital-current Hall effect,
which is denoted with the current whose magnetic polariza-
tion is attributed to the orbital origin [105–107]. For instance,
CoTa3S6 with the cubic spin space symmetry [Eq. (58)] leads
to the zero spin-current response σ

k,sp
i j = 0. The orbital coun-

terpart, however, is allowed even without SOC such as the
T -odd contributions σ z,orb

xx , σ z,orb
yy , and σ z,orb

zz .
We further consider the quantities relevant to the T -even

and T -odd spin Hall responses by the analogy of the SOC
Hamiltonian [50]. Recalling the expression for the atomic
SOC of Eq. (17), one can replace the orbital angular momen-
tum L ∼ r × p with the cross product of the electric field and
current E × J since the space-time symmetry is same in pairs
of vectors (r, E) and (p, J). Then, the relativistic spin-orbit
interaction may correspond to the spin Hall response as

L · s ∼ (J × E ) · s = εi jkE jJisk ↔ σ k
i j = εi jkσ0, (79)

where εi jkσ0 indicates the spin Hall effect whose spin polar-
ization is perpendicular to the Hall plane defined by the E
and J [Fig. 5(b)]. That is why the spin Hall effect generically
exists under the SOC effect. The correspondence between the
T -even spin Hall effect and the product of Li and s j may
be generalized to that in the framework of the spin crystal-
lographic group. Then, we here introduce the T-even rotator
Re

i j giving the transverse correlation between charge and spin
currents. The symmetry of Re

i j coincides with the product
of the time-reversal-odd axial vectors Li and s j which are
defined in the orbital and spin space, respectively. The T -even
rotator may be attributed to the spin-resolved Berry curvature
playing a crucial role in the intrinsic spin Hall effect. The
T -even rotator denotes the Hall response for the x j-polarized
spin current denoted by the Hall plane perpendicular to the i
direction [Fig. 5(b)]

Re
i j ↔ εiabσ

j
ab. (80)

Specifically, the trace
∑

i Re
ii corresponds to Eq. (17). For

instance, referring to the spin crystallographic point group
of Mn3Sn [Eq. (72)], we identify the T -even rotator Re

zz 	= 0
corresponding to the spin Hall response of Eq. (77) where
the z = (001) Hall plane is obtained as (E × J)z and the
spin current is polarized along the z direction. The T -even
spin Hall effect is a response characteristic of noncollinear
spin systems under no SOC effect [12] as we corroborate in
Sec. IV.

It is straightforward to derive the similar quantity relevant
to the magnetic spin Hall effect, that is, T -odd rotator Ro

i j ∼
Lis j with the time-reversal-even axial vector Li defined in the
orbital space [50]. The symmetry of the T -odd rotator agrees
with the spin-current vorticity clarified in a recent theoretical
study [108]. In the case of Mn3Sn, the T -odd rotator is absent
without the SOC effect (Ro

i j = 0). This is consistent with the
symmetry analysis of Eq. (78) whose field and response can
be longitudinal to each other.

The symmetry analysis based on rotators can be applied to
spin-current responses to another stimulus such as the temper-
ature gradient, as long as the replaced field shares the same
symmetry as the electric field, that is, a time-reversal-odd
polar vector. Then, the high-throughput symmetry analysis

presented in the following section allows us to identify SOC-
free spin caloritronic responses such as anomalous spin Nernst
effect.

IV. HIGH-THROUGHPUT SYMMETRY ANALYSIS
OF SPIN GROUP SYMMETRY

The computational search for the spin space group allows
us to identify physical properties free from the SOC effect
[38,42]. We present symmetry analysis with dozens of ob-
served spin configurations obtained from MAGNDATA [39,40].
We have performed the symmetry analysis of 1512 magnetic
materials which have no site disorder. For the spin-structure
dimension, 914 collinear, 403 coplanar, and 195 noncopla-
nar spin systems are studied. The magnetic materials are
numbered by following the identification number provided in
MAGNDATA such as Cr2O3 (No. 0.59).

In this section, we discuss the physical quantities such as
spin and orbital magnetization and magnetic quadrupole mo-
ments, and T -even and T -odd rotators introduced in Sec. III
to investigate emergent physical phenomena. Providing some
examples of spin space group (G) with comparison to the
analysis with magnetic space group (G), we investigate char-
acteristic physical properties in the viewpoint of symmetry.
Although the electromagnetic responses relying on nonrela-
tivistic spin-charge coupling has been mainly discussed for
spin structures with the zero propagation vector, our high-
throughput symmetry analysis further identifies candidate
materials offering intriguing physical phenomena arising from
a complex spin structure such as purely orbital magnetoelec-
tric effect and motivates us to revisit known materials from the
perspective of SOC-free responses.

A. Spin crystallographic symmetry

Let us classify the magnetic materials in terms of the spin
crystallographic or magnetic-space group symmetry. Since the
spin-space group comprises its corresponding magnetic-space
group as a subgroup, the orders of groups satisfy the relation
|G|/|G| ∈ N = {1, 2, 3, . . . } where we consider the nontrivial
spin-space group G instead of G. Figure 6 illustrates how many
symmetry operations are restored by neglecting SOC. For
instance, the maximal symmetry restoration occurs in the case
of a noncoplanar magnet CrSe (No. 2.35) [109]. The hexago-
nal crystalline symmetry (space group No. 194, P63/mmc) is
intact for the nontrivial spin-space group G, while the crystal
class is reduced to the trigonal for the magnetic-space group
G. The nontrivial spin-translation group as large as |Gst| = 3
also contributes to the higher symmetry of G [38].

For a more detailed comparison, we classify the orbital
symmetry of the spin point group (Porb) and the SO-coupled
magnetic point group (P) in terms of the time-reversal sym-
metry such as colorless, gray, and black and white groups
(see Appendix A). Owing to the spin-only group, the low-
dimensional spin structure (Dsp = 1, 2) makes the orbital
space symmetry gray irrespective of its SO-coupled mag-
netic point-group symmetry [see examples of Eq. (26) for
Dsp = 1 and Eq. (72) for Dsp = 2]. On the other hand, the
noncoplanar system (Dsp = 3) can be characterized by any
of three different types of magnetic point groups. Table II
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FIG. 6. Distribution of magnetic materials parametrized by the
order of the magnetic space group (|G|) and by the ratio between the
order of the nontrivial spin space group (|G|) and |G|. The distribu-
tions are categorized based on whether the spin-structure dimension
is collinear, coplanar (but noncollinear), or noncoplanar.

shows the classification result. The absence of the SOC con-
straint [Eq. (18)] allows for the additional symmetry related
to the time-reversal operation and hence some of the colorless
groups among P are turned into black and white with respect
to Porb.

We take some examples to compare the magnetic symme-
try with and without SOC. For an example of low-dimensional
spin structures, we consider a coplanar magnet Ba3MnSb2O9

(No. 1.0.46). The material crystallizes in the structure denoted
by the centrosymmetric space group C2/m (No. 15) [110], and
its coplanar spin structure (Dsp = 2) is formed by magnetic
moments at Mn atoms [Fig. 7(a)]. No symmetry including
the time-reversal operation exists in the magnetic space group
G = C2 (type I) allowing for both of ferroelectric and ferro-
magnetic polarizations. On the other hand, such multiferroic
property is missing if there exists no SOC effect. The spin
space group reads as

G = Gso × G. (81)

TABLE II. Classification table of the SO-coupled magnetic point
group (P) and the orbital part of the spin point group (Porb) for
the noncoplanar magnets in light of the time-reversal symmetry.
Note that all the Porb is gray for the collinear and coplanar magnets
irrespective of the type of P.

Colorless Gray Black and white

P 46 46 103
Porb 42 46 107

The two-dimensional spin structure corresponds to the spin-
only group

Gso = {((1, 0), 1), ((1, 0), m(001))}, (82)

and the nontrivial part G is isomorphic to the space group
C2/m. G is generated by

((1, t ), 1), ((−1, 0), m(010)), ((2[010], t̃ ),m(100)), (83)

in addition to the trivial translation operations associated
with the monoclinic crystal structure. We here introduced the
translations t = (0.5, 0.5, 0) and t̃ = (0, 0, 0.5). When G is
reduced to the spin point group P , the orbital part Porb is
centrosymmetric and gray as

Porb(P ) = 2/m1′, (84)

in contrast to the SO-coupled (P = 2). Consequently, the
spin group symmetry forbids various physical phenomena
activated by the time-reversal or space-inversion symmetry
breaking.

Next, we consider a noncoplanar magnet Mn3CuN (No.
2.5) [111]. The complex spin structure consists of magnetic
moments at Mn sites having two different moduli [Fig. 7(b)].
The magnetic space group is

G = P4/m, (85)

from which the magnetic point group is P = 4/m. Thus, ow-
ing to the spin order and SOC, the cubic crystalline symmetry
(space group No. 221, Pm3̄m) is reduced to the tetragonal.
The magnetic symmetry allows for the magnetization along
the [001] axis.

Then, let us consider its spin space-group symmetry. With
the nonzero propagation vector of the spin configuration,
the spin space group includes the spin-translation group Gst

FIG. 7. Spin configurations of (a) Ba3MnSb2O9 with only Mn atoms and of (b), (c) Mn3CuN. In (c), the spin space operation ((m(010), 0))mα

is depicted. The mirror operations W = mβ, mγ can be similarly obtained.
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TABLE III. Classification of noncoplanar magnetic materials in
terms of spin and orbital magnetizations Msp, Morb. MSOC denotes
the magnetization under the SOC effect. “Num.” denotes the number
of data of magnetic materials belonging to each class. The materials
without any magnetization are not shown.

Msp Morb MSOC Num.

M1 � � � 69
M2 � � 2
M3 � � 7
M4 � 1

Total 79

generated by

((1, t ), 2z ), (86)

with t = (0.5, 0.5, 0) and by trivial translation operations
without any spin space rotations. Then, we obtain the coset
decomposition of the spin space group as

G =
⋃

i

gi Gst, (87)

where the representatives gi are given by the identity and

((−1, 0), 1), ((4+
[001], 0), 4+

[001]), ((m(010), 0)mα ),

((m(100), 0)mβ ). (88)

The mirror operation W = mα is depicted in Fig. 7(c). Impor-
tantly, the spin space-group operations related to mα, mβ are
preserved without the SOC condition of Eq. (18) and makes
the orbital part Porb black and white. The spin point group is
obtained as

P =2[001] 14[001] 4/1mmβ mmγ m, (89)

with the spin space mirror operation W = mγ associated with
the orbital space mirror reflection R = m(11̄0). Accordingly,
we obtain

Psp(P ) = 4mm (90)

for the spin part, and

Porb(P ) = 4/mm′m′ (91)

for the orbital part. The resulting black and white symmetry of
Porb differs from the colorless magnetic point group P = 4/m
for the SO-coupled case.

B. Emergent physical properties

1. Magnetization

Here we consider the spin and orbital magnetizations
arising from the spin ordering. Although the uniform spin
magnetization trivially appears in the ferromagnetic materials,
the orbital counterpart is severely forbidden due to the spin-
only group in simple spin structures such as collinear and
coplanar configurations (see Sec. III B). Then, we focus on the
195 noncoplanar magnets which may possess orbital magne-
tization. We show the classification concerning magnetization
in Table III. The classification also covers the magnetization

identified by the magnetic symmetry (G, P) including the
SOC effect, that is, the spin-orbital-entangled magnetization
denoted by MSOC. When either nonzero spin or orbital mag-
netization exists in a given spin space group, MSOC is similarly
allowed due to the group-subgroup relation of G < G. Then,
we classify the noncoplanar magnets into four classes in terms
of magnetization; (M1) nonzero spin and orbital magnetiza-
tion even without SOC, (M2) nonzero spin but zero orbital
magnetization without SOC, (M3) zero spin but nonzero
orbital magnetization without SOC, and (M4) zero magnetiza-
tion without SOC, but nonzero with SOC. We do not discuss
the case of zero magnetization with and without SOC.

The system with orbital-free spin magnetization (class M2
of Table III) is trivial since such type of magnetization can be
found in typical ferromagnetic materials as well. On the other
hand, the spin-free orbital magnetization (class M3) indicates
a nontrivial spin group symmetry hosting the orbital magne-
tization not to be concomitant with spin magnetization. The
materials of class M3 are as follows: DyCrWO6 (No. 0.316),
CuB2O4 (No. 0.431), Fe3F8(H2O)2 (No. 2.61), TbCrO3 (No.
2.62), DyCrO3 (No. 2.63, No. 2.64), and MgCr2O4 (No. 3.4).
The candidate materials are mostly insulators in contrast to the
noncoplanar magnetic metal CoTa3S6 discussed in Sec. III B.
Thus, they may not be promising candidates offering the
geometrical Hall effect, whereas the orbital magnetization
should participate in similar phenomena for quasiparticles
conductive in electrically insulating materials such as phonon
and magnon [112]. The orbital magnetization also plays an
important role in various magneto-optical phenomena such
as Faraday rotations [113]. Interestingly, the optical response
may be tolerant to extrinsic effects such as skew scattering,
yielding anomalous Hall effect [30] and hence it may be a
good test bed for investigating the intrinsic role of the orbital
magnetization in emergent responses.

We observe that CrSe (No. 2.35) shows the magnetization
if and only if SOC is taken into account (class M4). This is
because the cubic symmetry of spin space group G is reduced
to the trigonal magnetic point group under SOC. We also
notice that the spin and orbital contributions to the equilibrium
properties may be distinguished even when both are allowed
such as in class M1 of Table III. As an example for class M1
of Table III, the spin group symmetry of Mn3O4 (No. 2.52)
leads to the spin and orbital magnetizations given by

Msp ‖ [010], Morb ‖ [001]. (92)

The two perpendicular magnetizations get entangled with
each other under the SOC effect, and the magnetization can
be in the (100) plane. Note that we cannot determine the
relative orientation of spin space axes with respect to the
orbital space coordinate system without SOC. We, however,
determined the spin space axes of Eq. (92) by referring to
the spin configuration observed in experiments, and thus the
peculiar relation between spin and orbital magnetizations may
give an implication, e.g., the anomalous Hall effect σxy may be
larger than another transverse component σzx because the for-
mer may be related to the orbital magnetization Morb ‖ [001]
while the latter results from SOC.

Finally, we comment on the relation between class M2
and the spin scalar chirality. The noncoplanar nature can be
quantified by the spin scalar chirality vector C, which shares
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TABLE IV. Classification of magnetic quadrupole moments. The
spin (Qsp), orbital (Qorb), and spin-orbital-coupled contributions
(QSOC) are classified by the spin-structure dimension (Dsp = 1, 2, 3).
The materials without any quadrupole moments are not shown.

Dsp

Qsp Qorb QSOC 1 2 3

Q1 � � � 0 0 42
Q2 � � 142 94 0
Q3 � � 0 0 4
Q4 93 24 1

Total 235 212 47

the same spin crystallographic symmetry as that of the orbital
magnetization and geometrical Hall effect. The quantity reads
as

Ci =
∫

dr εi jks(r) ·
[

∂

∂r j
s(r) × ∂

∂rk
s(r)

]
. (93)

The importance of the spin scalar chirality has been
explored in various materials such as kagome lattice
[32,34,66,114,115] and magnetic skyrmion crystals [35,36].

The spin scalar chirality may be defined in a lattice system
as

Ci =
∑
�

Sα · (Sβ × Sγ )({α, β, γ } ∈ �), (94)

where three spins spanning the triangle (�) are in the same
plane normal to the xi axis [116]. The triangular unit may be
hard to identify in general except for known examples such as
layered material [78] and pyrochlore magnet [66,77]. On the
other hand, our symmetry analysis allows us to identify the
orbital magnetization Morb as well as the spin scalar chirality
C in continuum space. It implies that our symmetry analy-
sis unambiguously identifies the geometrical Hall effect for
complex magnetic materials where the discretely defined spin
chirality may be hard to identify.

2. Magnetic quadrupole moment

We consider the spin and orbital quadrupole moments Qsp
i j

and Qorb
i j . While the orbital contribution similarly does not

show up without a noncoplanar spin structure, the spin con-
tribution is of interest in the low-dimensional spin structures.
Furthermore, we can gain insight into relativistic effects on
the quadrupole-mediated physical responses such as the mag-
netoelectric effect from the comparison between the magnetic
quadrupole moments with and without SOC. Thus, we cate-
gorize the magnetic materials by the spin/orbital/SO-coupled
(QSOC

i j ) quadrupole moments and by the spin-structure dimen-
sion (Table IV).

Being consistent with the spin-only group symmetry for
Dsp = 1 and 2, the quadrupole moments originate from only
the spin degree of freedom (class Q2) without SOC for
low-dimensional spin structures, while both spin and orbital
contributions are admixed (class Q1) in noncoplanar case
(Dsp = 3). Interestingly, only the orbital part is allowed in
the SOC-free manner (class Q3) for U3As4 (No. 0.169),

TABLE V. Classification of the spin-current rotators. Magnetic
material data with the spin-structure dimension Dsp = 1, 2, 3 are
classified in terms of the T -even (Re), T -odd (Rorb), and SO-coupled
T -odd rotators (RoS). The materials without any rotators are not
shown.

Dsp

Re Ro RoS 1 2 3

R1 � � � 0 115 100
R2 � � 130 19 0
R3 � 123 42 5
R4 � 0 164 79
R5 � � 0 5 4

Total 253 345 188

U3P4 (No. 0.170), CrSe (No. 2.35), MgCr2O4 (No. 3.4). It is
noteworthy that the noncoplanar magnet CrSe possesses the
orbital quadrupole moment without any uniform magnetiza-
tion (see Appendix C). The class Q4 of Table IV indicates
the system whose magnetic quadrupole moment appears if
and only if SOC is included. The magnetoelectric property
is inactive without the SOC effect in some collinear antifer-
romagnets because of strong constraints from the spin-only
group.

The magnetoelectric effect related to magnetic quadrupole
moment has been intensively studied mainly with collinear
magnets [53] and with incommensurate magnetic systems
[85,117]. It, however, has been rarely explored for com-
mensurate but noncollinear magnetic materials such as what
manifests the orbital magnetoelectric effect [89,118,119].
Thus, the present classification may lead us to a deep compre-
hension of the relation between the spin-structure dimension
and the magnetoelectric effect.

3. Rotators for the spin-polarized current responses

Finally, let us consider the T -even and T -odd spin-current
rotators Re,o

i j . These quantities are comprised of the spin degree
of freedom in jth component of Ri j and vanish in the param-
agnetic state without SOC. Under the SOC effect, the T -even
rotator Re

i j is allowed in every system as in Eq. (79), while
the T -odd rotator Ro

i j requires the time-reversal symmetry
breaking.2 Then, we identify candidate materials possessing
the T -even rotator without SOC (Re

i j), T -odd rotator without
SOC (Ro

i j), and T -odd rotator under the SOC effect (RoS
i j ) for

each spin-structure dimension (Table V).
For the collinear case (Dsp = 1), the T -even rotator van-

ishes due to the spin-only group symmetry (Re
i j = 0), but the

T -odd contribution can be finite (classes R2 and R3). As a
result, the spin Hall effect of collinear magnets is generi-
cally attributed to the magnetic origin and hence is unique
to magnetic metals. It is noteworthy that the spin current

2To be more precise, the T -odd rotator requires the axial symmetry
and violation of the combined symmetry of the space-inversion and
time-reversal symmetries in addition to the time-reversal-symmetry
breaking.

094438-15



HIKARU WATANABE et al. PHYSICAL REVIEW B 109, 094438 (2024)

induced by the T -odd spin Hall effect is not accompanied
by the charge current in the collinear and coplanar magnets
due to the absence of the anomalous Hall effect without SOC.
This situation is distinct from the Hall effect of SO-coupled
systems where the magnetic spin Hall current is admixed with
the charge Hall current [14].

For coplanar and noncoplanar magnets (Dsp = 2, 3), both
the electric and T -odd rotators are not forbidden in general. In
particular, the candidates for class R5 may show a sizable T -
even spin Hall effect without the help of SOC as demonstrated
in the first-principles study such as that for Mn3Sn [12]. On
the other hand, to be different from the collinear case, the
T -odd rotator rarely appears without being admixed with the
T -even rotator in noncoplanar magnets (classes R2 and R3)
because a complex spin structure providing the T -odd rotator
secondarily induces the time-reversal-symmetric spin-charge
anisotropy as well.

We note that the symmetry analysis refers to the spin
structures reported in experiments, that is, the spin configu-
rations including the SOC effect such as small canting by the
Dzyaloshinskii-Moriya interaction. To obtain a proper insight
into the SOC-free responses, we have to remove the SOC
corrections by performing the comparative and first-principles
study with and without the SOC effect [120,121]. The non-
collinear spin configuration does not necessarily require the
SOC effect because the collinear configuration is not favor-
able in some cases such as in frustrated systems [122,123].
More exploration of the SOC-free magnet and its emergent
responses is a future work to be addressed.

V. DISCUSSION AND SUMMARY

We mainly focused on linear responses such as anomalous
Hall, magnetoelectric, and spin Hall responses. The powerful
features, such as T -even and T -odd decomposition and classi-
fication in terms of spin and orbital degrees of freedom, work
in analyzing nonlinear responses as well. We exemplify it by
nonreciprocal dc current induction in CoTa3S6. The response
reads as

Ji(ω = 0) = σi; jkE j (ω0)Ek (−ω0). (95)

It is called photocurrent response for ω0 	= 0 [124] and non-
reciprocal conductivity for ω0 = 0 [125]. Performing the
T -even and T -odd decompositions, we obtain the allowed
components

σz;xy = −σz;yx, σy;zx = −σy;xz, σx;yz = −σx;zy (96)

for the T -even contribution and

σz;xx = σz;xx, σx;zx = σy;zy, σx;xz = σy;yz, σz;zz (97)

for the T -odd. Although the T -even components are due to the
noncentrosymmetric crystal structure of CoTa3S6, the T -odd
component is correlated with emergence of the orbital mag-
netic toroidal moment [see Sec. III C and Fig. 4(b)] [94,126–
128]. This implies the giant nonlinear response driven by the
nonrelativistic spin-charge coupling [17]. Supporting this ar-
gument, it has been identified that the giant exchange splitting
leads to the sizable nonreciprocal conductivity in Mn-based
antiferromagnetic metals [61].

Furthermore, we can separate the spin and orbital contri-
butions for the magnetization-related nonlinear responses. By
replacing the dc electric current in Eq. (95) with the spin-
and orbital-polarized dc Jsa

i /JLa
i , the symmetry analysis can

be applied to the nonreciprocal spin and orbital current in-
duction σ

a,sp
i; jk /σ a,orb

i; jk . Owing to the high-symmetric spin space,
the spin part vanishes (σ a,sp

i; jk = 0) but the orbital contribution

exists (σ a,orb
i; jk 	= 0) in the case of CoTa3S6. The situation is

different from that considered in the previous study on the
spin contribution [129].

Our work provides a systematic tool for investigating
SOC-free responses, whereas it does not address quantita-
tive aspects of responses due to the limitation of symmetry
analysis. Previous studies reported that the SOC-free phys-
ical response can be sizable such as spin-polarized current
induction [12,15] and piezomagnetic effect [18], but criteria
for identifying giant spin-driven phenomena remain elusive.
These problems are expected to be addressed in future works
as guided by our symmetry analysis. For instance, the classi-
fication of the magnetic quadrupole moments (Table IV) may
motivate us to revisit the magnetoelectric effect. Historically,
the effect has been mainly explored with simple and collinear
magnets such as Cr2O3. For collinear magnets without SOC,
the one-dimensional spin-only group allows for only the lon-
gitudinal magnetoelectric effect where induced magnetization
is collinear to the spins as in Eq. (68). Given that small longi-
tudinal spin fluctuations suppress the magnetoelectric effect at
the low temperature [82], the SOC-free magnetoelectric effect
is typically small for the collinear magnets without thermal
fluctuations. On the other hand, coplanar and noncoplanar
magnetic materials may host significant spin magnetoelectric
responses due to remaining spin fluctuations. Although the
importance of the noncollinear property has been highlighted
by prior theoretical studies [89], candidate materials are not
fully explored. The developed spin group symmetry analysis
incorporated into the computational design of magnetic mate-
rials [120] may facilitate further investigations into complex
spin structures enhancing magnetoelectric responses.

Previous theoretical studies investigated the spin-
momentum coupling originating from the spin order without
the SOC effect [5–7,130–132]. The purpose of this paper
is to clarify the macroscopic physical properties, and the
spin-space-group analysis of the spin-splitting structure is out
of the present scope. The systematic classification, however,
can be similarly obtained by combining the spin-space-group
symmetry with the classification of spin momentum locking
in the light of multipolar degrees of freedom [48–50]. By
properly taking the characteristics of the spin-space group,
we can get accurate criteria for spontaneous spin-momentum
splitting. Interestingly, various emergent physical responses
can occur even without the nonrelativistic spin-momentum
locking such as exemplified by the geometrical Hall effect of
CoTa3S6 because of the spin-translation degree of freedom.

To summarize, we established the spin crystallographic
group symmetry analysis applicable to complex spin struc-
tures such as that with a nontrivial spin-translation group.
Our symmetry analysis is powerful enough to cultivate further
understandings of spin-order-induced emergent responses and
relativistic corrections to them in various magnetic materials.
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In stark contrast to the widely adopted magnetic space group,
the spin space group takes into account the spin-structure di-
mension and conveniently allows us to identify the geometric
contributions to physical responses such as the geometri-
cal Hall effect and orbital magnetoelectric effect. The spin
space-group symmetry and characteristic physical responses
are automatically identified by our computational methods
developed in Ref. [38] and in this work. Performing the
computational classification of dozens of magnetic materials,
we systematically identified intriguing systems such as what
hosts purely orbital magnetization, purely orbital magnetic
quadrupole polarization, and the spin-order-induced T -even
and T -odd spin Hall effect. The developed symmetry analysis
will deepen our understanding of spin-orbit-free phenomena
by combining first-principles material design.

The program [133] of searching the symmetry-adapted ten-
sors with a given spin space group is based on SPGLIB [41,42]
and SPINSPG [38], and it is distributed under the BSD three-
clause license. The program allows for the T -even and T -odd
decomposition and supports various physical properties such
as equilibrium property, linear response, and nonlinear re-
sponses.

Note added. Recently, we noticed Refs. [134–136] relevant
to our work. These works worked on the identification and
classification of spin-space groups.
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APPENDIX A: NOTES ON GROUP THEORY

1. General properties of group theory

The terminology used in the paper is briefly mentioned to
make the paper self-contained. Let g = (h,W ), g′ = (h′,W ′)
be operations of the spin space group G, the multiplication law
is defined as

g · g′ = (h · h′,W · W ′), (A1)

where the multiplications of the spin and orbital space op-
erations are similarly defined in that for the O(3) group and
for the space group, respectively. Accordingly, the spin space
group satisfies the group axioms, that is, associativity (g ·
g′ ∈ G), the existence of identity (id.) operation (for id. ∈ G,
g · id. = id. · g = g), and the existence of the inverse operation
(for g ∈ G, there uniquely exists the operation g−1 ∈ G such
that g · g−1 = g−1 · g = id.). We denote |G| as the order of a
group G (the number of operations in G).

Let H be a group whose all the operations are in
G, and the group-subgroup relation holds as G > H . The
group-subgroup relation indicates that the group G can be

decomposed by its subgroup H as

G = g1H ∪ g2H ∪ · · · ∪ gnH (A2)

=
⋃

i

giH. (A3)

Representatives gi ∈ G are chosen to satisfy the relation

giH ∩ g jH = φ (i 	= j), (A4)

indicating that every intersection is empty (φ). The decompo-
sition is similarly performed from the right-hand side as

G =
⋃

i

H gi. (A5)

Let us consider the subgroup H commuting with every
operation of its supergroup G as

g ∈ G, gH = Hg, (A6)

then H is a normal subgroup of G denoted as

H�G. (A7)

A trivial normal subgroup is G itself (G�G). If H�G holds,
twofold coset decompositions in Eqs. (A3) and (A5) are
equivalent. In that case, the cosets {giH} form the factor group
G/H whose multiplication law is

giH · g jH = (gig j )H. (A8)

While the representatives of the factor group {gi} them-
selves do not form a group in general, there may exist the
group K = {gi} satisfying the group axiom such as gi · g j ∈ K .
Accordingly, G is recast as the internal semidirect product of
H and K,

G = H � K, (A9)

where H, K < G, H� G, and there exists the trivial intersec-
tion between H and K as K ∩ H = {id.}. When G = H � K
holds, the operations in G can be written as

G = {h · k |h ∈ H, k ∈ K}. (A10)

If we further demand the relation K� G, the group G is given
by the (internal) direct product

G = H × K, (A11)

by which the operations h ∈ H and k ∈ K commute with each
other in Eq. (A10).

2. Group structure of spin-space group

The spin space group G has a hierarchical structure given
as follows [46]. The entire group can be recast as the coset
decomposition with the spin-translation group (Gst�G):

G =
⋃

i

gi Gst. (A12)

The spin-translation group is given by

Gst = {((1, t ),W ) ∈ G}, (A13)
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containing spin-only operations and combinations of the spin
rotation and translation such as ((1, 0),W ), ((1, t ),W ). The
spin-translation group is further divided as [46]

Gst = Gso × Gst. (A14)

The spin-only group Gso is comprised of only the spin-rotation
operation

Gso = {((1, 0),W ) ∈ G}, (A15)

in which the point-group operations {W } form the spin-only
group Pso. A group Gst in Eq. (A14) denotes the nontrivial
spin-translation group whose spin rotation should be coupled
to the translation.

We can perform the decomposition of the spin space group
in a different manner from that in Eq. (A12) as

G = Gso × G, (A16)

by which the nontrivial spin space group G is defined. The
nontrivial spin space group contains the nontrivial spin-
translation group as its normal subgroup (Gst�G). Thus, the
coset decomposition is obtained as

G =
⋃

i

gi Gst. (A17)

In the main text, we mainly discuss the spin space group by
using the decomposition of Eq. (A16).

The nontrivial spin space group can be given by the internal
semidirect product in some cases, e.g., CoTa3S6 of Eq. (54).
It is, however, not always the case. For instance, G in Eq. (87)
cannot be given that way. See also Ref. [38]. The representa-
tives of the factor group G/Gst are g = ((R, t ),W ) such that
R 	= 1 otherwise g is the identity. The factor group {gi Gst}
is therefore isomorphic to a nontrivial spin point group PH
[24,44] defined by

PH = {(R,W )|(R,W ) 	= (1,W ) for W 	= 1}. (A18)

3. Conventional classification of magnetic symmetry

The magnetic space and point groups account for the mag-
netic symmetry of nonmagnetic and magnetic systems [138].
In the following, we consider widely used magnetic symmetry
respecting the SOC constraint. The group consists of symme-
try operations with and without the time-reversal operation
which are respectively unitary and antiunitary, while it may
contain only unitary operations in some cases. In particular,
when there exists an antiunitary operation in group G, G has
a normal subgroup H consisting of only unitary operations
whose order is half that of G (|H | = |G|/2). Then, we obtain
the coset decomposition

G = H ∪ aH, (A19)

where a 	∈ H is an antiunitary operation including the time-
reversal operation θ ≡ 1′. Otherwise, the group is formed by
only the unitary operations. In terms of antiunitary symmetry,
magnetic symmetry is classified as follows.

a. Magnetic point group

The magnetic point group is comprised of orbital-space
unitary (R) and antiunitary (R′ = θR) operations where R
belongs to the O(3) group. The magnetic point groups P are
classified into three types:

(i) Colorless group. No element including the time-
reversal operation in P.

(ii) Gray group. The time-reversal symmetry trivially
holds as 1′ ∈ P.

(iii) Black and white group. Otherwise, i.e., a = R′ with
R 	= 1 in Eq. (A19).

b. Magnetic space group

The magnetic space group G is formed by the point-group
operation R (R′) without (with) the time-reversal operation
and by the translation operation t . These two operations
are frequently summarized to the Seitz notation such as
(R, t ), (R′, t̃ ). Similarly to the magnetic point group, the mag-
netic space groups are classified into four types with respect
to the antiunitary symmetry [44]:

(ii) Type I. No element including the time-reversal opera-
tion in G.

(ii) Type II. The time-reversal symmetry trivially holds as
(1′, 0) ∈ G.

(iii) Type III. The time-reversal operation is combined
with the point-group operation as a = (R′, t ) with R 	= 1 in
Eq. (A19).

(iv) Type IV. The time-reversal operation is combined
with the translational operation as a = (1′, t̃ ).

Note that the translation t̃ belongs to the translational group
T0 = {(1, t )} for the paramagnetic phase but is not included in
that for the magnetic state.

Magnetic materials do not show the trivial time-reversal
symmetry related to g = (1′, 0). Thus, we obtain the one-to-
one correspondence between the types of the magnetic point
group and magnetic space group as (P, G) = (colorless, I),
(gray, IV), (black and white, III).

APPENDIX B: CANONICAL CORRELATION FOR LINEAR
RESPONSE THEORY AND ITS SYMMETRY CONSTRAINT

Let us introduce the linear response function of Xi =
χXY

i j F (Y )
j defined in Eq. (36) in the frequency domain as

χXY
i j (ω) =

∫ ∞

0
dt eiωt−ηtχXY

i j (t ), (B1)

with the infinitesimal positive parameter η = +0 building the
causality into the response. The response function in the time
domain can be written as the form of canonical correlation as
[51]

χXY
i j (t ) ≡ �XẎ

i j =
∫ 1/T

0
dτ Tr[ρeqẎj (−iτ )Xi(t )]. (B2)

The operators are in the Heisenberg representation X (t ) =
eiHt Xe−iHt with the unperturbed Hamiltonian H . We also
introduced the temperature T and the density operator for the
(unperturbed) equilibrium state ρeq = e−H/T /Tr[e−H/T ]. Fol-
lowing Ref. [52], the transformation property of the canonical
correlation function (in the frequency domain) is

�XẎ
i j (ω) = �XẎ

kl (ω)D(X )
ki (g)D(Y )

l j (g) (B3)

094438-18



SYMMETRY ANALYSIS WITH SPIN CRYSTALLOGRAPHIC … PHYSICAL REVIEW B 109, 094438 (2024)

for a preserving unitary operation g and

�XẎ
i j (ω) = −�Ẏ X

kl (ω)
[
D(X )

ki (g)
]∗[

D(Y )
l j (g)

]∗
(B4)

for an antiunitary operation. Let us consider the electric conductivity by adopting the electric current X = J and the electric
polarization Y = P. When the orbital time-reversal symmetry g = (1,W ) (det W = −1) is preserved in a given magnetic
group such as spin point group P and SO-coupled magnetic point group P, we can relate different components of the electric
conductivity σi j = χ JP

i j with each other as

σi j = χ JP
i j = κJJ

i j = −κJJ
kl (−1)k j (1)li = κJJ

ji = χ JP
ji = σ ji, (B5)

by using Ṗ = J. This means the Onsager reciprocity.

APPENDIX C: CLASSIFICATION OF NONCOPLANAR MAGNETS

We summarize the classification of noncoplanar magnets shown in Sec. IV in Table VI. For details of the definitions of each
quantity, please refer to the corresponding tables (Tables III–V).

TABLE VI. Classification of noncoplanar magnets in terms of magnetization (Msp, Morb, MSOC), magnetic quadrupole moment (Qsp, Qorb,
QSOC), and rotators (Re, Ro, RoS). The names of each material refer to MAGNDATA.

No. Msp Morb MSOC Qsp Qorb QSOC Re Ro RoS

0.102_Mn2GeO4.mcif � � �
0.103_Mn2GeO4.mcif � � � � � �
0.106_DyVO3.mcif � � � � � �
0.127_Dy3Al5O12.mcif �
0.135_Ni3B7O13Br.mcif � � � � � � � � �
0.136_Co3B7O13Br.mcif � � � � � � � � �
0.141_Tb5Ge4.mcif � � � �
0.145_Co3TeO6.mcif � � � �
0.150_NiS2.mcif � � �
0.151_Tm2Mn2O7.mcif � � � � � �
0.157_Yb2Sn2O7.mcif � � � � � �
0.158_Yb2Ti2O7.mcif � � � � � �
0.167_Nd3Sb3Mg2O14.mcif � � � � � �
0.168_NH4Fe2F6.mcif � � �
0.169_U3As4.mcif � � � � �
0.170_U3P4.mcif � � � � �
0.184_Nd5Si4.mcif � � � � � � � � �
0.185_Nd5Ge4.mcif � � � � � �
0.203_Mn3Ge.mcif � � � � �
0.204_Ca2MnReO6.mcif � � � � � �
0.20_MnTe2.mcif � � �
0.218_Co2SiO4.mcif � � �
0.219_Co2SiO4.mcif � � �
0.220_Mn2SiO4.mcif � � � � � �
0.221_Fe2SiO4.mcif � � �
0.236_CaFe4Al8.mcif � � �
0.240_Er2Cu2O5.mcif � � � � � �
0.250_(NH2(CH3)2)(FeCo(HCOO)6).mcif � � � � � �
0.251_(NH2(CH3)2)(FeMn(HCOO)6).mcif � � � � � �
0.268_Tb2MnNiO6.mcif � � � � � � � � �
0.269_Tb2MnNiO6.mcif � � � � � �
0.281_Co2V2O7.mcif � � � �
0.292_NiTe2O5.mcif � � �
0.294_Cu4(OD)6FBr.mcif � � � � � �
0.29_Er2Ti2O7.mcif � � �
0.2_Cd2Os2O7.mcif �
0.311_CoGeO3.mcif � � � �
0.316_DyCrWO6.mcif � � � � � � � �
0.318_Tm2CoMnO6.mcif � � � � � �
0.326_Nd2Sn2O7.mcif �
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TABLE VI. (Continued.)

No. Msp Morb MSOC Qsp Qorb QSOC Re Ro RoS

0.339_Nd2Hf2O7.mcif �
0.33_HoMnO3.mcif � � � � � �
0.340_Nd2Zr2O7.mcif �
0.342_Tb3Ge5.mcif � � � � � �
0.347_Er2ReC2.mcif � � � �
0.349_Nd2NiO4.mcif � � � � � �
0.352_TbFeO3.mcif � � � � � �
0.357_CaFe5O7.mcif � � � � � �
0.368_(CH3NH3)(Co(COOH)3.mcif � � � � � �
0.369_(CH3NH3)(Co(COOH)3.mcif � � � � � �
0.388_Co3Al2Si3O12.mcif � � � �
0.394_Cu2CdB2O6.mcif � � � �
0.39_Nd2NaRuO6.mcif � � � � � �
0.411_Tb5Ge4.mcif � � � �
0.412_Tb5Ge4.mcif � � � �
0.419_ErGe2O7.mcif � � � � � �
0.42_HoMnO3.mcif �
0.430_Yb3Pt4.mcif � � � �
0.431_CuB2O4.mcif � � � � � � � �
0.43_HoMnO3.mcif �
0.440_SrCuTe2O6.mcif � � � � � �
0.450_Nd5Ge4.mcif � � � � � �
0.478_SmCrO3.mcif � � �
0.479_SmCrO3.mcif � � � � � �
0.488_YbMnO3.mcif �
0.489_YbMnO3.mcif �
0.48_Tb2Sn2O7.mcif � � � � � �
0.490_YbMnO3.mcif � � � � � � � � �
0.49_Ho2Ru2O7.mcif � � � � � �
0.51_Ho2Ru2O7.mcif � � � � � �
0.530_SrCuTe2O6.mcif � � � � � �
0.544_Mn2FeReO6.mcif � � � � � �
0.545_Mn2FeReO6.mcif � � � � � �
0.571_CoSO4.mcif � � �
0.572_Na2NiCrF7.mcif � � � � � �
0.573_Na2NiCrF7.mcif � � � � � �
0.574_MnFeF5(H2O)2.mcif � � � � � � � � �
0.576_Cr2F5.mcif � � � � � �
0.578_NaBaFe2F9.mcif � � � � � �
0.584_Fe2F5(H2O)2.mcif � � � � � �
0.60_[NH2(CH3)2]n[FeIIIFeII(HCOO)6]n.mcif � � � � � �
0.64_MnV2O4.mcif � � � � � �
0.652_HoMnO3.mcif �
0.658_BaCuTe2O6.mcif �
0.696_SmCrO3.mcif � � � � � �
0.697_SmCrO3.mcif � � � � � �
0.70_Na3Co(CO3)2Cl.mcif � � �
0.715_HoCrWO6.mcif � � � � � �
0.726_CsMn2F6.mcif � � � � � �
0.727_CsMn2F6.mcif � � � � � �
0.740_Dy3Ga5O12.mcif �
0.741_Er3Ga5O12.mcif �
0.743_Ho3Al5O12.mcif �
0.744_Tb3Al5O12.mcif �
0.745_Ho3Ga5O12.mcif �
0.746_Tb3Ga5O12.mcif �
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TABLE VI. (Continued.)

No. Msp Morb MSOC Qsp Qorb QSOC Re Ro RoS

0.756_GaV4S8.mcif � � � � � � � � �
0.763_Mn5(PO4)2(PO3(OH))2(HOH)4.mcif � � � � � �
0.764_Mn5(PO4)2(PO3(OH))2(HOH)4.mcif � � � � � �
0.765_Mn5(PO4)2(PO3(OH))2(HOH)4.mcif � � � � � �
0.77_Tb2Ti2O7.mcif � � � � � �
0.78_NiN2O6.mcif � � � � � �
0.806_Fe2Se2O7.mcif � � � �
0.807_Fe2Se2O7.mcif � � � �
0.808_Fe2Se2O7.mcif � � � �
0.809_Fe2WO6.mcif � � � �
0.851_C7H14NFeCl4.mcif � � � � � � � � �
0.862_Eu2Ir2O7.mcif �
0.870_Pr2NiIrO6.mcif � � � � � �
0.874_Nd2NiIrO6.mcif � � � � � �
0.875_Nd2NiIrO6.mcif � � � � � �
0.877_Nd2ZnIrO6.mcif �
0.878_Nd2ZnIrO6.mcif �
0.879_Nd2ZnIrO6.mcif �
0.883_NaCo2(SeO3)2(OH).mcif � � � � � �
0.898_Mn3IrSi.mcif � � � � � �
0.899_Mn3IrGe.mcif � � � � � �
0.900_Mn3CoGe.mcif � � � � � �
0.90_Rb2Fe2O(AsO4)2.mcif � � �
0.916_Cd2Os2O7.mcif �
0.91_Rb2Fe2O(AsO4)2.mcif � � � � � �
0.941_Er2O3.mcif � � �
0.942_Er2Ge2O7.mcif � � � � � �
0.943_Yb2Ge2O7.mcif � � � � � � � � �
0.944_Yb2Ir2O7.mcif � � � � � �
0.945_Yb2Ir2O7.mcif �
0.948_CaNi3P4O14.mcif � � � � � �
0.950_LaErO3.mcif � � �
0.954_Nd2Ir2O7.mcif �
0.958_Mn3Si2Te6.mcif � � � � � �
0.96_CoSO4.mcif � � �
0.97_FeSb2O4.mcif � �
1.0.23_Dy3Ru4Al12.mcif � � � � � �
1.0.52_Tb14Ag51.mcif � � � �
1.102_U2Ni2In.mcif �
1.115_Dy3Ru4Al12.mcif �
1.135_C8H10Co2O11.mcif �
1.138_MgV2O4.mcif �
1.161_PrFe3(BO3)4.mcif �
1.167_NiS2.mcif �
1.201_Cr2ReO6.mcif �
1.207_U2Rh2Sn.mcif �
1.235_Ba(TiO)Cu4(PO4)4.mcif �
1.267_Dy2Co3Al9.mcif �
1.274_DyFeWO6.mcif �
1.279_Ho2Cu2O5.mcif �
1.299_GdMn2O5.mcif �
1.300_GdMn2O5.mcif �
1.303_Dy3Ru4Al12.mcif �
1.307_Mn5Si3.mcif

1.326_PrMn2O5.mcif �
1.327_LaMn2O5.mcif �
1.342_Co3(PO4)2.mcif �
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TABLE VI. (Continued.)

No. Msp Morb MSOC Qsp Qorb QSOC Re Ro RoS

1.498_Cu6(SiO3)6(H2O)6.mcif �
1.595_CaCoSO.mcif �
1.680_Nd2NiIrO6.mcif �
1.710_BaFe2Se3.mcif �
1.720_Yb2O3.mcif �
1.73_CaV2O4.mcif �
1.75_BiMn2O5.mcif �
1.85_alpha-Mn.mcif �
1.89_DyFe3(BO3)4.mcif �
1.92_HoFe3(BO3)4.mcif �
2.18_Sc2NiMnO6.mcif �
2.19_Mn3ZnC.mcif � � � � �
2.32_Dy3Ru4Al12.mcif � � � � � �
2.33_Na2Mn3Se4.mcif �
2.35_CrSe.mcif � � � �
2.37_La8Cu7O19.mcif �
2.38_Pb2MnWO6.mcif � � � � � �
2.3_HoNiO3.mcif � � � � � � � � �
2.52_Mn3O4.mcif � � � � � � � � �
2.55_Sr2Fe3Se2O3.mcif �
2.59_Mn3As2.mcif � � � � � �
2.5_Mn3CuN.mcif � � � � �
2.61_Fe3F8(H2O)2.mcif � � � � �
2.62_TbCrO3.mcif � � � � � � � �
2.63_DyCrO3.mcif � � � � �
2.64_DyCrO3.mcif � � � � �
2.75_Sr2Fe3S2O3.mcif �
2.76_Sr2Fe3Se2O3.mcif �
2.91_NaCo2(SeO3)2(OH).mcif � � � � � � � �
2.9_Ca3CuNi2(PO4)4.mcif �
3.10_NpSe.mcif �
3.11_NpTe.mcif �
3.12_USb.mcif

3.16_Gd2Ti2O7.mcif �
3.18_HoRh.mcif

3.19_CoO.mcif �
3.2_UO2.mcif

3.4_MgCr2O4.mcif � � � � �
3.6_DyCu.mcif

3.7_NpBi.mcif

3.8_NdZn.mcif

3.9_NpS.mcif �

[1] K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T.
Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara,
A. Kimura, K. Miyamoto, T. Okuda, H. Namatame, M.
Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y. Murakami,
R. Kumai, Y. Kaneko et al., Nat. Mater. 10, 521 (2011).

[2] J. Krempaský, S. Muff, F. Bisti, M. Fanciulli, H. Volfová, A. P.
Weber, N. Pilet, P. Warnicke, H. Ebert, J. Braun, F. Bertran,
V. V. Volobuev, J. Minár, G. Springholz, J. H. Dil, and V. N.
Strocov, Nat. Commun. 7, 13071 (2016).

[3] T. Ideue and Y. Iwasa, Annu. Rev. Condens. Matter Phys. 12,
201 (2021).

[4] S. Hayami, Y. Yanagi, and H. Kusunose, J. Phys. Soc. Jpn. 88,
123702 (2019).

[5] L.-D. Yuan, Z. Wang, J.-W. Luo, E. I. Rashba, and A. Zunger,
Phys. Rev. B 102, 014422 (2020).

[6] L.-D. Yuan, Z. Wang, J.-W. Luo, and A. Zunger, Phys. Rev.
Mater. 5, 014409 (2021).

[7] L. Šmejkal, J. Sinova, and T. Jungwirth, Phys. Rev. X 12,
031042 (2022).

[8] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y.
Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018).

[9] A. Manchon, J. Železný, I. M. Miron, T. Jungwirth, J. Sinova,
A. Thiaville, K. Garello, and P. Gambardella, Rev. Mod. Phys.
91, 035004 (2019).

[10] L. Šmejkal, A. H. MacDonald, J. Sinova, S. Nakatsuji, and T.
Jungwirth, Nat. Rev. Mater. 7, 482 (2022).

094438-22

https://doi.org/10.1038/nmat3051
https://doi.org/10.1038/ncomms13071
https://doi.org/10.1146/annurev-conmatphys-060220-100347
https://doi.org/10.7566/JPSJ.88.123702
https://doi.org/10.1103/PhysRevB.102.014422
https://doi.org/10.1103/PhysRevMaterials.5.014409
https://doi.org/10.1103/PhysRevX.12.031042
https://doi.org/10.1103/RevModPhys.90.015005
https://doi.org/10.1103/RevModPhys.91.035004
https://doi.org/10.1038/s41578-022-00430-3


SYMMETRY ANALYSIS WITH SPIN CRYSTALLOGRAPHIC … PHYSICAL REVIEW B 109, 094438 (2024)

[11] J. Železný, Y. Zhang, C. Felser, and B. Yan, Phys. Rev. Lett.
119, 187204 (2017).

[12] Y. Zhang, J. Železný, Y. Sun, J. van den Brink, and B. Yan,
New J. Phys. 20, 073028 (2018).

[13] M. Naka, S. Hayami, H. Kusunose, Y. Yanagi, Y. Motome, and
H. Seo, Nat. Commun. 10, 4305 (2019).

[14] M. Naka, Y. Motome, and H. Seo, Phys. Rev. B 103, 125114
(2021).

[15] R. González-Hernández, L. Šmejkal, K. Výborný, Y. Yahagi,
J. Sinova, T. Jungwirth, and J. Železný, Phys. Rev. Lett. 126,
127701 (2021).

[16] S. Hayami, M. Yatsushiro, and H. Kusunose, Phys. Rev. B 106,
024405 (2022).

[17] S. Hayami and M. Yatsushiro, J. Phys. Soc. Jpn. 91, 094704
(2022).

[18] H.-Y. Ma, M. Hu, N. Li, J. Liu, W. Yao, J.-F. Jia, and J. Liu,
Nat. Commun. 12, 2846 (2021).

[19] S. Bhowal and N. A. Spaldin, Phys. Rev. X 14, 011019 (2024).
[20] L. Šmejkal, A. B. Hellenes, R. González-Hernández, J.

Sinova, and T. Jungwirth, Phys. Rev. X 12, 011028 (2022).
[21] W. F. Brinkman, R. J. Elliott, and R. E. Peierls, Proc. R. Soc.

London A: Math. Phys. Sci. 294, 343 (1966).
[22] W. Opechowski, Crystallographic and Metacrystallographic

Groups (North-Holland, Amsterdam, 1986).
[23] K.-H. Ahn, A. Hariki, K.-W. Lee, and J. Kuneš, Phys. Rev. B

99, 184432 (2019).
[24] P. Liu, J. Li, J. Han, X. Wan, and Q. Liu, Phys. Rev. X 12,

021016 (2022).
[25] L. Šmejkal, J. Sinova, and T. Jungwirth, Phys. Rev. X 12,

040501 (2022).
[26] J. Krempaský, L. Šmejkal, S. W. D’Souza, M. Hajlaoui, G.
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