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Universal spin wave driven domain wall velocity in biaxial ferromagnets
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Spin wave and domain wall are two of basic excitations in magnetic systems, and their interplay is dictated
by the competitions between underlying magnetic interactions. In biaxial ferromagnets with easy-axis and hard-
axis anisotropies perpendicular to each other, both the spin wave precession and the domain wall rotation are
suppressed in the hard-axial direction. Here we investigate the domain wall motion driven by the spin waves
in a biaxial ferromagnet using a wave packet approach. We show that the domain wall acquires a universal
velocity given by the product of spin wave group velocity and the square of spin wave amplitude in the third
ordinary-axial direction. Such a universal domain wall velocity is a synergy of the angular and linear momentum
transfer mechanisms, with their weights controlled by the spin wave ellipticity.
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I. INTRODUCTION

Magnetic domain walls widely exist in all types of mag-
netic materials, and are of great interest for both scientific
explorations and industrial applications [1–5]. A prominent
utilization of magnetic domain wall is for nonvolatile infor-
mation storage, as routinely implemented in the celebrated
racetrack memory [6,7]. For complete exploitation of mag-
netic domain walls, a crucial ingredient is to drive domain wall
motion via various external stimuli, including magnetic field
[8,9], electric spin current [10,11], thermal gradient [12–15],
as well as spin wave [16–18]. Sharing the common magnetic
nature, the interplay between spin wave and domain wall is
more appealing toward a purely magnetic information pro-
cessing scheme [17,19,20].

Starting from the translational and rotational symme-
tries, the domain wall dynamics is routinely formulated
by the linear [21–23] and angular [24–26] momentum
transfer from spin wave, respectively. In ferromagnets, the
domain wall is anticipated to move backward/forward by
transmitting/reflecting spin wave [17,27]. Furthermore, in fer-
rimagnets and antiferromagnets, the direction of domain wall
motion can be further manipulated by the spin wave po-
larization [22,28–31]. Moreover, the Dzyaloshinskii-Moriya
interaction acts as an alternative source for either angu-
lar/linear momentum, and enriches the domain wall dynamics
remarkably [32–34].

Despite above efforts, most of existing literatures are
typically restricted to uniaxial magnets with only easy-axis
anisotropy, in which the spin waves are supposed to be cir-
cularly polarized. However, hard-axis anisotropy inevitably
exists in realistic magnetic materials, either in intrinsic form
due to magnetocrystalline anisotropy [35,36], or in extrinsic
form due to dipolar [37], piezomagnetic [38–40], or multifer-
roic [41] effects. In the presence of hard-axis anisotropy, the
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rotational symmetry of domain wall is broken, and the spin
wave becomes elliptically polarized [42], so that the magnetic
dynamics becomes substantially complicated in biaxial mag-
nets [43,44]. A thorough understanding that captures all these
complications is thus crucial toward completely and precisely
harnessing domain wall in a wider extent of magnetic materi-
als and structures.

In this paper, we systematically investigate the spin wave
driven domain wall motion in biaxial ferromagnet, in the
presence of both easy-axis and hard-axis anisotropies. With
the aid of spin wave packet, the domain wall is shown to
experience fictitious electrostatic and Lorentz forces mediated
by spin wave intensity and current, and develops a universal
velocity due to the synergy of these two forces. Specifically,
the domain wall velocity is given by the product of the spin
wave group velocity and the square of spin wave amplitude
in the third ordinary-axial direction, irrespective of the mag-
netic anisotropy combinations and damping. By establishing a
force-momentum correspondence, we reveal that the universal
domain wall velocity is a mixed form of linear and angular
momentum transfer.

This paper is organized as follows. The basic formulations
of domain wall and spin wave in biaxial ferromagnets are
established in Sec. II. The domain wall dynamics induced by
a spin wave packet, its connection between linear and angular
momentum transfer, and the influence of magnetic damping,
are presented in Sec. III, and the domain wall velocity induced
by continuous spin waves is also systematically derived. In
Sec. IV, micromagnetic simulations are carried out to verify
the theoretical formulations. In Sec. V, a short discussion and
conclusions are given.

II. BASIC MODEL

A. Magnetic dynamics in biaxial ferromagnet

Consider a magnetic wire extending along x axis, where
the magnetization direction is denoted by the unit vector m,
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FIG. 1. Domain wall and spin wave in biaxial ferromagnets.
(a) Magnetization profile of a domain wall. The arrows are for
magnetization directions, and X and � denote the central position
and rotation angle, respectively. (b) Spin wave ellipticity as func-
tion of normalized hard-axis anisotropy K⊥/K for wavevector k =
0.07 nm−1. The orange/green arrows are for spin wave components
in ordinary axis ê1 and hard axis ê2, respectively. The insets depict
the spin wave precessions in circular/elliptical/linear fashion.

as depicted in Fig. 1(a). The magnetic dynamics is governed
by the Landau-Lifshitz-Gilbert (LLG) equation

ṁ = −γ m × h + αm × ṁ, (1)

where ṁ ≡ ∂t m, γ is the gyromagnetic ratio, and α is the
Gilbert damping constant. Here, h = −(1/μ0Ms)δu/δm is the
effective magnetic field acting on the magnetization m, μ0 is
the vacuum permeability, and Ms is the saturation magneti-
zation. The energy density u of the biaxial magnetic wire is
described by

u(m) = μ0Ms

2

[
A(∇m)2 − Km2

z + K⊥m2
y

]
, (2)

where A is the exchange coupling constant, K is the easy-axis
anisotropy in z axis, and K⊥ is the hard-axis anisotropy in y
axis. For the convenience of narration in the following text,
we notate z/x/y axis as easy/ordinary/hard-axis and x̂/ŷ/ẑ as
ê1/2/3, respectively.

B. Domain wall and spin wave

The ground state of the biaxial ferromagnet is either one
of the homogeneous domains m = ±ê3 along the easy axis.
Upon the homogeneous domain, there are two typical excita-
tions: the nonlinear domain wall with slow temporal varying
magnetization m0, and the linear spin wave with fast temporal
oscillating magnetization m′. Before formulating their inter-
action, we establish the basic descriptions of domain wall and
spin wave separately.

The domain wall generally takes the following Walker
profile [8,45]:

θ0 = 2 arctan

[
exp

(
x − X

W

)]
, φ0 = �, (3)

where θ0 and φ0 are polar and azimuthal angles of the domain
wall magnetization m0 about ẑ. Here, W is the characteristic
width of domain wall, and X and � are the central position

and rotation angle, respectively. In biaxial magnets, the do-
main wall width is formulated by W =

√
A/(K + K⊥ sin2 �)

[8], which shrinks as the domain wall tilts away from the
Néel configuration � = 0 at equilibrium. However, as we will
show later, the domain wall width is hardly modified by the
small rotation angle induced by spin wave (� � 1), hence
is assumed to be constant W = √

A/K throughout this paper.
Because of the relatively fixed shape, the slow dynamics of
domain wall can be parameterized by the evolution of minimal
set of collective coordinates, m0(t ) = m0[X (t ),�(t )].

Meanwhile, the spin wave can be written as m′ = m1ê1 +
m2ê2, where m1/2 are the ordinary/hard-axial components. In
the linear regime, the spin wave dynamics is recast from LLG
equation (1) to

−ṁ1 = γ
(−A∂2

x + K + K⊥
)
m2, (4a)

ṁ2 = γ
(−A∂2

x + K
)
m1. (4b)

The monochromatic solution to Eq. (4) is

m1 = c sin(kx − ωt ), m2 = c̃ cos(kx − ωt ), (5)

where c and c̃ are the amplitudes in the ordinary and
hard axis, and ω and k are the angular frequency
and wavevector obeying the quadratic dispersion relation
ω = γ

√
(Ak2 + K )(Ak2 + K + K⊥). The rotational symme-

try about the easy axis is broken by the hard-axis anisotropy
K⊥ in Eq. (4), and thus the spin wave becomes elliptically
polarized with

ε = c̃

c
=

√
Ak2 + K

Ak2 + K + K⊥
, (6)

where ε denotes the ellipticity [46], as depicted in Fig. 1(b).
In the basis of planar spin waves in Eq. (5), a localized spin

wave packet can be constructed with Gaussian profile [47,48],

m1 − i

ε
m2 = c

4
√

π
exp

{
− [x − χ (t )]2

2σ 2
+ ik[x − χ (t )]

}
, (7)

where χ is the central position, and σ is the characteris-
tic width (see Appendix C). In the short-wavelength limit
kW � 1 of interest here, the width spreading in σ can be
safely ignored, then the propagation of spin wave packet
is equivalent to the kinematics of particle-like object with
velocity

v ≡ χ̇ = ∂ω

∂k
= 1 + ε2

ε
γ Ak. (8)

Moreover, the spin intensity and current carried by the spin
wave packet in Eq. (7) are given by [15,34]

ρ =
∫ 〈

m2
1 + m2

2

〉
2

dx = (1 + ε2)σc2

4
, (9a)

j = −γ A
∫ 〈

m1
∂m2

∂x
− m2

∂m1

∂x

〉
dx = γ εσc2Ak, (9b)

where 〈. . . 〉 represents the time averaging.

III. DOMAIN WALL DYNAMICS INDUCED BY SPIN WAVE

In this section, we first investigate the domain wall dynam-
ics driven by a spin wave packet, which has a clearer physical
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FIG. 2. Domain wall dynamics induced by a spin wave packet. (a) Spatial profile of the pseudo-electric (orange) and magnetic (green)
fields. (b) Time evolution of central position (black) and rotation angle (orange) of the domain wall. (c) Time evolution of domain wall
velocity (black) and its two subvelocities Vρ (orange) and Vj (green). (d) Time evolution of the central position of domain wall under different
magnetic damping constant α. (e) Overall domain wall displacement �X as function of magnetic damping. In (b)–(e), the dots are extracted
from micromagnetic simulations, and the solid lines are calculated from theoretical models. The spin wave packet is excited at position
x = −2.5 µm, and the magnetic damping is absent in (b) and (c). Small oscillations of domain wall position and velocity are hidden in dots
with a large time step adopted here.

picture. With the underlying driving mechanism unambigu-
ously identified, we then proceed to the case of continuous
spin wave, that connects more closely to practical concerns.

A. Dynamics induced by a spin wave packet

1. Time evolution of domain wall

The intrinsic nonlinearity of magnetic interactions leads to
the intimate interplay between spin wave and domain wall
[36]. Specifically, the domain wall dynamics driven by a spin
wave packet is governed by the following equations of motion
(see Appendix D for detailed derivations):

2Ẋ = jb + 2γ K⊥W �, (10a)

2�̇ = −ρe, (10b)

where e=−(2γ /μ0Ms)∂X u(m0) and b=m0·(∂�m0×∂xm0)
are the pseudo-electric/magnetic fields induced by inhomo-
geneous domain wall magnetization [49–51]. Given Eq. (3),
these two pseudofields are explicitly written as

e = −4γ K

W
sech2 χ − X

W
tanh

χ − X

W
, (11)

b = − 1

W
sech2 χ − X

W
, (12)

which are antisymmetric and symmetric about the domain
wall center, as plotted in Fig. 2(a).

We now consider the penetration of a wave packet through
the domain wall, as schematically depicted above Fig. 2(a).
According to the equation of motion (10b), the rotation angle
� is estimated first as

� ≈ −
∫ χ

−∞

ρe

2

dχ ′

v
= −γ K

v
ρsech2 χ − X

W
, (13)

for which the magnitude of the rotation angle � maximizes
at the moment the spin wave packet reaches the domain wall
center χ = X . Above estimation is obtained by neglecting two
minor factors: (i) the slight increment of spin wave velocity
v within domain wall, and (ii) the small displacement of the
domain wall itself. Note that the rotation angle always exists
even when the hard-axis anisotropy is absent K⊥ = 0.

Furthermore, the domain wall velocity associated with
Eq. (10a) is given by

V =Vρ + Vj = −
(

γ 2KK⊥W

v
ρ + 1

2W
j

)
sech2 χ − X

W
,

(14)

where Vρ and Vj are two subvelocities modulated by the same
hyperbolic function despite distinct physical origins. The for-
mer is caused by the fictitious electrostatic force mediated by
spin intensity ρ, while the latter is caused by the fictitious
Lorentz force mediated by spin current j. Invoking Eq. (6) and
inserting Eqs. (8) and (9), these two subvelocities are unified
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to (see Appendix E for detailed derivations)

Vρ = (1 − ξ )V, Vj = ξV, (15)

where ξ = 2ε2/(1 + ε2) is the partition coefficient, and the
total domain wall velocity is given by

V = − σ

4W
c2vsech2 χ − X

W
. (16)

Moreover, the overall displacement of the domain wall after
the complete passage of a spin wave packet is described by

�X ≈
∫ ∞

−∞
V

dχ

v
= −σc2

2
, (17)

which is simply controlled by the ordinary-axial amplitude c
and the width σ of the spin wave packet.

2. Frame of momentum transfer

Above spin wave driven domain wall motion, analyzed via
fictitious electromagnetic forces, can be reinterpreted under
the frame of momentum transfer. Invoking the Noether theo-
rem, the linear/angular momentum density for ferromagnetic
system is formulated as [49,52]

Px = cos θ
∂φ

∂x
, and Sz = − cos θ, (18)

where the former takes account of the surface area on the
magnetic Bloch sphere subtended by the magnetization, and
the latter is for z component of the magnetization, respec-
tively. Other slightly different definitions of linear momentum
density (e.g., Ref. [53]) may arise under different choices of
gauge for the Wess-Zumino term in ferromagnets [54], but all
physics are essentially the same.

Following Eq. (18), the linear/angular momenta of the spin
wave packet in Eq. (7) are given by

px = σc2

2
εk, (19a)

sz = σc2

4
(1 + ε2)mz

0. (19b)

As the spin wave packet passes through the domain wall,
its wavevector actually acquires a first-order correction k̇ =
(1 + ε2)e/(2ε) (see Appendix F for details). Above correc-
tion, along with the relation b = ∂xmz

0, then yield

ṗx = σc2

2
εk̇ = σc2

4
(1 + ε2)e = ρe, (20a)

ṡz = σc2

4
(1 + ε2)

∂mz
0

∂x
χ̇ = ρvb. (20b)

Equation (20a) takes account of the slight increment of linear
momentum of spin wave packet within domain wall. After the
full penetration of spin wave packet, its velocity along with
its linear momentum restores to its original magnitudes, and
the domain wall regains its linear momentum as well as its
rotation angle. In contrast, Eq. (20b) represents an alternative
form of continuity equation of the angular momentum ηṡz −
∂x( jmz

0) = 0, where η = j/ρv = ξ 2/ε2 is the transmission
efficiency of the angular momentum. The angular momentum
is only perfectly transmitted (η = 1) for circularly polarized

spin wave (ε = 1), in the absence of the hard-axis anisotropy
(K⊥ = 0).

Meanwhile, the linear/angular momenta of the domain
wall, in reference to the equilibrium configuration of � = 0
(X = 0), are described by [27,36,52,55]

Px = 2�, and Sz = −2X. (21)

The cross connections between linear/angular momentum
with rotation angle (central position), originate from the gy-
roscopic nature of ferromagnetic dynamics.

Combining Eqs. (20) and (21), Eq. (10) is then rewritten as

Ṗx = −ṗx, and Ṡz = −ηṡz − 2γ K⊥W �. (22)

Due to the preservation of translational symmetry, the linear
momentum is simply transferred from spin wave to domain
wall. Meanwhile, since the spin rotational symmetry is bro-
ken by hard-axis anisotropy, the angular momentum transfer
involves two additional factors: (i) the angular momentum
transmission is reduced by η; (ii) the linear momentum is
converted to angular momentum via the gyroscopic coupling.
With above observations in Eq. (22), two subvelocities in
Eq. (15) then naturally correspond to the linear/angular mo-
mentum transfer,

Vρ = −γ K⊥W �px

2
, and Vj = ηṡz

2
, (23)

and generally the domain wall velocity is a mixed transfer of
both momenta.

The linear momentum transfer mechanism mediated by the
gravity-like torque that underpins the subvelocity Vρ is distinct
from the mechanism in other literatures that is mediated by
the entropic torque [13,15,56,57] (see Appendix D for explicit
expressions of these two torques): (i) The gravity-like torque
is caused by the reduction of magnetic texture energy by
magnons, while the entropic torque (or pressure-like torque)
originates from the nonadiabaticity of magnetization preces-
sions [15,34]; and (ii) the linear momentum transfer is only
temporary during the spin wave penetration here [48], but is
permanent for the case of entropic torque.

3. Influence of magnetic damping

When magnetic damping is present α �= 0, the spin wave
dispersion becomes (ε + iα)ω = γ [A(k + iκ )2 + K], where
κ is the imaginary wavevector. For spin wave excited at fixed
point x0 with amplitude c0 and angular frequency ω, the
spin wave decays as propagation with c = c0e−κ (x−x0 ) and
κ = αω/(2γ Ak). Similarly, the spin intensity ρ and current
j of a spin wave packet also decay with e−2κχ in space or e−βt

in time with β = 2κv the dissipation rate.
With the inclusion of magnetic dissipation, the domain wall

dynamics triggered by the passage of a spin wave packet is
then extended from Eq. (10) to

Ẋ − αW �̇ = γ K⊥W � + jb

2
, (24a)

�̇ + α

W
Ẋ = −ρe

2
, (24b)

where the domain wall motion and rotation are hybridized
together. The dynamics of rotation angle � in Eq. (24) can
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be reorganized to

�̇ + αγ K⊥� = −ρe

2
− α

2W
jb, (25)

where the dissipative corrections arise at both sides in com-
parison to Eq. (10b). Above equation (25) can be further
transformed to

�̇ + (1 − ξ )β� = (�̇0 − ξβ�0)e−βt , (26)

where �0 is the rotation angle for the undamped case in
Eq. (13). Therefore, the rotation angle � in Eq. (26), and
further the velocity V in Eq. (24a), are simply subjected to a
common dissipation factor e−βt in time, or alternatively e−2κχ

in space. Consequently, for a domain wall at initial position
X0, its displacement �X is described by

�X = −σc2

2
= −σc2

0

2
e−2κ (X0−χ0 ), (27)

which maintains the same form as Eq. (17) but with active
amplitude c now specifically taken at the domain wall center.

B. Dynamics induced by continuous spin wave

As the reverse process of spin wave packet construction
formulated in Eq. (7), continuous spin wave can be also de-
composed into series of spin wave packets. When a planar
spin wave is injected, equivalently multiple spin wave packets
with total width σ = v�t penetrate through the domain wall
in a time interval �t . According to Eqs. (17) and (27), the
domain wall velocity during the passage of continuous spin
wave is estimated to be

V = �X

�t
= −c2

2
v, (28)

which can be regarded as actuation relay of multiple spin
wave packets. At the same time, the domain wall also ac-
quires a constant angle during the passage of continuous spin
wave �� = −2γ ρKW/v, by performing similar procedures
to Eq. (13).

Equation (28) is the central result of this paper, which
reveals that the domain wall velocity in biaxial ferromagnets
is simply given by the ordinary-axial amplitude square and
the group velocity of spin wave, and is irrelevant to the spin
wave ellipticity ε or the magnetic damping α. Hence, the
universal velocity in Eq. (28) applies for all combinations
of easy-axis anisotropy K and hard-axis anisotropy K⊥, by
collecting partial yet complementary contributions from Vρ

and Vj as formulated in Eq. (15) via adjusting the partition
coefficient ξ .

IV. NUMERICAL RESULTS

The spin wave driven domain wall dynamics formulated
in the preceding sections is further investigated via two types
of numerical tools in parallel: (i) micromagnetic simulations
using MuMax3 package [58] based on LLG equations (1); and
(ii) numerical calculations by solving equations of motion in
(10) and (24).

In micromagnetic simulations, we consider a one-
dimensional wire along x direction with exchange cou-
pling constant A = 3.28×10−11 A m, z-easy-axis anisotropy

K = 3.88×104 A m−1, and y-hard-axis anisotropy K⊥/K = 50
by default. The demagnetization field is turn off to purify the
effect of the anisotropy and the spin wave. The total length of
the wire is 10 µm with mesh size of 2 nm. A domain wall is
initially placed at the center of the wire with X0 = 0 nm, and
its temporal and spatial evolutions are monitored. Absorbing
boundaries of length 0.5 µm are set at both ends by linearly
increasing the damping constant from α ≈ 0 in the bulk to
α = 0.35 at the ends of the wire, to remove redundant spin
waves reaching boundaries and prevent their reflections.

A. Spin wave packet

The spin wave packet is prepared with the ordinary-axial
amplitude c = 0.024 and ellipticity ε = 0.64, the central
wavevector k = 0.2 nm−1 and the characteristic width σ =
319 nm, or in normalized form kW ≈ 5.8 and σ/W ≈ 11. The
choice of a relatively large spanning σ in simulations is to
ensure that spin wave packet maintains a roughly fixed shape
during propagation (see Appendix C).

For a negligible damping α = 0, the time evolutions of
the rotation angle � and central position X extracted from
simulations are well captured by Eqs. (13) and (17), with
the inclusion of smearing caused by the large spanning of
spin wave packet, as plotted in Fig. 2(b). The maximal angle
is � ≈ −0.001◦, and the maximal displacement is �X ≈
−0.09 nm, indicating the small yet non-negligible domain
wall dynamics triggered by a spin wave packet. The domain
wall velocity V is further plotted in Fig. 2(c), where both two
subvelocities Vρ and Vj are indispensable ingredients, high-
lighting the crucial roles of both linear and angular momentum
transfer. The division between two subvelocities are roughly
Vρ : Vj ≈ 0.4 : 0.6, which coincides well with the partition
coefficient ξ ≈ 0.58 estimated upon the ellipticity ε = 0.64
according to Eq. (15).

When damping become remarkable α �= 0, the evolution of
central position X of the domain wall still maintains similar
behaviors, but in a smaller magnitude for larger magnetic
damping, as plotted in Fig. 2(d). As summarized in Fig. 2(e),
the overall domain wall displacement �X exponentially de-
cays as the damping constant α increases with the decaying
rate controlled by distance χ0 − X0 between spin wave source
and domain wall, in line with formulation in Eq. (27).

B. Continuous spin wave

The continuous spin wave is prepared with frequency f =
74 GHz and ordinary-axial amplitude c = 0.0774 in the pe-
riod of [2, 8] ns by applying an oscillating magnetic field
h(t ) = h0 cos(2π f t )x̂ at [−400,−390] nm, where the mag-
nitude of the exciting field is h0 = 1.6×105 A/m. There is a
small delay of �t ≈ 0.1 ns for domain wall response, which
is attributed to the finite time for spin wave to propagate from
the source point to the domain wall center.

When damping is negligible α = 0, the domain wall devel-
ops a constant backward velocity V ≈ −9.6 m/s during the
period [2.1, 8.1] ns, as shown in the upper panel of Fig. 3(a).
In addition, the domain wall stops immediately after the
passage of all spin wave, despite its finite inertia endowed
by the hard-axis anisotropy [48,60,61]. The finite velocity
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FIG. 3. Domain wall velocity induced by continuous spin wave. (a) Time evolution of domain wall velocity induced by a period of
continuous spin wave. The upper panel is for α = 0, and the lower panel is for α = 0.01. The inset in upper panel is for the domain wall
velocity driven by four consecutive spin wave packets. (b) Domain wall velocity V as function of normalized hard-axis anisotropy K⊥/K . The
orange/green dashed lines are for subvelocities Vρ and Vj in the upper panel, and their weights 1 − ξ and ξ in the lower panel. The dots are
extracted from micromagnetic simulations, and the lines are calculated from theoretical models.

maintained only during the passage of continuous spin wave
can be tracked back to the situations of multiple consecutive
spin wave packets. Each time one spin wave packet passes,
the domain wall develops a velocity peak, as depicted in
inset of Fig. 3(a). In the limit of extremely dense distribu-
tion of spin wave packets, these discrete velocity peaks then
merge together as a constant velocity plateau for continuous
spin wave.

When damping is present α �= 0, the domain wall velocity
is obviously reduced in comparison to the undamped case,
as shown in the lower panel of Fig. 3(a). As the domain
wall moves toward the source, the active spin wave amplitude
increases, leading to a slight enhancement of the domain wall
velocity in time.

The domain wall velocity is further investigated through
series of simulations, where the hard-axis anisotropy K⊥ lies
between 0 and 500K . For convenience of comparisons, the
spin wave wavevector is fixed to k = 0.07 nm−1, or in nor-
malized form kW ≈ 2, and the magnitude of the exciting
magnetic field is fixed to h0 = 3.98×104 A/m. As shown in
Fig. 3(b), the domain wall velocity V in all simulations is well
captured by the universal expression in Eq. (28) in the full
range of anisotropies.

V. DISCUSSIONS AND CONCLUSIONS

As demonstrated in Fig. 3(b), the overall velocity V is
underpinned by two subvelocities Vρ and Vj that evolve in op-
posite, albeit complementary, fashion. Based on contributions
of two subvelocities, the whole range of hard-axis anisotropies
roughly divides into three distinct regimes: easy-axial, biaxial,
and hard-axial, with the main features summarized in Table I.
In easy/hard-axial regime, the spin wave is circularly/linearly
polarized, and the domain wall is purely driven by angu-
lar/linear momentum transfer. While for the biaxial regime
lying in vast parameter range between these two extremes,

both the spin wave polarization and the domain wall driving
mechanism are a mixture of two limits.

Given the ubiquitous hard-axis anisotropy in realistic
magnetic materials and structures, the momentum transfer
scenarios for spin wave driven domain wall deserve careful
scrutiny. Obtrusively attributing the backward domain wall
motion to angular momentum transfer, i.e., ignoring the influ-
ence of hard-axis anisotropy, may lead to faulty estimation of
other magnetic parameters, especially during the experimental
explorations.

In conclusion, we show that domain wall velocity in biaxial
ferromagnets is universally given by the product of group
velocity and ordinary-axial amplitude square of spin wave,
irrespective of the underlying magnetic anisotropy and damp-
ing environment. Our paper offers insights into the rich role
of hard-axis anisotropy in reconciling magnetic dynamics via
breaking spin rotational symmetry.
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APPENDIX A: SPIN WAVE UPON DOMAIN WALL

For spin wave m′ upon domain wall m0, the transverse
condition m′ · m0 = 0 is satisfied everywhere in the
small-amplitude limit |m′| � 1. Hence, spin wave can be
written as m′ = mθ êθ + mφ êφ , where êθ/φ are two transverse
directions about the background magnetization êr ≡ m0.
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TABLE I. Features of spin wave driven domain wall motion in three regimes of anisotropies.

Anisotropy Parameters Ellipticity ε Partition coefficient ξ Force Momentum Refs.

Easy-axial K⊥ ∼ 0 1 1 Lorentz Angular [24,25,34,59]

Biaxial K⊥ ∼ K + Ak2
√

Ak2+K
Ak2+K+K⊥

2ε2

1+ε2 Electromagnetic Mixed This paper

Hard-axial K⊥ � K 0 0 Electrostatic Linear [48]

Upon the domain wall profile in Eq. (3), the spin wave
dynamics is recast from LLG equation (1) to

−ṁθ = γ
[−A∂2

x + U (x) + K⊥
]
mφ, (A1a)

ṁφ = γ
[−A∂2

x + U (x)
]
mθ , (A1b)

where U (x) = K[1 − 2sech2(x/W )] is effective potential in-
duced by inhomogeneous magnetization within domain wall.

Equation (A1) hosts a series of reflectionless modes [62]

mθ = c√
1 + k2W 2

[
kW sin(kx − ωt )

+ cos(kx − ωt ) tanh
x

W

]
, (A2a)

mφ = c̃√
1 + k2W 2

[
kW cos(kx − ωt )

− sin(kx − ωt ) tanh
x

W

]
. (A2b)

Far away from the domain wall |x| � W , the effective poten-
tial flattens as U (x) → K , and above wave solutions reduce to
Eq. (5) with mθ → ±m1 and mφ → m2.

Above spin wave modes in Eq. (A2) can be approximated
to

mθ ≈ c sin[kx − ωt + ϕ(x)], (A3a)

mφ ≈ c̃ cos[kx − ωt + ϕ(x)], (A3b)

where ϕ(x) = arctan[tanh(x/W )/kW ] is the position-
dependent phase induced by the domain wall. Since only
slight modification is introduced by domain wall in Eq. (A3),
the spin wave in uniform domain in Eq. (5) is used throughout
the main text for simplicity.

APPENDIX B: DOMAIN WALL DYNAMICS
WITHOUT SPIN WAVE

In the small-angle limit |�| � 1, the domain wall dynam-
ics is recast from LLG equation (1) to

Ẋ − αW �̇ = γ K⊥W �, (B1a)

�̇ + α

W
Ẋ = 0, (B1b)

where the domain wall motion and rotation are coupled via the
magnetic damping as well as the hard-axis anisotropy. Above
Eq. (B1) can be rewritten as

Ẍ + μẊ = 0, �̇ + μ� = 0, (B2)

where the domain wall motion and rotation share the same
viscosity μ = αγ K⊥/(1 + α2). Beside the damping constant,
the viscosity μ is also modulated by hard-axis anisotropy.

Consider a domain wall with an initial configuration of
X = 0 and � = �0 �= 0, then the domain wall evolution is
given by

X = W

α
�0(1 − e−μt ), � = �0e−μt , (B3)

where the maximal displacement of domain wall is inde-
pendent of the hard-axis anisotropy. The time evolutions of
domain wall for an initial angle of �0 = 1◦, in micromag-
netic simulations with fixed damping constant α = 0.01 yet
different hard-axis anisotropies, are plotted in Fig. 4. As the
hard-axis anisotropy increases, both the central position X
and the rotation angle � evolve faster, but the domain wall
terminates at the same position X ≈ 50.8 nm.

APPENDIX C: CONTINUOUS SPIN WAVE AND DISCRETE
SPIN WAVE PACKETS

The magnetization profiles of continuous spin wave and
discrete spin wave packets are schematically shown in
Figs. 5(a) and 5(b), respectively. The inequivalence between
magnetization oscillations m1/2 in the ordinary/hard axis, as
depicted in the inset of Fig. 5(b), is due to the existence of
hard-axis anisotropy. Apparently, by making the distribution
of spin wave packets extremely dense, a continuous spin wave

FIG. 4. Time evolution of an initially tilted domain wall under
different hard-axis anisotropies. The initial rotation angle is set to
�0 = 1◦, and the damping constant is set to α = 0.01. The dots are
extracted from micromagnetic simulations, and the lines are calcu-
lated from theoretical models.
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FIG. 5. Spin wave in biaxial ferromagnets. Schematics of mag-
netization profile of (a) continuous spin wave and (b) discrete spin
wave packets. (c) Three time positions of a spin wave packet passing
through the domain wall, where the lines are extracted from micro-
magnetic simulation, and the shaded region represents the domain
wall. In all plots, the orange/green lines represent the magnetization
m1/2 along the ordinary/hard-axial direction, respectively.

is then restored. Therefore, one can treat continuous spin wave
as a train of spin wave packets.

The penetration of a spin wave packet through a domain
wall in micromagnetic simulation is plotted in Fig. 5(c). No
obvious spreading of spin wave packet is observed in the
whole penetration process of duration 1.4 ns. Therefore, the
propagation of a spin wave packet takes close analogy to a
particle-like object in the short-wavelength limit. Moreover,
before and after penetrating the domain wall, the amplitude
and velocity of the spin wave packet remain unchanged,
which indicates that the change of its linear momentum is not
permanent [48].

APPENDIX D: MAGNONIC TORQUE
EXERTED BY SPIN WAVE

A powerful approach to formulate the action exerted by the
fast oscillating spin wave on the background magnetization is
the magnonic torque [15,34,59,63].

Dividing the total magnetization into domain wall part
m0 and spin wave part m′, the total magnetization can be
expressed as

m ≈
(

1 − m′ · m′

2

)
m0 + m′, (D1)

where the reduction of domain wall magnetization m0

is employed to enforce the unity condition |m| = 1.
According to above partition scheme, the LLG equation (1) is
transformed to [34]

ṁ0 − αm0 × ṁ0 = −γ m0 × h(m0) + τ, (D2)

where τ is the magnonic torque exerted by spin wave m′. After
time averaging, the magnonic torque is explicitly described by

τ = j∂xm0 + 2�[m0 × γ h(m0)], (D3)

where the first term is the spin-transfer torque mediated by
the spin flux j , and the second term is gravity-like torque
mediated by the spin density �. Considering the specific
form of the wave packet of interest here, a third pressure-like
torque (also known as the entropic torque [13,15,56,57])
γ A∂x�(m0×∂xm0) is ignored. The spin density and flux
carried by spin wave in Eq. (D3) read

� ≡ 〈m′ · m′〉
2

, j ≡ γ A〈∂xm′ × m′〉 · m0, (D4)

where 〈. . . 〉 represents the time averaging.
For spin wave packet localized around its central position

χ , above two quantities are rewritten as

� = ρδ(x − χ ), j = jδ(x − χ ), (D5)

where ρ and j are spin intensity and current following Eq. (9).
In the meantime, in collective coordinates X and �, the do-
main wall evolution is captured by m0(t ) = m0[X (t ),�(t )].
Left multiplying m0×∂X/�m0 and integrating in the whole
magnetic wire, the modified LLG equation (D2) is then trans-
formed to generalized Thiele equation (10) in the main text.

APPENDIX E: DERIVATIONS OF THE SUBVELOCITIES
OF DOMAIN WALL

Equation (6) can be recast to following form:

K⊥
Ak2

≈ K⊥
Ak2 + K

= 1 − ε2

ε2
, (E1)

where the short-wavelength approximation Ak2 � K is used.
Based the relation in Eq. (E1), the spin wave velocity in
Eq. (8) and the spin intensity in Eq. (9a), the coefficient of
Vρ in Eq. (14) is then given by

γ 2KK⊥W

v
ρ = γ 2AK⊥

v2

vρ

W

= K⊥
Ak2

ε2

(1 + ε2)2

vρ

W

= 1 − ε2

1 + ε2

σ

4W
c2v. (E2)

Meanwhile, invoking Eqs. (8) and (9b), the coefficient of Vj

in Eq. (14) is rewritten as

1

2W
j = 1

2W
γ εσc2Ak = 2ε2

1 + ε2

σ

4W
c2v. (E3)

Defining ξ = 2ε2/(1 + ε2), Eqs. (E2) and (E3) then lead to
Eq. (15) in the main text.

APPENDIX F: MOMENTUM VARIATION OF SPIN WAVE

In the short-wavelength limit (or WKB approximation), the
local spin wave dispersion within the domain wall, following
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Eq. (A1), is described by

ω(x) = γ
√

[Ak2 + U (x)][Ak2 + K⊥ + U (x)]. (F1)

In configuration space {x, k}, the local dispersion ω acts
as the Hamiltonian of a particle-like object [50,64,65].
Invoking Eq. (6), the evolution of the wavevector k is

governed by

k̇ = −∂ω

∂x
≈ −γ 2(2Ak2 + K⊥ + 2K0)

2ω

∂U

∂x

= 1 + ε2

2ε
e, (F2)

which then leads to the correction in Eq. (20a).
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