
PHYSICAL REVIEW B 109, 094429 (2024)

Evaluating Gilbert damping in magnetic insulators from first-principles
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Magnetic damping poses a significant impact on the performance of various magnetic and spintronic devices,
making it a longstanding focus of research. The strength of magnetic damping is usually quantified by the Gilbert
damping constants in the Landau-Lifshitz-Gilbert equation. Here we propose a first-principles-based approach to
evaluate the damping constant contributed by spin-lattice coupling in magnetic insulators. The approach involves
effective Hamiltonian models and spin-lattice dynamics simulations. As a case study, we applied our method to
Y3Fe5O12, MnFe2O4, and Cr2O3. Their damping constants were calculated to be 0.8 × 10−4, 0.2 × 10−4, 2.2 ×
10−4, respectively at a low temperature. The results for Y3Fe5O12 and Cr2O3 are very close to the experimental
results, while the large discrepancy in MnFe2O4 can be attributed to the inhomogeneity and small band gap
in real samples. The stronger damping observed in Cr2O3, compared to Y3Fe5O12, essentially results from its
stronger spin-lattice coupling. In addition, we confirmed a proportional relationship between damping constants
and the temperature difference of subsystems, which had been reported in previous studies. These successful
applications suggest that our approach can be a viable candidate for estimating the Gilbert damping constant in
magnetic insulators.
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I. INTRODUCTION

Recent decades have witnessed rapid developments in
magnetics and spintronics [1–3]. A long-time pursuit in
spintronics is to actively control and manipulate the spin de-
grees of freedom in solid-state systems. Related fundamental
studies involve spin transport, spin dynamics, and spin re-
laxation [4]. Within these domains, magnetic damping often
plays a crucial role. Generally, stronger damping enables a
faster writing rate for magnetic memories, while lower damp-
ing leads to a longer propagation distance of spin waves.
Therefore, it is always essential to accurately evaluate the
magnetic damping in different materials and further under-
stand the intrinsic mechanisms behind. For instance, yttrium
iron garnet (YIG) is a highly promising spintronic material
due to its ultra-low magnetic damping [5–7]. Although some
theoretical studies have made efforts to investigate the mecha-
nism responsible for its unique property [8], this issue has still
yet to be fully elucidated, which partly motivated us to carry
out this study.

At present, magnetic damping is typically represented by a
phenomenological term in the well-known Landau-Lifshitz-
Gilbert (LLG) equation [9], which is widely employed to
simulate magnetization dynamics. A general form of the equa-
tion can be written as [10]

∂mi

∂t
= mi ×

⎛
⎝−γ Beff

i +
∑

j

αi j

|m j |
∂m j

∂t

⎞
⎠, (1)
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where Beff
i represents the effective magnetic field acting on the

local dipole mi, γ is the gyromagnetic ratio, and αi j denotes
a nonlocal Gilbert damping tensor [11–14]. In this paper, we
would like to adopt a simplified form of the LLG equation,

∂mi

∂t
= −γ mi × Beff

i + α

|mi|mi × ∂mi

∂t
, (2)

which is more commonly utilized in the practical simula-
tions [15]. The difference between two equations is that the
anisotropy and nonlocal effects of magnetic damping are ne-
glected in the latter one, where α becomes a scalar damping
constant. The simplified form could be a reasonable approxi-
mation in our paper for the following reasons. Firstly, some
previous studies on the transition-metal ferromagnets have
shown that the nonlocal damping is much smaller than the on-
site contribution [10,13]. Secondly, the anisotropy of magnetic
damping have been demonstrated related to the presence of
interface/surface effects and local structural distortions [16],
which are beyond the scope of our study. Thirdly, the magnetic
ions considered in our study are all sited in the center of
oxygen octahedrons or tetrahedrons. Assuming that the local
damping matrix is mainly determined by the nearby environ-
ment and the structural distortion from standard polyhedrons
is small, it can be derived from symmetry analyses that the
damping matrix must be diagonal with equal elements.

The second term on the right-hand side of LLG equation,
as we mentioned, directly leads to the relaxation process, in
which the energy dissipation rate is totally determined by
the Gilbert damping constant. Given the importance of α

in magnetization dynamics, its origin has been extensively
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studied in the literature [17–20]. To our best knowledge, the
macroscopic Gilbert damping contains intrinsic and extrinsic
contributions, the former of which mainly originates from
spin-lattice and spin-electron couplings, and the latter mostly
involves lattice imperfections [21–23]. In magnetic metals,
the intrinsic damping primarily relies on the spin-electron
coupling and electron-hole recombination that dissipates en-
ergy to the lattice. Another well-known damping process
is two-magnon scattering, which falls into the category of
extrinsic mechanisms [24–26]. As one type of non-Gilbert
relaxation, two-magnon scattering does not transfer energy
from the spin subsystem to the other degrees of freedom in the
studied system. Compared to the above two sources of mag-
netic damping, spin-lattice coupling has not received much
attention due to its much smaller contribution in metallic
systems. However, spin-lattice interaction becomes one of the
major contributors of damping in magnetic insulators, where
electronic effects are reduced due to the presence of a finite
band gap. In this paper, we focus on the estimation of damping
constants in insulating magnets, and we think our results will
be useful for simulating the propagation of magnons.

Two types of first-principles-based methods have been de-
veloped to calculate the damping constants in the past. One
approach involves the breathing Fermi surface model [27,28]
and the torque correlation model [29,30], while the other is
based on the scattering theory from linear response [11,31,32].
These methods have demonstrated remarkable success in
studying the magnetic damping in transition metals such as
Fe, Co, and Ni. Despite being free from complicated ex-
periments, these theoretical approaches still exhibit several
limitations. Firstly, when dealing with complex systems, we
often have to spend a significant amount of computing re-
sources on the first-principles calculations. In addition, these
methods are more suitable for calculating the electronic con-
tribution to Gilbert damping in metallic magnets, thus rarely
taking the effects of spin-lattice coupling into considera-
tion [21,33].

Recently, spin-lattice dynamics (SLD) simulations [34]
have been utilized as an alternative method to estimate the
Gilbert damping parameters. In Ref. [33], the authors con-
structed an empirically parameterized Hamiltonian model for
a cobalt cluster. They coupled a preheated lattice with a fully
ordered spin state, then performed SLD simulation. During
the relaxation process, the energy of lattice and spin sub-
systems were recorded and fitted to the following logistic
functions:

Ulat = U lat
0 − �U0

1 + exp[−η�U0t − �]
, (3)

Umag = U mag
0 + �U0

1 + exp[−η�U0t − �]
, (4)

from which they extracted the relaxation rate � = η�U0 and
calculated the damping constant α = ημS/γ . Here, μS de-
notes the magnitude of magnetic moments. In Ref. [35], the
authors also built an empirical potential model for a periodic
bcc Fe system. They firstly applied an external magnetic
field in the z direction and thermalized the system to a fi-
nite temperature. Then, the magnetization orientation of each
atom was rotated artificially by a same angle. Afterwards, the
system would relax back to equilibrium, during which the

averaged z component of atomic magnetization was recorded
and fitted to the following function:

mz(t ) = tanh

[
α

1 + α2
γ Bext (t + t0)

]
, (5)

where α was exactly the Gilbert damping parameter to be
estimated. Since these studies selected transition metals as the
research object, their results were both orders of magnitude
smaller than the experimental values. In addition, the use of
empirically parameterized models reduced the reliability of
their simulated results.

In this paper, we combine SLD simulations with first-
principles-based effective Hamiltonian models to evaluate
the damping constants in magnetic insulators, where the
dominant contribution results from spin-lattice couplings.
Compared to the previous studies, our study has made im-
provements mainly in two aspects. Firstly, the utilization of
first-principles-based Hamiltonian models in simulations en-
hances the accuracy of our conclusions. Besides, the better
choice of research objects allows for demonstrating the su-
periority of SLD simulations. In particular, the microscopic
origin of low damping in YIG will be investigated. The paper
is organized as follows. In Sec. II, we introduce our effective
Hamiltonian model, parametrization methods, and a scheme
for estimating Gilbert damping parameters. Then, both the
validation and application of our method are presented in
Sec. III. Finally, we summarize this paper and present a brief
outlook in Sec. IV.

II. MODEL AND METHODS

This section is split into three parts. Firstly (in Sec. II A),
we introduce a generic form of our effective Hamiltonian
model. Then, methods involving the calculation of model pa-
rameters are presented in Sec. II B. In the last part (Sec. II C),
we propose a scheme to determine the Gilbert damping con-
stant through dynamics simulations.

A. The Hamiltonian model

Since our purpose is to evaluate the contribution of
spin-lattice coupling to magnetic damping, the effective
Hamiltonian model must incorporate both spin and lattice
degrees of freedom. A concise and generic formula that meets
our basic requirements consists of the three terms as follows:

H = HL({ui,α}) + HS ({s j}) + HSL ({ui,α, s j}), (6)

where α abbreviates three orthogonal axes, ui,α represents the
displacement of atom i, and s j is a unit vector that represents
the direction of spin j.

The first term HL in Hamiltonian model describes the dy-
namical behavior of individual phonons. Technically, we take
the atomic displacements as independent variables and expand
the Hamiltonian to the second order with Taylor series. Then,
we have the form as

HL = 1

2

∑
i j

∑
αβ

Ki j,αβui,αu j,β + 1

2

∑
i,α

Miu̇i,α u̇i,α, (7)

where Ki j,αβ denotes the force constant tensor and Mi repre-
sents the mass of atom i.
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Similarly, the second term HS describes the dynamical
behavior of individual magnons. For simplicity but no loss
of accuracy, we only considered the Heisenberg exchange in-
teractions between neighboring magnetic ions here, although
more complex interactions could have been taken into account
in principle. Therefore, this term can be expressed as

HS =
∑
〈i, j〉

Ji jSi · S j, (8)

where Ji j denotes the Heisenberg exchange coefficient.
The third term HSL represents the coupling between spin

and lattice subsystems, and is expected to describe the
scattering process between phonons and magnons. As an ap-
proximation of the lowest order, this term can be written as

HSL =
∑
〈i, j〉

∑
k,α

(
∂Ji j

∂uk,α

uk,α

)
Si · S j . (9)

According to the theory of quantum mechanics, this
coupling term provides a fundamental description of the
single-phonon scattering process, which is also adopted by
the effective field theory (EFT) technique [36,37]. In history,
the contribution of this mechanism to ferromagnetic reso-
nance (FMR) linewidth was theoretically studied by Kasuya
and LeCraw for the first time [38]. We note that some im-
portant terms, namely the single-ion anisotropy (SIA) and the
Dzyaloshinskii-Moriya interactions (DMI), which originate
from the spin-orbit coupling (SOC) effects, are not present
here. These terms provide channels for angular momentum
transfer between spin and lattice subsystems [39,40], but later
we will show that taking these terms into consideration only
leads to a small increase in the estimated damping constants.
Also, higher orders of Taylor expansion with respect to atomic
displacements could have been included to improve the accu-
racy of our Hamiltonian models. For example, the scattering
between individual phonons can be described by anharmonic
terms, and the change of phonon spectra due to magnon
variations can be included by adding fourth order terms. As
one always has to make a trade-off between the precision
and complexity of models, in this paper we choose to neglect
these higher-order terms since these interactions do not play a
significant role in our concerned issues.

In this study, we adopted the symmetry-adapted clus-
ter expansion method implemented in the Property Analysis
and Simulation Package for Materials (PASP) [41] to build
the Hamiltonian model presented above. This package can
identify the nonequivalent interactions and equivalent atom
clusters in a crystal system by analyzing its structural prop-
erties based on the group theory. A significant benefit of
working with PASP is we are enabled to describe the target
system with the least number of parameters. In the next sec-
tion, we will discuss how to calculate the model parameters.

B. Calculation of model parameters

Firstly, the Heisenberg exchange coefficients Ji j and spin-
lattice coupling constants ∂Ji j/∂uk,α can be calculated with
the four-state method [42–51]. The basic flow is to construct
four artificially designated spin states of the target system,
calculate the corresponding energies and forces based on the

density functional theory (DFT), then determine the parame-
ters by proper combination of those results. At the last step,
the following formulas will be used:

Ji j = E↑↑ + E↓↓ − E↑↓ − E↓↑

4S2
, (10)

∂Ji j

∂uk,α

= F↑↑
k,α

+ F↓↓
k,α

− F↑↓
k,α

− F↓↑
k,α

4S2
, (11)

where S is the spin quantum number of magnetic atoms, E is
the total energy of system, and Fk,α refers to one component
of the force on atom k. The superscripts (↑↑, ↓↓, ↑↓, ↓↑)
specify the constrained spin states of system in the calculation.
More technical information about the four-state method can
be found in Refs. [42,43].

Compared with the TB2J technique [52], which is also
a widely used approach for extracting exchange parameters,
the four-state method is simpler both theoretically and practi-
cally. Generally, the exchange parameters calculated by TB2J
technique are more suitable for describing the low-energy
excitation of magnetic systems, while the parameters obtained
by four-state method are applicable in a larger temperature
region at a relative loss of precision. For many magnetic
systems, these two methods give similar results [53].

Since atomic masses Mi can be directly obtained from the
periodic table, more efforts are needed to deal with the force
constant tensor Ki j,αβ . Currently, there are two commonly
adopted ways to calculate the force constant tensor: density
functional perturbation theory (DFPT) and finite displacement
method. Both of these methods are applicable to our task.

However, we cannot directly use the force constant tensor
obtained from first-principles calculations as model parame-
ters. The reason is that in dynamics simulations we usually
expand crystal cells to reduce the undesired influence of ther-
mal fluctuations, but calculating the force constant tensor for
such a large supercell is not feasible. One common approach
is to set a cutoff radius for each atomic site, and disregard the
out-of-range interactions. In practice, we would calculate the
force constant tensor in a small cell, extract the needed ele-
ments as model parameters, then expand the cell and perform
simulations. However, a problem related to translational sym-
metry occurs in the above steps, since our operation equals to
artificially setting some of the elements to zero, and this will
make the force constant tensor violate the so called acoustic
summation rules,∑

i

Ki j,αβ = 0 for all j, α, β. (12)

Note that a straightforward enforcement of the acoustic
summation rules, achieved by subtracting errors uniformly
from the force constants, will break the inherent crystal sym-
metries, which is the technique employed in phonopy [54].
To address the above issue, we adopted a more appropriate
method in this paper. Recall that due to the crystal symme-
tries not each element of the force constant tensor serves as
an independent variable. Taking the cubic cell of Y3Fe5O12

(containing 160 atoms), for example, there are totally 230 400
elements in the tensor. After symmetry analyses, we find that
only 597 independent variables {pn} are needed to adequately
determine all the tensor elements {Ki j,αβ ({pn})}, where the
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effect of cutoff radius (11.0 Bohr) is already considered. Our
method is to set a correction factor xn for each variable pn and
minimize the deviation of parameters under the constraints of
Eq. (12). A mathematical reformulation of this method can be
written as

min
{xn}

∑
n

(xn − 1)2, with

∑
i

Ki j,αβ ({xn pn}) = 0 for all j, α, β. (13)

For the case of Y3Fe5O12, there are 1440 constraints defined in
Eq. (13), from which we could extract 18 linearly independent
constraints. Then, the extremum problem is solved rigorously
and the obtained correction factors are used to modify the
force constants. The modified force constant tensor restores
positive definiteness and translational symmetry while main-
taining the crystal symmetries. Finally, the model parameters
meet our requirements and can be used in dynamics simu-
lations. In Sec. III B, this method will be further illustrated
through a specific example.

For simplicity, we did not use the nonanalytical term
correction [55,56] to explicitly consider the long-range
dipole-dipole interaction, despite the presence of polar modes
in our studied compounds. It will be shown later that in the
simulated relaxation process the lattice only acts as a heat
reservoir bridging the spin system and the external environ-
ment. Hence, the spin-lattice coupling constants contribute
primarily to the estimated damping parameters, while a rel-
atively rough treatment of lattice motion does not impact
the results significantly. We may consider to improve our
treatment of force constants in polar materials in the future
work.

All the first-principles calculations mentioned in this sec-
tion are carried out using the Vienna Ab Initial Simulation
Package (VASP) [57–59]. The force constants and phonon
spectra are obtained by phonopy [54]. The optimizations
formulated in Eq. (13) are accomplished with the function
optimize.minimize implemented in SciPy [60].

C. Evaluation of damping constants

After the construction and parametrization of Hamiltonian
models, we are finally able to perform spin-lattice dynam-
ics simulations. Before the evaluation of Gilbert damping
constants, we briefly introduce the framework of SLD to
cover some relevant concepts. In practice, the motion of mag-
netic moments follows the stochastic Landau-Lifshitz-Gilbert
(SLLG) equation [21],

dmi

dt
= −γLmi × (

Bi + Bfl
i

)
− γLα

mi

|mi| × [
mi × (

Bi + Bfl
i

)]
, (14)

where γL is the renormalized gyromagnetic ratio, Bi =
−∂H/∂mi is the effective local magnetic field, and Bfl

i refers
to a stochastic field introduced by Langevin thermostat. At the
same time, the motion of atoms obeys the Newton’s equation,

du̇i,α

dt
= 1

Mi

(
Fi,α + F fl

i,α

) − νu̇i,α, (15)

where ν is the damping constant and F fl
i,α refers to a stochastic

force caused by thermal fluctuations. In this paper, Bfl
i and F fl

i,α
are modeled as normally distributed noises with temperature-
dependent variances,

Bfl
i,β ∼ N (0,

√
2αkBTS/γ |mi|δt ), (16)

F fl
i,β ∼ N (0,

√
2νMikBTL/δt ), (17)

where TS and TL refer to the equilibrium temperature of spin
and lattice subsystems respectively. During simulations, we
can also measure the transient temperature of each subsystem
with the following formulas [61]:

TS =
∑

i |mi × Bi|2
2kB

∑
i mi · Bi

, TL = 1

3kBN

∑
i,α

Miu̇
2
i,α. (18)

In this paper, the LLG equation is numerically solved
with the semi-implicit SIB method proposed by Mentink
et al. [62]. The Newton’s motion equation is integrated us-
ing the Grønbech-Jensen-Farago Verlet-type method [63]. To
ensure the stability of those algorithms, a step length of 0.5
or 0.2 fs is adopted [64], where the shorter one is used in
energy-conserving simulations.

Based on the combination of atomistic spin dynamics
(ASD) and SLD simulations, a scheme is proposed to evaluate
the damping constant in magnetic materials. Here is the basic
flow of this method and more details of a specific application
are presented in Sec. III B.

(1) Freeze the spin degree of freedom and thermalize the
lattice from 0 to TL in the simulation.

(2) Fix atomic positions and raise the temperature of spin
to TS > TL. Compared to TL > TS , this type of nonequilibrium
state is more common in actual scenarios and theoretical
studies [65].

(3) Perform an energy-conserving SLD simulation to relax
the system. Normally, the spin temperature will decrease to
the same as lattice and stay there till the end.

(4) Conduct a series of ASD simulations with different
Gilbert damping constants. The initial states are the same as
in step 3 and the equilibrium temperatures are set to be TL.

(5) Compare the cooling rates ∂TS/∂t of spin system be-
tween SLD and ASD simulations to evaluate the equivalent
Gilbert damping constant contributed by spin-lattice coupling.

The motivation behind step 5 is that the cooling rates ob-
served in ASD simulations are related to the assigned damping
constants, while in SLD simulation the cooling rate is deter-
mined by the strength of spin-lattice coupling. Note that the
former relation can be viewed as a natural result of the LLG
equation, and a quantitative derivation is shown in Appendix.

Moreover, we would like to emphasize two points here.
Firstly, the damping constant calculated from the above
scheme is essentially an average value that contains the
contribution of magnons with different wave vectors.
By contrast, the measurements of magnetic damping in
experiments are mostly based on the FMR technique, where
only the damping of magnons with q = 0 can be observed.
Although it is inappropriate to directly compare our results
with FMR experiments, the calculated damping parameter
should be a more suitable choice for simulating the motion
of spin waves with finite wave lengths. When we refer to
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FIG. 1. NVT and NVE relaxations of a spin-lattice coupled system (Cr2O3) within the framework of spin-lattice dynamics. The top
row plots the time evolution of temperatures and the bottom row shows the variation of potential, kinetic and total energies. [(a),(b)]
NVT thermalization from TL = TS = 0 K to TL = TS = 150 K. [(c),(d)] NVE relaxation with TL = 30 K, TS = 175 K initially. [(e),(f)] NVE
relaxation with TL = 180 K, TS = 30 K initially.

experimental values later, we are not claiming that our results
agree with experiments but only regarding the experimental
values as a reference. Secondly, the motion equations used in
our study are both based on classical mechanisms, thus all the
quantum effects are not included. As a direct consequence, the
statistical results would deviate from true values, especially
in the low-temperature region. This issue could be addressed
by introducing the quantum thermal bath (QTB) [66–68].
However, this technique is incompatible with our proposed
scheme, where a key step involves performing an
energy-conserving spin-lattice dynamics simulation to relax
the system in a nonequilibrium state. On this occasion, the
thermostats for both spin and lattice are switched off, and the
motions are simulated within a classical framework. To ensure
the self-consistency of our scheme, we believe it is more rea-
sonable to use the classical heat bath in dynamics simulations.

III. RESULTS

This section is divided into four parts. In Sec. III A, several
test results are presented to validate the accuracy of SLD
simulations, which are implemented in the PASP package.
Subsequently, detailed calculations on three magnetic mate-
rials, namely Y3Fe5O12, MnFe2O4, and Cr2O3, are discussed
in the rest parts.

A. Validations

In order to guarantee the reliability of our conclusions
obtained from dynamics simulations, a series of pretests were
carried out. We select some representative results and present
them in Fig. 1, where Cr2O3 is taken as the object to be
studied.

Firstly, we set the ground state of Cr2O3 as the initial
state and performed a NVT simulation with Tset = 150 K.
As shown in Fig. 1(a), the temperature of spin and lattice
subsystems increased to 150 K in less than 5 ps and stayed
there till the end. Since we can approximate Ek = 0.5EL and
Ep = 0.5EL + ES , Fig. 1(b) also indicates that the contribution
of phonons and magnons to the excited state energy is around
87.5% and 12.5% respectively. This result could be verified
from another perspective. Note that there are totally 10 atoms
in the unit cell of Cr2O3, which contribute 30kB to the heat
capacity. Meanwhile, the four magnetic atoms will contribute
another 4kB in the low-temperature region. Therefore, we can
estimate that the contribution of magnons to the total heat
capacity is close to 11.8%, which is consistent with the result
from dynamics simulations.

In Figs. 1(c) and 1(d), the initial state was set to be a
nonequilibrium state with TL = 30 K and TS = 175 K. As we
expected, the total energy was well conserved when the sys-
tem evolved to equilibrium. In addition, the final temperature
fell within the range 48–55 K, which agrees with our previous
analysis of the heat capacities.

Lastly, we simulated the relaxation process using another
nonequilibrium excited state with TL = 180 K and TS = 30 K
as the initial state. As shown in Figs. 1(e) and 1(f), the temper-
ature of spin system increased gradually to equilibrium with
the total energy conserved throughout the simulation. Also,
the final temperature is around 160 K, which matches well
with our analysis. It should be pointed out that there exist two
notable differences between this case and the previous. Firstly,
the subsystems ultimately evolved to a same temperature in a
finite time, which alleviated our concerns about the accuracy
of SLD simulations. Besides, the relaxation time (τ2) was
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much longer than that (τ1) in Fig. 1(c). For this phenomenon,
a qualitative explanation is presented below.

Based on the theory of second quantization, the Hamil-
tonian model presented in Sec. II A can be expressed in the
following form [69,70]:

HL =
∑
qp

h̄ωqp(b†
qpbqp + 1/2), (19)

HS =
∑

λ

ελa†
λaλ + Const., (20)

HSL =
∑
λ,qp

Mλ,qpa†
λ−qaλ(b†

qp − b−qp), (21)

where bqp denotes the annihilation operator of phonons with
wave vector q in branch p, and aλ represents the annihilation
operator of magnons with wave vector λ. All the parameters,
namely ωqp, ελ, and Mλ,qp, can be determined from the effec-
tive Hamiltonian model in principle. According to the Fermi’s
golden rule, we have

W {nλ−q, nλ, Nqp → nλ−q + 1, nλ − 1, Nqp + 1} = 2π

h̄
|Mλ,qp|2(nλ−q + 1)(nλ)(Nqp + 1)δ(ελ−q − ελ + h̄ωqp), (22)

W {nλ−q, nλ, N−qp → nλ−q + 1, nλ − 1, N−qp − 1} = 2π

h̄
|Mλ,qp|2(nλ−q + 1)(nλ)(N−qp)δ(ελ−q − ελ − h̄ω−qp), (23)

where W represents the probability of one-phonon emission
or absorption, nλ denotes the occupation number of magnons,
and Nqp stands for phonons. Both nλ and Nqp can be estimated
approximately using the Bose-Einstein distribution. Accord-
ing to the above formulas, the scattering rate W grows linearly
with N and quadratically with n. Compared to Fig. 1(c), there
are more phonons but fewer magnons in the case of Fig. 1(e),
thus leading to a lower transition probability and a longer
relaxation time. More technical details about the second quan-
tization of interactions between phonons and magnons can be
found in Ref. [69,70].

B. Damping constants in Y3Fe5O12

In the field of spintronics, Y3Fe5O12 (yttrium iron garnet,
YIG) has gained much attention owing to its ultra-low mag-
netic damping [5–7]. The unique property of this material
motivated us to investigate the intrinsic mechanism behind.
Some previous studies have pointed out that spin-lattice in-
teraction should be the main mechanism accounting for the
magnetic damping in YIG, and they have also calculated the
magnon-phonon relaxation time from a theoretical perspec-
tive [8]. However, their studies did not yield the numerical
magnitude of damping directly, which is our target in this
paper.

The crystal structure of YIG is presented in Fig. 2(a). There
are totally 80 atoms in the primitive cell, of which 12 Fe ions
are located in the center of oxygen tetrahedrons while the
other eight Fe ions are sited in oxygen octahedrons. The mag-
netic ground state of YIG is illustrated in Fig. 2(b). Fe ions
situated in different chemical environments contribute spins in
opposite directions, which makes YIG a typical ferrimagnetic
material.

In order to evaluate the Gilbert damping constants in YIG,
our first step is to prepare an effective Hamiltonian model.
Considering the balance between precision and efficiency, the
cutoff radius of interactions was set to be 11.0 Bohr for atomic
pairs and 6.7 Bohr for three-body clusters. After symmetry
analyses, we identified 612 nonequivalent interactions in total,
which included six Heisenberg exchange terms and nine spin-
lattice coupling terms.

To determine the interaction parameters, we carried out
a series of first-principles calculations, where a cubic cell
was adopted to reduce the interference between adjacent cells
caused by periodic boundary conditions. Following the set-
tings in Ref. [49], we utilized the projector augmented-wave
(PAW) method [71] and revised Perdew-Burke-Ernzerhof
exchange-correlation functional for solids (PBEsol) [72] in
our calculations. Besides, the DFT+U method in its simpli-
fied form [73] was employed where the effective Hubbard U
parameter was set to be 4 eV for the 3d electrons of Fe ions.
In addition, a cutoff energy of 520 eV for plane wave basis

FIG. 2. (a) The primitive cell of Y3Fe5O12. The golden balls
represent iron atoms, the cyan balls stand for yttrium atoms, and the
red balls represent oxygen atoms. (b) The magnetic ground state of
YIG. The arrows of different colors represent the spin directions of
Fe atoms. (c) The density of states obtained by DFT calculations.
(d) The temperature dependence of average magnetization measured
in MC and ASD simulations. For YIG, the phase transition point
from ferrimagnetic to paramagnetic lies in 530 K approximately.
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TABLE I. The Heisenberg exchange coefficients J (meV) of
YIG, where an effective spin S = 1 is used. For the FeO − FeO pairs,
the Greek letters (α and β) refer to different chemical environments.
The unit of distance is Å.

Spin pair Distance J Ref. [77] Ref. [78]

FeT − FeO 3.445 47.414 39.63 42.50
FeT − FeT 3.774 2.399 2.81 3.25
FeO − FeO (α) 5.337 0.538 0.50 0.00
FeO − FeO (β) 5.337 5.055 6.87
FeT − FeO 5.555 0.285 –0.50 –0.44
FeT − FeT 5.765 3.437 2.00 2.94

and a �-centered 2 × 2 × 2 mesh of k points were used in the
DFT calculations.

In Fig. 2(c), we present the density of states (DOS) for
YIG. With a band gap of 1.863 eV, there is hardly any electric
current occurring in the low-temperature region. Moreover,
the Heisenberg exchange coefficients of YIG are listed in
Table I. To verify the accuracy of these parameters, we con-
ducted both Monte Carlo (MC) and ASD simulations. The
temperature dependence of average magnetization is shown in
Fig. 2(d), which reveals the critical temperature of YIG to be
530 K. This result is slightly lower than the measured Curie
temperature, TC = 560 K [5], but falls within our tolerance.
Besides, we have used the linear spin wave theory [74,75] to
obtain the magnon spectrum of YIG (see Fig. S1 within the
Supplemental Material, SM [76]), which matches well with
the published results [77]. The calculated values of coupling
constants are provided in the SM [76].

Next, we come to deal with the force constant tensor. In
order to demonstrate the impact of cutoff radius and vali-
date the effectiveness of our optimization method, we present
some results pertaining to the tensor of YIG in Table II.
Here we use “VASP” to tag the original tensor obtained
from DFT calculations, “PASP” to label the modified tensor
in which interactions beyond the cutoff radius are elimi-
nated, and “Modified” to label the tensor after optimization
of independent variables. As shown in Table II, the “PASP”
tensor violated the acoustic sum rule and was not positive
semi-definite, whereas these issues were resolved for the

TABLE II. The force constant tensor of YIG. The columns la-
beled by A represent the sorted absolute values of

∑
i Ki j,αβ and the

columns labeled by B list the sorted eigenvalues of Ki j,αβ . For the
cubic cell of YIG, we obtained the original tensor with the VASP
package. Then, we eliminated the elements that represent interac-
tions beyond the cutoff radius. This step was done by PASP. Finally,
the tensor was modified to meet the requirement of translational
symmetry through the optimization formulated in Eq. (13).

VASP PASP Modified

No. A B A B A B

1 0.000 0.000 1.587 –0.102 0.000 0.000
2 0.000 0.000 1.587 –0.102 0.000 0.000
3 0.000 0.000 1.587 –0.102 0.000 0.000
4 0.000 1.065 1.587 0.643 0.000 0.444
5 0.000 1.065 1.587 0.643 0.000 0.444
6 0.000 1.065 1.587 0.643 0.000 0.444

“Modified” tensor. Although an obvious difference existed
between the “PASP” and “Modified” tensor in terms of their
eigenvalues, we still assumed the target system could be rea-
sonably described by the “Modified” tensor and the validity of
this assumption would be verified by the calculated results of
damping constants. Additional details regarding the selection
of tensor elements and the deviation of phonon spectra are
provided in Fig. 3. According to Figs. 3(b) and 3(c), the major
deviation in phonon spectra resulted from the elimination of
tensor elements, rather than the subsequent modification.

Completing the preparation of Hamiltonian model, we ap-
plied the scheme proposed in Sec. II C to our first object,
Y3Fe5O12. An instance is presented in Fig. 4. We set TL =
30 K, TS = 180 K for the initial nonequilibrium state and used
an expanded supercell, which contained 12 800 atoms in the
simulation. Figure 4(a) shows the time evolution of spin tem-
perature in different types of simulations. By comparing the
curves, we could roughly estimate that the equivalent damping
constant in SLD simulation fell within the range 10−3–10−4.
To make the estimation more precise, we calculated the initial
cooling rates ∂TS/∂t |t=0 through polynomial (or exponential)
fittings and plotted them in Fig. 4(b). Afterwards, a linear re-
gression was performed to determine the quantitative relation

FIG. 3. (a) Visualization of selection on the force constant tensor elements for the cubic cell of YIG. An 160 × 160 zero-one matrix is used
to show the result of selection, in which “1” denotes the interactions within cutoff radius and “0” represents the elements that are artificially
eliminated. (b) The phonon spectrum calculated from the force constant tensor before and after the elimination of tensor elements. (c) The
phonon spectrum calculated from the force constant tensor before and after the optimization of independent variables.
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FIG. 4. (a) The time evolution of spin temperature in SLD and ASD simulations. The gray line represents the SLD simulation while the
others refer to the ASD simulations with different damping constants. (b) The initial cooling rates ∂TS/∂t |t=0 with respect to the damping
constants α, where the scaling of axis is set to be logarithm. The gray squares refer to the results of ASD simulations and the blue line acts
as the linear regression. The red circle is plotted by intersection of the blue line and the horizontal red dash line, which represents the initial
cooling rate in the SLD simulation. Then we can obtain the equivalent damping constant from the abscissa of the red circle. (c) The comparison
between ASD and SLD simulations. In the ASD simulation, the Gilbert damping constant is set to be α = 2.9 × 10−4, which is exactly the
result of our evaluation from the SLD simulation.

between log10(−∂TS/∂t |t=0) and log10(α). As we expected,
the cooling rates in ASD simulations were proportional to the
assigned damping constants. Then, we combined the results of
SLD and ASD simulations to evaluate the equivalent damping
constant. This step was accomplished by identifying the inter-
section of red and blue lines in Fig. 4(b). Finally, the damping
constant was determined to be α f = (2.9 ± 0.5) × 10−4 in
this case. To verify our method and result, we present a
comparison between SLD and ASD (where we set α = α f )
simulations in Fig. 4(c). The curves agree well with each
other in the initial stage but deviate in the second half. This
phenomenon is within our expectation, because in the SLD
simulation the lattice heats up as the spin cools down, thereby
slowing the energy transfer between two subsystems.

In addition to the above instance, we have calculated the
equivalent damping constants under different conditions to
investigate the temperature dependence of magnetic damping.
The final results are summarized in Fig. 5. Details about the
estimation of uncertainties are given in the SM [76]. For
Y3Fe5O12, the damping constants at different temperatures
stay on the order of 10−4, which are very close to the ex-
perimental values (3.2 × 10−4 [79], 2.2 × 10−4 [80], 1.2 −
1.7 × 10−4 [81]). For example, the damping constant in bulk

YIG was reported as 0.4 × 10−4 in Ref. [82]. Meanwhile, our
calculations yielded α = (2.8 ± 0.3) × 10−5 at �T = 15 K
and α = (7.0 ± 0.7) × 10−5 at �T = 30 K, where both TL =
0 K. Thus, the result of experiments corresponds roughly to
the temperature region of �T = 15 ∼ 30 K in our study. Be-
sides, Fig. 5 indicates that α is approximately proportional
to the temperature difference between two subsystems. This
outcome is consistent with some computational studies in the
past [33,35]. By comparing the subfigures in Fig. 5, we found
little dependence of α on the lattice temperature, although
here TL could be viewed as the ambient temperature of spin
system.

As a supplement to Sec. III A, we further validate our sim-
ulations by analyzing the measured cooling rates in Fig. 5(a).
By subtracting Eq. (23) from Eq. (22), the transfer rate of en-
ergy between magnon and phonon systems can be expressed
as

Q̇ =
∑
qp

h̄ωqp〈Ṅqp〉 =
∑
λ,qp

Tλ,qp, (24)

where Tλ,qp denotes different transfer channels,

Tλ,qp ∝ (nλ − nλ−q )Nqp + nλ−qnλ + nλ. (25)

FIG. 5. The temperature dependence of Gilbert damping constants for Y3Fe5O12. The label of abscissa axis �T refers to TS − TL of the
initial state in dynamical simulations. Measurements on the magnetic damping are performed under different initial conditions of the lattice
temperature: (a) TL = 0 K, (b) TL = 30 K, (c) TL = 60 K.
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FIG. 6. (a) The cubic cell of MnFe2O4. The purple balls repre-
sent manganese atoms, the golden balls refer to iron atoms, and the
red balls stand for oxygen atoms. (b) The magnetic ground state of
MFO. The arrows of different colors represent the spin directions
of Mn and Fe atoms separately. (c) The density of states obtained
by DFT calculations. (d) The temperature dependence of average
magnetization measured in MC and ASD simulations. For MnFe2O4,
the phase transition point from ferrimagnetic to paramagnetic lies in
730 K approximately.

According to the Bose-Einstein distribution, the number of
magnons and phonons can be expressed as

nλ = 1

eελ/kBTS − 1
, Nqp = 1

eh̄ωqp/kBTL − 1
. (26)

When TS is high enough and TL is close to zero, we can
approximate nλ = kBTS/ελ ∝ TS and Nqp close to zero. Under
these conditions, we have Q̇ ∝ T 2

S . This relation was well
verified by linear regressions and the results are provided in
the supplementary material (see Fig. S4 within the SM [76]).

Furthermore, the accuracy of our simulations can also
be proved from another perspective. According to Eqs. (22)
and (23), the scattering rate W grows quadratically with
the coupling parameters Mλ,qp. Based on the theory of sec-
ond quantization, Mλ,qp shall be proportional to the coupling
constants ∂Ji j/∂uk,α . Thus under a definite condition of tem-
perature, we have

α ∝ Q̇ ∝ �W ∝ M2
λ,qp ∝ (∂Ji j/∂uk,α )2. (27)

To verify this relation, we adjusted the spin-lattice coupling
constants of YIG while keeping the other model parameters
unchanged. Subsequently, SLD simulations were carried out
to evaluate the corresponding damping constants. The result is
plotted in Fig. S5 within the SM [76], which agrees well with
our predictions.

Since the spin-orbit coupling is typically believed to have
an important contribution to the magnetic damping, we also
calculated the exchange tensor of the nearest neighboring Fe-
Fe pair in YIG using the four-state method, and repeated our
scheme to evaluate the Gilbert damping constants. It turned
out that taking the SOC effects into consideration only led
to a small increase of around 5% in the estimated values. In

TABLE III. The exchange coefficients J in MnFe2O4, where an
effective spin S = 1 is adopted. The unit of distance is Å. We note
that the exchange coefficients listed here were calculated by different
Hubbard parameters (eV): UMn = 3.3 and UFe = 3.6 in this paper;
UMn = 4.0, JMn = 0.7, UFe = 4.5, JFe = 0.89 in Ref. [84].

Spin pair Distance J (meV) Ref. [84]

1NN Fe-Fe 3.003 6.835 4.5
1NN Mn-Fe 3.521 33.224 22.5
1NN Mn-Mn 3.667 3.956
2NN Fe-Fe 5.201 0.929 0.0

addition, we have followed the steps in Ref. [35] to calculate
the damping parameters in YIG. The results confirmed that
without SOC effects the uniform magnon mode (q=0) would
not be damped [24]. The above calculations are detailed in the
supplementary material.

C. Damping constants in MnFe2O4

After the calculation on YIG, we applied our method to
MnFe2O4 (MFO), which was reported to possess a large
Gilbert damping constant in the literature [20,83]. As shown
in Fig. 6(a), MnFe2O4 has a typical structure of spinels, where
A sites are surrounded by four oxygen atoms and B sites are
located in octahedrons. Generally, spinels can be classified
into normal and inverse structures according to the distribu-
tion of divalent and trivalent cations between A/B sites. In
experiments, MFO usually crystallizes into a mixed phase
where the normal structure occupies the major part (80%
in bulk MFO [84]). Here, we only considered its normal
structure in this paper. Also, the magnetic ground state of
MFO is shown in Fig. 6(b), where the magnetic moments are
antiparallel between A/B sites.

Firstly, we started to construct an effective Hamiltonian
model for MFO. With the same cutoff settings for YIG, we
found 105 nonequivalent interactions, including four Heisen-
berg exchange terms and 10 spin-lattice coupling terms.
Subsequently, DFT calculations were carried out to determine
the interaction parameters. In these calculations, we adopted
a cubic cell containing 56 atoms and a �-centered 4 × 4 × 4
grid mesh in the reciprocal space. Besides, UMn = 3.3 eV and
UFe = 3.6 eV were used as the effective Hubbard parame-
ters [84]. With the exception of aforementioned settings, all
the relevant first-principles calculations were performed under
the same conditions as in Sec. III B.

The DOS of MnFe2O4 is plotted in Fig. 6(c), yielding a
calculated band gap of 0.612 eV. This value does not match
with the result of transport experiments, which reported a
much smaller band gap (0.04–0.06 eV) [25]. In addition, MC
and ASD simulations were performed using the Heisenberg
exchange coefficients listed in Table III. The temperature
dependence of average magnetization, shown in Fig. 6(d),
suggests the critical temperature to be around 730 K. This
result is significantly higher than the measured value of
573 K [85]. Both of the above discrepancies may be attributed
to the inevitable difference between the ideal normal spinel
structure in calculations and the partially disordered samples
in reality. Despite this problem, we proceeded to describe the
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FIG. 7. The temperature dependence of Gilbert damping constants for MnFe2O4. The label of abscissa axis �T refers to TS − TL of the
initial state in dynamical simulations. Measurements on the magnetic damping are performed under different initial conditions of the lattice
temperature: (a) TL = 0 K, (b) TL = 30 K, (c) TL = 60 K.

target system with our Hamiltonian model and expected to
see how far the calculated results of damping constants would
differ from experimental values.

After the preparation of Hamiltonian model, we conducted
dynamics simulations to evaluate the equivalent damping
parameters in MFO at different temperatures. A supercell
containing 13 440 atoms was adopted in the simulation, and
the results are summarized in Fig. 7. The average of calculated
damping constants is around 8 × 10−5, which is much smaller
than the measured value, 1.0 × 10−2 [20,83]. Two factors
may account for this inconsistency. Firstly, the inhomogeneity
in real MnFe2O4 samples greatly enhances the scattering of
magnons and phonons, thereby increasing the damping con-
stants. Additionally, due to the narrow band gap observed in
experiments, eddy currents can arise at finite temperatures,
which leads to a rapid loss of energy in the form of joule heat.
As the result of these factors, we failed to obtain a reason-

FIG. 8. (a) The primitive cell of Cr2O3. The dark-blue balls rep-
resent chromium atoms, and the red balls stand for oxygen atoms.
(b) The magnetic ground state. The arrows of different colors repre-
sent the spin directions of Cr atoms. (c) The density of states obtained
by DFT calculations. (d) The temperature dependence of sublattice
magnetization measured in MC and ASD simulations. For Cr2O3,
the phase transition point from ferrimagnetic to paramagnetic lies in
310 K approximately.

able estimation of Gilbert damping constants for MnFe2O4

with our methodology. On the other side, the contribution of
different relaxation mechanisms to FMR linewidth has been
studied comprehensively for MnFe2O4 in Ref. [25], which
further confirms our analyses.

D. Damping constants in Cr2O3

Chromia (Cr2O3) is a well-known collinear magnetoelec-
tric antiferromagnet, which holds great prospects in the field
of spintronics [86–88]. As shown in Fig. 8(a), the primi-
tive cell of Cr2O3 contains 10 atoms, with each chromium
atom bonded to the six oxygen atoms around it. Additionally,
Fig. 8(b) displays the magnetic ground state of Cr2O3, where
the spins of two nearest-neighboring Cr atoms are oriented in
opposite directions.

As a preliminary step in constructing the Hamiltonian
model, we set the cutoff radius of interactions to be 11.0
Bohr for atomic pairs and 7.0 Bohr for three-body clusters.
Through symmetry analyses, we identified 319 nonequivalent
interactions, including five Heisenberg exchange terms and 21
spin-lattice coupling terms.

Afterwards, a series of first-principles calculations were
performed to determine the model parameters. Following the
settings in Ref. [89], we adopted a hexagonal cell of Cr2O3,
which contained a total of 90 atoms in the calculations. Addi-
tionally, we used the LSDA+U method in its full spherically
symmetric form [90]. As to the Hubbard parameters, J was
fixed at its recommended value of 0.6 eV, and U was adjusted
to fit the Néel temperature observed in experiments [91]. We
found U = 2.0 eV was the optimal value for 3d electrons of
Cr ions. Except for the settings specified above, all the DFT
calculations were conducted under the same conditions as in
Sec. III C.

The DOS of Cr2O3 is plotted in Fig. 8(c), which yields
a band gap of 1.935 eV. This value indicates that the energy
dissipation of electric currents can be neglected in this system.
Additionally, we list the calculated exchange coefficients of
chromia and some published results in Table IV. Both MC
and ASD simulations were performed to investigate the tem-
perature dependence of sublattice magnetization. According
to Fig. 8(d), the critical point was determined to be 310 K ap-
proximately, which was quite consistent with the experimental
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FIG. 9. The temperature dependence of Gilbert damping constants for Cr2O3. The label of abscissa axis �T refers to TS − TL of the
initial state in dynamical simulations. Measurements on the magnetic damping are performed under different initial conditions of the lattice
temperature: (a) TL = 0 K, (b) TL = 30 K, (c) TL = 60 K.

value. Similarly, the force constants of Cr2O3 went through
the modification formulated in Sec. II B, and the spin-lattice
coupling parameters are provided in the SM [76].

After the construction of Hamiltonian model, we con-
ducted a series of dynamics simulations to evaluate the
equivalent damping parameters in Cr2O3. An expanded
hexagonal cell containing 14 400 atoms was adopted for
the simulation, and the results are summarized in Fig. 9.
As two specific cases, our calculation yielded α = (1.31 ±
0.14) × 10−4 at �T = 15 K and α = (2.7 ± 0.3) × 10−4 at
�T = 30 K, where both TL = 0 K. Therefore, the calcu-
lated damping constants within �T = 15 ∼ 30 K are quite
close to 2 × 10−4, which is the estimated value reported in
Ref. [92].

Furthermore, the damping constants in Cr2O3 exhibit a
significant nonlinear relation with the temperature difference
of subsystems. Through logarithmic fittings, we calculated the
power exponents for Figs. 9(a)–9(c), and the results were 1.17,
1.62, 1.38. If we disregard the difference between �T and T
for the moment, these values are in good agreement with the
theoretical prediction of Kasuya and LeCraw [38]. According
to their study, the relaxation rate varies as T n where n = 1 ∼ 2
while n = 2 corresponds to a larger regime of temperature.

Compared to YIG, the greater magnetic damping calcu-
lated for chromia can be attributed to its significantly stronger
spin-lattice coupling. As shown in Fig. 10, the magnitude of
principal spin-lattice coupling constant in Cr2O3 is two or

TABLE IV. The Heisenberg exchange coefficients J (meV) of
Cr2O3, where an effective spin S = 1 is adopted. The unit of distance
is Å. We note that the exchange coefficients listed here were calcu-
lated by different Hubbard parameters (eV): U = 2.0 and J = 0.6 in
this paper, U = 4.0 and J = 0.5 in Ref. [51], U = 2.5 and J = 0.58
in Ref. [89].

Spin pair. Distance J Ref. [51] Ref. [89]

1NN Cr-Cr 2.640 44.778 25.4 30.9
2NN Cr-Cr 2.873 29.269 21.2 21.9
3NN Cr-Cr 3.411 –0.182 –3.9 –0.60
4NN Cr-Cr 3.635 0.007 –3.3 –1.83
5NN Cr-Cr 4.137 –0.500 4.2 4.92

three times larger than that in YIG. This could be explained by
the fact that direct exchange interaction between two magnetic
atoms decreases rapidly with their distance but the change be-
comes slower gradually [93]. Therefore, owing to the shorter
distance of Cr-Cr pair, the direct exchange interaction between
neighboring Cr atoms could have a major contribution to the
stronger spin-lattice coupling in Cr2O3.

IV. CONCLUSIONS

In summary, we put forward a scheme to estimate the
Gilbert damping parameters contributed by spin-lattice cou-
pling in insulating magnetic materials. The methodology
involves first-principles-based Hamiltonian models and spin-
lattice dynamics simulations. Although our results do not
correspond directly to the measurements of FMR experi-
ments, the calculated damping constant can be a suitable
input for micromagnetic simulations. Following a series of
validations, we applied our method to Y3Fe5O12, MnFe2O4,
and Cr2O3. Under specific temperature conditions, the results
for YIG and Cr2O3 were close to the experimental values,
while the large discrepancy in MFO could be attributed to
the inhomogeneity and small band gap in real samples. In
addition, we confirmed a quasilinear dependence of damping
constants on the temperature difference between spin and
lattice subsystems. Overall, the approach presented in this
paper holds promise for effectively evaluating the damping in
magnetic insulators.

FIG. 10. (a) The 1NN FeT -FeO pair in Y3Fe5O12. (b) The 1NN
Cr-Cr pair in Cr2O3. The steel-blue arrow stands for the orientation
of ∂J/∂u and the red number along with it represents the magnitude
in unit of meV/Å.
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APPENDIX: COOLING RATES AND DAMPING

Here, we would like to derive the relation between cooling
rates ∂TS/∂t and damping constants α,

∂TS

∂t
= 1

Cspin

∂Emag

∂t
= 1

Cspin

∂

∂t

(
−1

2

∑
i

mi · Beff
i

)

∝ −
∑

i

∂mi
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· Beff
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∑

i

mi · ∂Beff
i

∂t
, (A1)

where Cspin and Emag denote the specific heat and
total energy of spin subsystem respectively. Then,

we have
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in which we express the effective magnetic field as Beff
i =∑

〈i, j〉 Ci jm j . Here the symbol
∑

〈i, j〉 means summing the
index j, which satisfies that jth site is one of the nearest
neighbors to ith site. As demonstrated below, the second term
in the third line of Eq. (A3) does not contribute to the result,

∑
i

∑
〈i, j〉

∑
〈 j,k〉

Ci jCjkmi · (m j × mk ) = 1

2

∑
i

∑
〈i, j〉

∑
〈 j,k〉

[Ci jCjkmi · (m j × mk ) + Ck jCjimk · (m j × mi )]

= 1

2

∑
i

∑
〈i, j〉

∑
〈 j,k〉

[Ci jCjkmi · (m j × mk ) + CjkCi jmi · (mk × m j )] = 0. (A4)

Combining the above equations, we come to the conclu-
sion that ∂TS/∂t is proportional to α. This relation is derived
at the lowest order of approximation, where we neglect the

higher orders of α and only consider the isotropic exchange
interaction in the model. We believe these approximations are
reasonable for the compounds studied in this paper.
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