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Crossover from string to cluster dynamics following a field quench in spin ice
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We investigate quench dynamics of spin ice after removal of a strong magnetic field along the [100] crystal
direction, using Monte Carlo simulations and theoretical arguments. We show how the early time relaxation of the
magnetization can be understood in terms of nucleation and growth of strings of flipped spins, in agreement with
an effective stochastic model that we introduce and solve analytically. We demonstrate a crossover at longer times
to a regime dominated by approximately isotropic clusters, which we characterize in terms of their morphology,
and present evidence for a percolation transition as a function of magnetization.
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I. INTRODUCTION

Studying the nonequilibrium dynamics of many-body sys-
tems provides a way to explore phenomena that are not
accessible at or near equilibrium. The simplest protocol, at
least conceptually, is the “quench” [1–3], where a system is
initially prepared in equilibrium and then a sudden change is
made to one or more external parameters, such as temperature
[3] or an applied field [4]. Quenches have been realized in
numerous experiments, principally in cold atomic gases [5–9],
but also in magnetic systems [10].

These include the spin ice materials [11,12], a class of
frustrated pyrochlore oxides with unusual low-temperature
properties. The frustration results from a combination of the
pyrochlore lattice (a network of corner-sharing tetrahedra; see
Fig. 1), strong easy-axis anisotropy, and effectively ferromag-
netic nearest-neighbor interactions [13,14] (see Sec. II A for
details).

In the “classical” spin ices, such as Dy2Ti2O7 [15] and
Ho2Ti2O7 [16,17], quantum effects are negligible [18] and the
magnetic moments are well approximated as classical Ising
degrees of freedom. (By contrast, in “quantum spin ices” [19]
such as Pr2Sn2O7 and Pr2Zr2O7 significant tunneling occurs
and a classical description is insufficient.) The spin configu-
rations with lowest energy are those that obey the “ice rule”
on each tetrahedron: two spins point outwards and two point
inwards. Such states form an extensive low-energy manifold,
resulting in a large residual entropy at least down to tempera-
tures T � 0.35 K [20]. In this regime, the system behaves as
a strongly correlated paramagnet, referred to as a “Coulomb
phase” [21,22], while magnetic ordering is predicted to occur
at still lower T � 0.15 K [23].

The elementary excitations above the low-energy manifold
are tetrahedra at which the ice rule is broken, where three
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spins point out and one in, or vice versa. (Tetrahedra where
all four spins point out or in also exist and have still higher
energy.) Such excitations, which occur at finite density for
any nonzero T , are points where the local magnetization has
nonzero divergence and are hence monopoles of the magnetic
field H [14]. These monopoles are deconfined [24], interact-
ing through a magnetic Coulomb law, and can be manipulated
by applied magnetic fields [4,25,26].

In this work, we use Monte Carlo simulations to study dy-
namics in classical spin ice following a quench of a magnetic
field applied along the [100] crystal direction. In the protocol
we consider, a large field is initially applied, polarizing the
spins along this direction [27], and then suddenly removed,
leaving the spins to relax in zero field.

The equilibrium properties of spin ice in a [100] field
are naturally described in terms of strings of flipped spins
terminated by a monopole at either end [28,29]. At a critical
ratio of temperature to field, there is a crossover where such
strings proliferate [28], which becomes a (“Kasteleyn” [30])
phase transition in the limit where the proliferation temper-
ature is much smaller than the energy cost of a monopole
[28,31,32].

The quench that we consider here effectively drives the
system across this transition, starting on the low-temperature
side. We show that the dynamics is initially driven by the
nucleation and growth of strings and derive an effective
stochastic model for these processes, which gives quanti-
tatively accurate results at early times. At later times, we
observe a crossover from string to cluster dynamics, which
we characterize in terms of the size and shape of the largest
cluster. We also find a percolation transition analogous to the
equilibrium Kasteleyn transition, which appears to demon-
strate a crossing point with system size.

The paper is organized as follows. We begin in Sec. II
with a description of the model of spin ice and its dynamics.
Following that, in Sec. III, we consider the relaxation of bulk
properties, specifically the density of magnetic monopoles and
the magnetization, following the field quench. In Sec. IV, we
show how the relaxation process can be understood in terms
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FIG. 1. Part of the pyrochlore lattice, a network of corner-sharing
tetrahedra, with the [100] crystal direction shown vertically. (Top
left) Initial configuration, where all spins are aligned with the mag-
netic field h = (0, 0, hz ) (gray vertical arrow), as far as possible given
the local easy-axis constraints. (Bottom right) Example configuration
following the quench of the field to zero. The flipped spins form
a “string” of length � = 3, terminated by monopoles (red and blue
spheres) at either end. The tetrahedron centers lie on a diamond
lattice with nearest-neighbor distance ad = √

3/2a, where a is the
nearest-neighbor distance in the pyrochlore lattice.

of strings and clusters of flipped spins. The cluster percolation
transition is described in Sec. V. Finally, we conclude in
Sec. VI, including a discussion of relevance to experiments.

II. MODEL AND DYNAMICS

A. Hamiltonian

We study a model of spin ice with classical spins Si of
magnetic moment μ � 10 μB on the sites i of a pyrochlore
lattice. The spins are constrained to Si = σin̂i, where σi = ±1
is an effective Ising degree of freedom and the fixed unit
vector n̂i points along the local 〈111〉 easy axis between the
centers of the two tetrahedra to which each site belongs [33].
More precisely, we define ηα = ±1 for the two orientations of
tetrahedra α in the pyrochlore lattice and choose n̂i to point
from the tetrahedron with ηα = +1 to the tetrahedron with
ηα = −1.

The interactions between the spins are well described by
the dipolar spin ice Hamiltonian [23]

HDSI = −J
∑
〈i j〉

Si · S j + D
∑
i> j

Vdd

(
Si, S j,

ri − r j

a

)
, (1)

where a is the nearest-neighbor distance in the pyrochlore
lattice, D = μ0μ

2/(4πa3) is the dipole energy scale, and

Vdd(S, S′, r) = S · S′

|r|3 − 3(S · r)(S′ · r)

|r|5 (2)

is the interaction energy of a pair of magnetic dipoles. (For
simplicity, we neglect further-neighbor exchange interactions,
which may become significant at lower temperatures [34,35].)

For Dy2Ti2O7, the coefficients take values J = −3.72 K
and D = 1.41 K [23] (we set kB = 1 throughout). Because of
the Ising constraint, for every pair of nearest-neighbor sites i
and j, Si · S j = − 1

3σiσ j while Vdd(Si, S j,
ri−r j

a ) = 5
3σiσ j [23].

Taking into account both terms in HDSI, the net interac-
tion between nearest neighbors can therefore be written as
−3JeffSi · S j = +Jeffσiσ j where

Jeff = 1
3 J + 5

3 D � +1.1 K (3)

for Dy2Ti2O7. This antiferromagnetic nearest-neighbor inter-
action (in terms of σi) is frustrated and is minimized by the
“ice rules” states in which two spins point into each tetrahe-
dron and two point out.

Rather than using the full Hamiltonian HDSI, we approxi-
mate the dipolar interactions using the dumbbell model [14],
which replaces each magnetic dipole, of moment μSi, by a
pair of magnetic charges ±μ/ad at the centers of the two
tetrahedra to which that spin belongs. These tetrahedron cen-
ters form a diamond lattice with nearest-neighbor distance
ad = √

3/2a (see Fig. 1); in the following, we use α to la-
bel both a tetrahedron and the corresponding diamond site.
This approximation, which differs from the DSI model by
quadrupolar corrections [13], considerably reduces the com-
putational complexity of the problem and provides an accurate
approximation except at very low temperatures [36].

Within this model, the Hamiltonian is given (up to an
unimportant constant) by [14]

H = νa2
d

4μ2

∑
α

Q2
α + μ0

4π

∑
α>β

QαQβ

|rα − rβ | , (4)

where Qα is the total magnetic charge on diamond site α, and
the on-site energy [37]

ν = 2

3
J + 8

3

[
1 +

√
2

3

]
D (5)

can be fixed by considering the energy change due to a single
spin flip [14].

The magnetic charge Qα is given by summing the contribu-
tions from the four dumbbells representing the four spins on
tetrahedron α. We write it as Qα = 2nαμ/ad, where

nα = −1

2
ηα

∑
i∈α

σi . (6)

takes integer values 0, ±1, and ±2. (The sum is over sites
i belonging to tetrahedron α.) The Hamiltonian can then be
rewritten as [37]

H = ν
∑

α

n2
α + γUC

∑
α>β

nαnβVC

(
rα − rβ

ad

)
, (7)
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where VC(r) = |r|−1 is the (magnetostatic) Coulomb potential
and

UC = μ0

4π

(
2μ

ad

)2 1

ad
= 8

3

√
2

3
D � 3.1 K , (8)

for Dy2Ti2O7. We include the dimensionless parameter γ ,
which in reality takes the value γ = 1, in order to vary the
strength of the dipolar interactions in our simulations.

In practice, to calculate the long-range interactions be-
tween the magnetic monopoles, we modify the Coulomb
potential VC by including mirror charges, implemented using
Ewald summation [38–40].

Within the dumbbell model, all configurations that obey
the ice rules, i.e., that have nα = 0 on every tetrahedron
α, are degenerate ground states, with energy Hgs = 0. The
lowest-energy excited states each have a single spin flipped
relative to a ground state, or equivalently a pair of charges
nα = ±1 on adjacent tetrahedra. Their energy is therefore
Hmin = 2ν − γUC, with the two terms coming from the on-
site and Coulomb terms in Eq. (7), respectively. Since Hmin

gives the activation energy for dynamics based on single spin
flips, we define 2
 = Hmin − Hgs, giving


 = ν − 1
2γUC . (9)

Rather than treating ν, the on-site interaction, and γ , the
relative strength of the Coulomb interaction, as independent
parameters in our simulations, we choose to fix 
 = 2.8 K,
corresponding to Dy2Ti2O7, while allowing ν to vary with
γ according to Eq. (9). Our motivation for this is that we
expect the Boltzmann weight for a monopole, e−
/T , to set
the principal timescale for the dynamics, and so holding this
fixed while varying γ allows us to isolate the effects of the
long-range interactions. In the dumbbell picture, it effectively
means that changing γ tunes the strength of the Coulomb in-
teraction between further-neighbor tetrahedra but not between
nearest neighbors.

Within the nearest-neighbor model, γ = 0, the system can
be thought of as a collection of vertices (sites of the diamond
lattice) of sixteen different types. Six of these satisfy the ice
rule [neutral, nα = 0, see Fig. 2(a)], two are all-in or all-
out [nα = ±2, see Figs. 2(c1) and 2(c2)], and the remaining
eight are three-in–one-out or three-out–one-in [nα = ±1, see
Figs. 2(b1) and 2(b2)]. For γ > 0, the configuration energy is
no longer simply a sum of vertex terms.

B. Dynamics and simulation parameters

Our simulations are performed on pyrochlore lattices with
Ns = 16Nx

u Ny
u Nz

u sites, where Nx,y,z
u are the numbers of cubic

unit cells of the fcc Bravais lattice of pyrochlore. Periodic
boundary conditions are applied in each direction. The total
number of tetrahedra (of both orientations), equal to the num-
ber of sites of the diamond lattice, is Nd = 1

2 Ns.
We treat the dynamics using the so-called “standard

model” [41] of uncorrelated spin flips with a single
temperature-independent timescale τflip ∼ 3 ms [42,43]. Flips
are attempted at randomly chosen sites at a rate Nsτ

−1
flip , and

(a) (b1) (b2)

(c1) (c2)

FIG. 2. Different classes of tetrahedron configuration, corre-
sponding to vertex types in the diamond lattice. (a) 2 spins in–2 spins
out: neutral configuration, with effective magnetic charge nα = 0 and
degeneracy 6. (b1) 3 out–1 in and (b2) 3 in–1 out: single monopole,
nα = ±1, with total degeneracy 8 (4 for each sign). (c1) all out and
(c2) all in: double monopoles, nα = ±2, with total degeneracy 2.

accepted with a Glauber probability [44–46]

PG(δE ) = 1

eδE/T + 1
, (10)

where δE is the associated change in energy and T is the
temperature. The time t in our numerical results is therefore
effectively measured in units of τflip.

We consider dynamics following an instantaneous
“quench” of the applied magnetic field h, which couples
to the spins through a Zeeman term HZ = −h · M, where

M =
∑

i

Si (11)

is the total magnetization (in units of the ionic magnetic
moment μ). The initial field is chosen along the [100] crys-
tal direction, which we take as the z axis, taking the value
h = (0, 0, hz ), with magnitude hz 	 T . As a result, all spins
are aligned with the field to the maximum extent consistent
with the easy-axis constraint, as illustrated in the top-left
panel of Fig. 1, where [100] points upwards. (We assume
that hz is much smaller than the crystal-field term that en-
forces the easy-axis constraint, which is of order 300 K in
the classical spin ice materials [12]. For example, an applied
field of magnitude μ0|H| = 1T corresponds to |h| ∼ 7K.)
This configuration satisfies the ice rules and so minimizes
the (dumbbell-model) Hamiltonian H , since each tetrahedron
has its top two spins pointing outward and bottom two spins
pointing inward [47].

At t = 0, the field is instantaneously reduced to h = 0, and
the subsequent dynamics takes place in zero field starting from
the fully magnetized configuration. Since the spin-flip dynam-
ics is ergodic and the (post-quench) Hamiltonian preserves the
full symmetry of the lattice, the dynamics progresses towards
thermal equilibrium at temperature T , a spin-ice state with a
finite density of monopoles and zero mean magnetization.
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Our interest in this work is in studying how the thermal
equilibrium state is reached and how the nature of the excita-
tions controls the dynamics into the equilibrium state. We first
characterize the relaxation to equilibrium by considering bulk
properties, before studying how this happens in terms of the
appearance of strings and clusters of flipped spins.

III. RELAXATION OF BULK PROPERTIES

A. Density of monopoles

The starting configuration, with all spins pointing up-
ward, obeys the ice rule on every tetrahedron, and so has no
monopoles. In the long-time limit, the system reaches thermal
equilibrium at temperature T and so monopoles with both
|nα| = 1 and 2 will occur at finite density.

Our MC results for the density of monopoles (absolute
number of monopoles per tetrahedron) of both types, ρ1 and
ρ2 respectively, are shown in Figs. 3(a) and 3(b), for nearest-
neighbor spin ice, γ = 0, with Ns = 128 spins. As expected,
both densities increase from zero and quickly reach equilib-
rium values that increase with temperature.

Starting from an ice-rules configuration, a spin flip pro-
duces a pair of monopole excitations of charge ±1 on adjacent
tetrahedra. We therefore expect ρ1 ∼ t at very early time,
which agrees with our results for t � 0.1. A charge-±2
monopole can be created by a spin flip at a tetrahedron al-
ready containing a monopole. Their density should therefore
increase as ρ2 ∼ t2, which is also consistent with the MC
results at similar times.

At long times, the equilibrium densities are determined
by the activation energy 
, as well as the further neigh-
bor interactions γ . For γ = 0, the equilibrium densities can
be calculated by treating the tetrahedra as independent and
considering the Boltzmann weight and multiplicity of each
configuration [48]

ρ
eq
1 = 8w1

6 + 8w1 + 2w2
,

ρ
eq
2 = 2w2

6 + 8w1 + 2w2
, (12)

where w1 = e−
/T and w2 = e−4
/T . These values are plotted
as horizontal dashed lines in Figs. 3(a) and 3(b), and are in
good agreement with the MC results.

As a final check that the system is reaching thermal equi-
librium and that there is no dependence on the initial state,
we compare with simulations starting from a random config-
uration (effectively T 	 
). In this case, shown in Figs. 3(a)
and 3(b) with dash-dot lines, the densities of both types of
monopoles start at a large value and rapidly decrease, reaching
an identical final density as with the field-quench protocol.

B. Magnetization

In Fig. 3(c), we show the time evolution of the magneti-
zation density, which decreases from its maximum value at
t = 0 to zero at long times. We define

mz = Mz

Msat
, (13)

10-3

10-2

10-1

100
(a)

100 102 104
10-5

10-3

10-1
(b)

10-2 100 102 104

0

0.2

0.4

0.6

0.8

1 (c)

10-2 100 102

100

102

104

1 5 10
0

5

10

15

FIG. 3. Time evolution of density of magnetic monopoles with
(a) |nα| = 1 (b) |nα| = 2 at different temperatures T for a system
of Ns = 128 spins (2 × 2 × 2 cubic unit cells), averaged over 1000
independent runs. Solid (respectively dash-dot) lines corresponds to
the fully magnetized (disordered) initial configuration. At long time
both densities reach their equilibrium values shown with horizontal
dashed lines and obtained from Eq. (12). (c) Time evolution of the z
component of the magnetization, mz(t ), for the same T values as in
panel (a). Dashed lines show fits to e−t/τ for each T . The left inset
shows a plot of the fitted τ values, along with a fit to τ ∝ exp(T0/T )
with T0 = 3.5K. The right inset shows the same data as the main
panel with a double-logarithmic vertical axis, on which a stretched
exponential ∼e−(t/τ )β would appear as a straight line with slope −β.

which gives the z component of the magnetization relative to
its saturation value Msat = |n̂i · ẑ|Ns where |n̂i · ẑ| = 1√

3
is the

component of the fixed unit vector n̂i along the z axis. The ini-
tial configuration is fully magnetized and so has mz = 1, while
the full symmetry of the lattice is restored in the equilibrium
configuration at long times, and so mz = 0.

As with the monopole densities, the relaxation is faster
at higher temperatures. The dashed lines in Fig. 3(c) show
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FIG. 4. Finite-size effects on relaxation of bulk properties.
(a) Time evolution of density of (single) magnetic monopoles ρ1 for
various system sizes Ns and temperatures T . System dimensions are
2 × 2 × 2 (Ns = 128), 2 × 2 × 4 (Ns = 256), and 4 × 4 × 4 (Ns =
1024) cubic unit cells. Dashed horizontal lines show the equilibrium
monopole density in the thermodynamic limit for each T . At the low-
est T values, there is a significant finite-size effect in the equilibrium
value of ρ1. (b) Time evolution of magnetization mz(t ) for the same
parameters.

exponential fits, mz = e−t/τ , for each temperature, and the
fitted relaxation timescale τ is plotted as a function of T in
the left inset. The observed exponential growth of τ with T −1

is consistent with previous studies using the standard model
of spin ice dynamics [41,49]. The exponential fits match the
MC data quite well for T � 3K, but become increasingly poor
as T decreases. This is compatible with relaxation dominated
by isolated spin flips at higher temperatures, with collective
effects becoming significant only at lower T . We discuss this
early time behavior in more detail in Sec. IV A.

The right inset of Fig. 3(c) shows the same data plotted
on a double-logarithmic vertical scale, so that a decrease of
the form ∼e−(t/τ )β , would appear as a straight line with slope
−β. We see no indication of stretched-exponential decay,
which would correspond to β < 1, though the relaxation at the
lowest temperatures is broadly compatible with a compressed
exponential (β > 1).

C. Finite-size effects and long-range interactions

As a test of the sensitivity of our results to finite-size
effects and long-range interactions, we show the dependence
of monopole density and magnetization for various system
sizes in Fig. 4 and for nonzero γ in Fig. 5. In both cases, only
small quantitative effects are seen.
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0 0.5 1

0.025

0.05
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0.2

10-2 100 102
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0.2

0.4

0.6

0.8
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FIG. 5. Effects of long-range interactions on relaxation of bulk
properties: (a) Time evolution of monopole density ρ1 for various
strengths of long-range interactions, where γ = 0 has only nearest-
neigbor interactions and γ = 1 is the dumbbell model (see Sec. II A
for details). The temperatures are T = 1.22K (S1), T = 0.97K (S2),
and T = 0.81K (S3), and the system size is Ns = 128 in all cases.
(Inset) Long-time values ρ

eq
1 of ρ1, evaluated at the time correspond-

ing to the vertical dashed line in the main figure, plotted vs γ .
(b) Time evolution of magnetization mz for the same parameters.

The most noticeable effect of increasing γ from zero
is a decrease in the equilibrium (i.e., long-time) density of
monopoles ρ1, shown in the inset of Fig. 5(a). This occurs
at all three temperatures shown, although for T = 1.22 K the
slight decrease for small nonzero γ reverses as γ approaches
1. [Simulations at γ > 1 (not shown) confirm that ρ

eq
1 in-

creases at larger γ in all three cases.]
The decrease of monopole density with γ is, we believe,

merely a consequence of the parametrization of the Coulomb
interactions that we choose in our simulation. As γ increases,
we also increase ν in order to keep the activation energy

 fixed [see Eq. (9) and the following paragraph]. This
has the effect of slightly increasing the energy of an oppo-
sitely charged pair of monopoles on tetrahedra beyond nearest
neighbors, and hence reducing their density. At larger γ , the
longer-range interaction [second term in Eq. (7)] can become
larger, reversing the effect.

Increasing γ from zero also results in slower relaxation of
the magnetization, as shown in Fig. 5(b). This effect is more
pronounced at lower temperatures, and can be understood as
a consequence of the reduced monopole density.
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(a) (b) (c)

FIG. 6. Illustration of string formation and growth. (a) In the
starting configuration, all spins point upwards, aligned with the exter-
nal field applied at t < 0. (b) A spin flip produces a pair of monopoles
on adjacent tetrahedra, which can be interpreted as a string of unit
length, � = 1. (c) Flipping a neighboring spin in the layer either
above or (as shown) below the first moves one of the two monopoles,
increasing the length of the string to � = 2. From this configuration,
the string could be further extended to length � = 3, for example
by flipping one of the two bottom-most spins. Note that flipping
the top-right spin in the bottom tetrahedron would create a double
monopole of charge nα = +2, with a much higher energy cost. For
this reason, an isolated string always follows the z direction and
cannot form a closed loop (unless it spans the system boundaries).

IV. STRING AND CLUSTER DYNAMICS

Up to this point, we have been considering bulk properties,
in terms of which the relaxation appears to be quite conven-
tional. We now consider the microscopic processes by which
this magnetization occurs, considering the basic processes that
allow demagnetization of the fully saturated configuration.

The starting configuration has all spins polarized along the
field and hence no monopoles. Starting from the polarized
configuration, flipping any spin from up to down produces a
pair of monopoles on neighboring tetrahedra, as illustrated in
Fig. 6 and so involves a large energy cost 2
. Once such a
pair has been produced, however, another process becomes
possible: by flipping a second spin on either of the tetrahedra,
its monopole can be moved to a neighboring tetrahedron; see
Fig. 6(c). The only energy cost associated with this second
process is due to the change in the Coulomb interaction from
separating the two monopoles, which is much smaller than 


(and zero in the case γ = 0).
This process can be continued, separating the two

monopoles along the z direction, and leaving behind a string
of downward-pointing spins [28,31], sometimes referred to as
a Dirac string [29]. Importantly, since these strings are defined
with respect to the fully polarized initial configuration, an
isolated string cannot form a closed loop unless it spans the
periodic boundaries; an open string is always aligned along
the z direction and has one monopole at each end.1

The dynamics following the quench, at least at short times,
can therefore be understood in terms of two processes: a slow
process whereby a single spin is flipped, producing a pair

1Given a single spin configuration, there is no way to uniquely
define the strings. In the context of the field quench, however, we
can define the strings by reference to the initial configuration [29].

of monopoles on neighboring tetrahedra; and a fast process
where subsequent spin flips separate the monopoles and pro-
duce a string of flipped spins. On longer time scales, once a
significant fraction of the spins have been flipped downward,
the system is no longer well described by isolated strings but
rather clusters of flipped spins.

A. Early time dynamics: Formation of strings

To study the string-cluster crossover within our MC simu-
lations, we identify, for each configuration, all connected sets
of flipped (down) spins, where two spins are connected if they
are joined by a nearest-neighbor path of down spins. In Fig. 7,
we show N (�, t ), the mean number of such sets of each size
� � 4 at time t in a system with Ns = 1024 spins, for different
temperatures T and dipolar interaction strengths γ .

In all cases, N (�, t ) grows at short times before decreasing,
with successively larger � values growing more slowly at first.
Comparing with Fig. 4, the maximum is seen to coincide
roughly with the time at which the magnetization begins to
decrease significantly from its initial value of mz = 1. We
therefore interpret the initial increase as the regime where
the strings are formed and grow independently. The decrease
at later times indicates the crossover into cluster dynamics,
which we address in Sec. IV B.

1. Single-string model

In the independent-string regime, it is possible to describe
the dynamics analytically by considering the population of
strings of each length � (in units of ad). We assume that the
density of down spins is low enough that we can treat each
string as well isolated from all others, so that each string
effectively grows in a background where all other spins point
upwards. In addition, we assume that we can neglect finite-
size effects, which is valid if all strings are much smaller
than the system size in the z direction. We describe the γ = 0
case first and then comment briefly on the effect of long-range
interactions.

The number of strings of length � > 1 changes due to
growth and contraction of existing strings. In addition, we
must consider creation and annihilation processes for strings
of length � = 1. To describe the dynamics, we define a
stochastic model for a single string, illustrated in Fig. 8. Con-
sider a string created at time t0 and let Pr(�, s = t − t0) be the
probability that it has length � ∈ Z�0 at time t . By definition,
Pr(�, 0) = δ�,1, while the only stationary state is � = 0, an
absorbing state representing a string that has shrunk to zero
length and disappeared.

Growth of a string of length � � 1, producing one of length
� + 1, occurs when one flips any of four up spins, two in
the row immediately above the top of the string and two in
the row immediately below its bottom [see Fig. 6(b)]. On the
other hand, contraction of a string of length � > 1 requires that
one of two down spins, either the top-most or bottom-most of
those comprising the string, should be flipped. For each of
these processes, there is no change in energy (for γ = 0), be-
cause a monopole is effectively moved from one tetrahedron
to another. Either update is therefore accepted with Glauber
probability PG(0) = 1

2 . In units of the overall spin-flip rate
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FIG. 7. Early time dynamics: Mean number N (�, t ) of connected
sets of flipped spins of size � � 4 at time t , for various temperatures.
In both main figures and insets, solid lines show the numerical solu-
tion of the single-string model defined in Sec. IV A 1, which assumes
γ = 0 and is valid only at early times. [We solve the coupled equa-
tions Eqs. (14) and (15) with a finite cutoff on �, which is varied to
confirm convergence.] MC results, with Ns = 1024 spins (4 × 4 × 4
cubic unit cells) and averaged over 500 independent runs, are shown
with symbols in the main figures, where γ > 0, and dashed lines in
the inset, where γ = 0. Note that mean number is well below 1 at
early times for most �, indicating that most samples have no sets at
all of that size.

τ−1
flip , growth therefore occurs with rate r+ = 4PG(0) = 2 and

contraction with rate r− = 2PG(0) = 1.2

2Note that an isolated string tends to grow, since r+ > r−, and that
this is due to entropy: there are more ways to grow a string than to
shrink it. This effect is in agreement with entropic arguments about
favorability of strings in equilibrium [28].

FIG. 8. Graph representing the dynamical model for a single
string. Vertices (circles) denote strings of length �, with � = 0 repre-
senting a string that has shrunk to zero length and hence disappeared.
Edges (arrows) are transitions with associated rates for growth r+ =
2, contraction r− = 1, and annihilation r0 = PG(−2
), in units of
the spin-flip rate τ−1

flip .

Annihilation of a unit-length string is represented in the
single-string model by the absorbing transition from � = 1
to � = 0. This occurs when the single down spin comprising
the string is randomly chosen and flipped back upwards. This
process reduces the energy by 2
, where 
 is the energy of
a single monopole. The acceptance probability is therefore
PG(−2
), and so the rate is simply r0 = PG(−2
).

This stochastic model can be solved by expanding in terms
of the eigenvectors of the rate matrix, as we describe in Ap-
pendix B. For the limiting case 
/T → ∞, where r0 → r−,
the result can be expressed in terms of modified Bessel func-
tions, while the general result can be expressed in closed form
in terms of a contour integral, Eq. (B7).

The single-string stochastic model could be modified to
include the effect of long-range interactions, γ = 0. In this
case, changing the length of the string does involve an energy
change, due to the Coulomb attraction between the monopoles
at its ends. For � > 2, the energy depends on the path of
the string, rather than merely its length, and so one needs
to distinguish all possible string shapes, with the number of
states increasing exponentially with �. The qualitative effect
will be to reduce the rate at which short strings grow into
longer ones, as seen in the numerical results in Fig. 7.

2. String populations

A string of length � = 1 is created when any spin is flipped
from up to down, as long as all of its neighbors point upward.
Since we assume that the density of down spins remains small,
we approximate the number of sites where such a string can
be created by the total number of up spins,

N↑(t ) = Ns −
∞∑

�=1

�N (�, t ) , (14)

The process costs energy 2
 and hence the spin flip is ac-
cepted with probability PG(2
). The rate at which strings
are created at time t0 is therefore PG(2
)N↑(t0), within this
approximation. The string distribution at time t ,

N (�, t ) = PG(2
)
∫ t

0
dt0 N↑(t0) Pr(�, t − t0) , (15)

is then found by considering strings created at all previous
times t0 and their probability of reaching size �.

The behavior of N (�, t ) to leading-order in t can be de-
termined using Eqs. (15) and (B13). To this order, we set
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(a)

(b)

FIG. 9. Crossover from string to cluster dynamics following a field quench. Distribution of sizes V {C} of connected sets of flipped spins
across a sample of configurations, plotted on a color scale, as a function of time. The system contains Ns = 256 spins (2 × 2 × 4 cubic unit
cells) and has temperature T = 0.81K. The red solid line shows the mean size V {C}

max of the largest set, which reaches ∼Ns/2 = 128 at late time.
Insets illustrate typical configurations at early and late times, indicated with blue dots on the main figure. (A smaller system, with 2 × 2 × 2
cubic unit cells, is shown for clarity.) (a) Typical early time configuration. A string of down (flipped) spins that spans the system is highlighted
with a blue solid line; all other spins point upward. (b) Typical late-time configuration. Blue solid lines join the centers of neighboring tetrahedra
containing flipped spins, which form a single large cluster filling nearly all of the system.

N↑ = Ns, replacing Eq. (14), and so the integral gives simply

N (�, t ) ≈ r�−1
+
�!

NsPG(2
)t� (16)

to leading order in t for each �.
Results obtained from the analytical model by numerical

integration, with initial condition N (�, 0) = 0 for all � � 1,
are shown with solid lines in Fig. 7. (We apply a cutoff �max on
the maximum length � and check that the results are insensi-
tive to the value of �max.) At very short times, they are in good
quantitative agreement with those from the MC simulations
for γ = 0 (with no fitting parameters).

As expected, the results of the analytical model deviate
significantly around the time where the maxima are reached
and the assumptions cease to apply. As the MC results in
Fig. 7 show, the number of short strings decreases rapidly at
larger times.

The model of independent strings necessarily fails when
the magnetization falls well below its saturated value, and
so the number of flipped spins can no longer be treated as
small. In the terms of the number of up spins, Eq. (14), the
magnetization density can be written as

mz(t ) = 2
N↑(t )

Ns
− 1 = 1 − 2

Ns

∞∑
�=1

�N (�, t ) . (17)

For T of order 
, the rate of string creation is high and
significant deviation from saturation magnetization occurs
when a large number of strings has been created, even if most
strings remain short. As Fig. 7(a) shows, even for fairly low
temperature, T = 1.22K � 0.44
 significant deviations from
the single-string model occur while strings of length � = 1
remain a clear majority.

On the other hand, for T � 
, creation of strings is
suppressed by PG(2
) ≈ e−2
/T , and string growth is the

main process that reduces the magnetization. For interme-
diate times, where most strings are much longer than the
lattice scale but shorter than their separation (and the sys-
tem size), the single-string model is still valid. According
to Eq. (B12), the mean string length is given in this regime
by

∑
� � Pr(�, t ) ≈ 3

2 + 1
2 t , using PG(−2
) � 1 for T � 
.

Integrating over time as in Eq. (15) and again approximating
N↑ = Ns within the integral gives

mz(t ) ≈ 1 − 2PG(2
)
(

3
2 t + 1

4 t2
)

(18)

at early time. While this result gives a quantitatively good
description of the data only at very short times, it provides
a qualitative explanation of the deviation from exponential
behavior, mz = e−t/τ , noted in Sec. III B.

B. Late-time dynamics: From strings to clusters

While the short-time dynamics can be understood in terms
of growth of isolated strings, this picture ceases to apply at
longer times when the density of strings becomes large. In
fact, on the pyrochlore lattice, strings cease to be uniquely
defined at higher densities of flipped spins: where all four
spins on a single tetrahedron point downwards, there are two
equivalent choices of pairings that define different paths for
the two strings. We therefore describe the dynamics at later
times in terms of clusters of flipped spins; these may be
viewed as dense networks of interwoven strings, with the
caveat that there is no unique way to “untangle” the strings.

The crossover from strings to clusters is illustrated in
Figs. 9(a) and 9(b), where connected sets of flipped spins are
joined by solid blue lines. Inset (a) shows a typical configura-
tion at early time, where a single string has grown along the
[100] direction (upwards), while inset (b) shows a late-time
configuration containing a large cluster of flipped spins. In
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FIG. 10. Morphology of connected sets of flipped (i.e.,
downward-pointing) spins as a function of time t , at different tem-
peratures T for a system of Ns = 128 spins (2 × 2 × 2 cubic unit
cells). (a) Total number N {C} of connected sets of flipped spins.
Dashed vertical lines (at the same times in each panel) mark the
peak of N {C} at each T . The dash-dot horizontal line is at N {C} = 1.
(b) Mean volume V {C}

max (number of spins) of the largest such set. The
dash-dot horizontal line is at V {C}

max = Ns/2, where half of the spins
point downwards. (c) Linear size r{C}

max of the largest set, divided by its

maximum value, L̄ = 1
2π

√
L2

x + L2
y + L2

z . (d) Aspect ratio β{C}
max (see

main text) of the largest set.

the latter case, the cluster includes nearly half of the spins
in the lattice and is roughly isotropic, with no privileged
orientation.

Using our MC algorithm, we produce a sample of inde-
pendent runs at T = 0.81K, and, at each time t in each run,
identify all clusters (connected sets of flipped spins) in the
configuration. The distribution of cluster volumes V {C} (i.e.,
the number of clusters containing V {C} flipped spins) is shown
in Fig. 9 (main figure). Superimposed on this (red solid line),
we show the mean volume V {C}

max of the largest cluster, with the
average taken over the sample of runs.

We show in Figs. 10(a) and 10(b) respectively the total
number N {C} of connected sets of flipped spins and the mean
volume of the largest set V {C}

max for several T values and Ns =
128 spins.

To measure the spatial extent of the largest set, we define

r{C}
max =

√(
x{C}

max
)2 + (

y{C}
max

)2 + (
z{C}

max
)2

, (19)

where

(
x{C}

max

)2 =
(

Lx

2π

)2
⎛
⎝1 −

∣∣∣∣∣ 1

N {C}
d

∑
α

e2π ixα/Lμ

∣∣∣∣∣
2
⎞
⎠ , (20)

and similarly for y{C}
max and z{C}

max. In Eq. (20), the sum runs
over the N {C}

d tetrahedra α, with centers at rα = (xα, yα, zα ),
that contain at least one flipped spin belonging to the

largest connected set. This definition of r{C}
max reduces to the

root-mean-square radius (rms distance from the centroid) for a
small set not spanning the system boundaries, but correctly ac-
counts for the periodic boundary conditions, depending on xα

only modulo Lx. It saturates at r{C}
max = L̄ ≡ 1

2π

√
L2

x + L2
y + L2

z

for a cluster that fills the system uniformly.
In Figs. 10(c) and 10(d) respectively, we plot, as functions

of time, r{C}
max and the aspect ratio β

{C}
max = z{C}

max/x{C}
max, a measure

of the anisotropy of the largest set. When this forms a long
isolated string, such as shown in Fig. 9(a), β > 1, while for
a cluster that fills the (isotropic) system, such as Fig. 9(b),
β � 1. For the smallest possible set, where a single flipped
spin shared by two adjacent tetrahedra, xrms = zrms � ad/2,
and so β = 1.

Considering the behavior of these quantities, the dynamics
can be divided into three stages. The initial rise in N {C} is due
to the proliferation of isolated short strings, as discussed in
Sec. IV A. For all temperatures, r{C}

max grows linearly with t at
the earliest times and the anisotropy measure β

{C}
max increases

rapidly from 1, consistent with linear growth of isolated
strings. For small T , this growth of r{C}

max continues until it
reaches a value of order the linear system size.

The process of string formation is suppressed at low tem-
peratures, since it involves the creation of monopole pairs. The
peak in N {C} is therefore lower and occurs at later time for
lower T . For all temperatures, this peak is reached at roughly
the time when largest set begins to occupy a significant frac-
tion of the system, with V {C}

max of order 10% of Ns.
The subsequent decrease of N {C} can be interpreted as

a consolidation process, whereby strings merge into longer
strings and clusters. A pair of strings can join if the monopoles
of opposite charge on their ends reach the same tetrahedron
and hence annihilate. If instead a monopole enters a tetra-
hedron through which another string passes, the result is a
single cluster that can no longer be viewed in terms of isolated
strings.

In the third stage, at long times, N {C} reaches a constant
value that approaches 1 at low temperature, while V {C}

max sat-
urates at 1

2 Ns. In this regime, a single large cluster fills the
system, as illustrated in Fig. 9(b), containing approximately
half of the spins. Such a cluster has linear extent r{C}

max equal to
its maximum value, L̄, and is approximately isotropic, giving
β

{C}
max = 1, as seen at late times in Figs. 10(c) and 10(d).

To investigate the consequences of finite-size effects, we
show results for different system sizes in Fig. 11. At early
time, the number N {C} of connected sets of flipped spins is
approximately proportional to system size (number of tetra-
hedra) Nd, consistent with independent formation and growth
of strings. For the higher temperature values, N {C} continues
to scale with Nd up to and somewhat beyond its peak, indi-
cating that consolidation of clusters dominates over formation
once they reach a certain (T -dependent, but Nd-independent)
density.

By contrast, for the lowest temperature [T = 0.81K; see
inset of Fig. 11(a)], the maximum value of N {C} grows more
slowly than Nd. This suggests that in this case finite-size
effects on individual strings are already important at the start
of the consolidation process.
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FIG. 11. Finite-size effects on the string-cluster crossover.
(a) Number N {C} of connected sets of flipped spins vs time for
various system sizes (line styles; same dimensions as in Fig. 4)
and temperatures (colors). In the main figure, N {C} is scaled by the
system size (specifically, the number of tetrahedra Nd). The inset
shows the data for T = 0.81K without scaling, which indicates that
N {C} → 1 at long time. (b) Mean volume V {C}

max of largest connected
set of flipped spins, scaled by the number of pyrochlore lattice sites
Ns.

At late time, the number of sets N {C} instead approaches 1
for all system sizes, with a single large cluster of down spins
filling the system.

Results including long-range interactions are shown in
Fig. 12. Comparison with the case γ = 0 indicates that there
is no significant change in the qualitative behavior, and in-
deed little quantitative change. Coulomb interactions between
monomers are expected to suppress the initial growth of
strings, as noted in Sec. IV A, and may also favor reconnection
of long strings at the expense of cluster formation.

V. PERCOLATION

Finally, we consider the growth of clusters from the per-
spective of percolation theory [50,51]. Roughly speaking, we
consider the set of flipped spins to be percolating if there
exists a cluster that spans the periodic boundaries in the [100]
direction. Examples of this criterion are shown in Fig. 13;
note that we choose to include only cases where a cluster
has nontrivial winding numbers and exclude open strings.

(The motivation for this choice is that it corresponds to the
criterion for the equilibrium Kasteleyn transition in the limit

/T → ∞ [28], and therefore provides a way to extend this
to quench dynamics.)

In Fig. 14(a), we show the probability P that a percolating
cluster exists (i.e., the fraction of samples that contain such
a cluster), as a function of time t for various system sizes
Ns. The same data are shown in Fig. 14(b) but plotted as a
function of magnetization mz. (These results are all for the
case without long-range interactions, γ = 0.) In both cases
we see a crossover from P = 0 to 1, which becomes sharper
as the system size increases.

In the limit T/
 → ∞, where the spins are independent
and flipped randomly, this process is identical to standard
bond percolation [52,53] on the diamond lattice, with occu-
pation probability p = N↓/Ns = 1

2 (1 − mz ). (Our model has
spins on the sites of pyrochlore lattice, which are equivalent
to the links of the diamond lattice.) We therefore expect a
percolation transition at pc = 0.39 [50,54,55], manifesting as
a crossing in P as a function of mz at (mz )c = 0.22, becoming
sharper with larger system size.

For lower temperatures, we expect strings to percolate at
lower p for any given system size, and hence higher mz, than
independent flipped spins. (As an example, the configuration
shown in Fig. 9(a) has a single string, and hence a low density
of flipped spins, but is nonetheless percolating.) In our simu-
lation results, we indeed find that decreasing 
/T causes each
curve of P to shift towards higher mz. In fact, we see evidence
that the crossing point characteristic of a continuous transition
remains for all 
/T .

VI. CONCLUSIONS AND OUTLOOK

In this work, we have used MC simulations to study the
dynamics of classical spin ice following a magnetic-field
quench, where a strong field along the [100] crystal direction
is suddenly removed. We have shown how the early time dy-
namics can be understood through the formation and growth
of strings of flipped spins, terminated at each end by magnetic
monopoles, and presented exact results for a simple analytical
model of this process. During this stage, the magnetization
relaxes rapidly, though with significant deviations from a sim-
ple exponential decay for T � 2K, and the monopole density
increases from zero towards its equilibrium value.

At longer times, the system approaches a completely de-
magnetized equilibrium state. This can be interpreted as a
process where the strings merge into clusters that eventually
form a network extending throughout the whole system. We
have also provided evidence for a percolation transition as
a function of magnetization, which extends the equilibrium
Kasteleyn transition [28] to the dynamics. Throughout our
results, we find that finite system size and dipolar spin-spin
interactions (incorporated here using the dumbbell approxi-
mation) have relatively modest effects.

This work is partly motivated by experimental realizations
of field quenches in spin ice materials [10] that have been
performed using Dy2Ti2O7 in fields along both the [100] and
[111] crystal directions. Our results are in general qualitative
agreement with these experiments, which observed relaxation
of the magnetization with a timescale increasing rapidly with
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FIG. 12. Effects of long-range interactions on the string-cluster crossover: Same quantities as in Fig. 10 for various strengths of long-range
interactions γ (see Fig. 5). The top and bottom rows have T = 1.22K and 0.82K respectively, and Ns = 1024 spins (4 × 4 × 4 cubic unit cells)
in both cases. Dashed vertical lines (at the same times in each panel) mark the peak of N {C} at each T .

decreasing temperature [10]. (They also observed only minor
effects from dipolar interactions, finding good agreement with
nearest-neighbor simulations.)

One important confounding factor for quantitative compar-
isons is the question of the extent to which the system remains
in thermal equilibrium. Our simulations make the significant
simplification of using Glauber dynamics with a fixed tem-
perature, in effect assuming that thermal energy is always
transferred rapidly enough for the system to remain locally
in thermal equilibrium. In reality, this is certainly not always
the case, as evidenced by occurrence of magnetic avalanches
induced by local heating [27,56]. Incorporating these effects
into the theoretical framework developed here is a challenging
problem that we defer to future work.

Our simulations use the so-called “standard model” of spin
ice dynamics [42,43], where spin flips are attempted at a
single fixed rate and accepted with a temperature-dependent
probability. Recent work [41,57] has found that the low-
temperature relaxation is better described by including two
distinct flip rates, reflecting a bimodal distribution of local
field strengths.

The consequences of this for the quench dynamics de-
scribed here can be inferred at early times: For an isolated
string, growth and contraction always involves flipping a spin
in an asymmetric environment (see Fig. 6), which occurs at
the faster rate. By contrast, creation and annihilation of unit-
length strings occurs in a symmetric environment and hence
at the slower rate. The main result at early times is therefore

(a) (b) (c)

FIG. 13. Examples of criterion for percolation. Blue lines represent strings of flipped spins relative to the fully polarized configurations.
[(a) and (b)] Configurations in which a percolating string exists. (c) A configuration where no such string exists. A set of flipped spins is
considered to percolate the system only if it is closed and spans the periodic boundaries in the [100] direction, shown upwards. This excludes
cases such as (c), where an open string spans the system, but cannot be assigned a nonzero winding number.
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FIG. 14. Percolation probability P vs (a) time t and (b) magneti-
zation density mz(t ). System dimensions (shown with line styles) are
2 × 2 × 2 (Ns = 128), 3 × 3 × 3 (Ns = 432) and 4 × 4 × 4 (Ns =
1024) cubic unit cells. For each temperature T (colors) a circle
is used in (b) to highlight an apparent crossing point for different
Ns. These crossing points suggest the possibility of a continuous
percolation transition.

an effective renormalization of the “seeding” rate to a smaller
value. At later times the string density is higher, making the
effects more difficult to predict, and simulations incorporating
the two rates are required.

Future work will study quenches where the final magnetic
field strength is nonzero, including close to the Kasteleyn
transition and to the low-temperature side.
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APPENDIX A: ALGORITHM TO IDENTIFY A
PERCOLATED NETWORK OF FLIPPED SPINS

At any time t , we consider each of the independent flipped
spin networks in turn to find a percolated network. We con-
sider all the diamond lattice sites which are the part of a
particular flipped spin network and call this set {Di}. We save
all these points in {Di} for future use. The goal is to find

out whether the network is percolated using the following
algorithm.

Step 1. Consider all the diamond lattice sites which are at
the bottom boundary (z = 0) of the cubic box. These sites
(points) are the starting point of our numerical inspection to
find probable percolating networks. Keep those starting points
({S i

0}) and their coordinates stored.
Step 2. Choose a random starting point S0 ∈ {S i

0}.
Step 3. Check the necessary condition (C1): does any of the

two nearest neighbours (whose z coordinates are higher than
that of S0) of S0, belong to {Di}? The answer will be one of the
following three scenarios. (i) Only a single nearest neighbor
(say S1) satisfies C1, referring the direction [S0 → S1] to be the
probable path of percolation. (ii) Both the nearest neighbours
(say S1 and S′

1) satisfy C1 which indicates two possible paths
of percolation (branching). In this case, we consider the same
direction [S0 → S1] as in (i). But, along with it, we also keep
S′

1 stored in a stack. (iii) C1 is not satisfied. We change the
starting point S0 and repeat step 3 to find S1. Keep searching
for all starting points S0. If S1 is never found, we conclude the
system is unpercolated.

Step 4. Repeat step 3 for the point S1 instead of S0. It can
update the direction [S0 → S1 → S2] if C1 is satisfied. Also
for branching, like step 3(ii), we consider the path [S0 →
S1 → S2] while updating the stack with [S′

1 → S′
2].

Step 5. Repeat step 4. Again the following two scenarios
may occur: (i) For any arbitrary n, if eventually we find Sn =
S0 (requirement R∗), we conclude that the network [S0 →
S1 → S2 → · · · → Sn] percolates. (ii) If for any arbitrary p
step it fails to find Sp, then change the direction of search
by choosing S′

r , where S′
r is the latest point of the stack

[S′
1 → S′

2 → · · · → S′
r]. Keep updating the path along this

branch according to step 4. The idea is that, if at any stage
the algorithm fails to update the direction along a specific
branch, it chooses alternative branch by coming back to the
latest primed point in the stack.

Step 6: If steps 2–5 fails to find any percolated path, we
change the starting point. That is, we choose another S0 ∈
{S i

0} and repeat from step 2. By choosing all the S0 ∈ {S i
0}

in turn, if R∗ is never satisfied, the algorithm concludes that
no percolation exists for the considered flipped spin network.

Step 7. Repeat steps 1–6 for other flipped spin networks.
For any chosen network, if the percolated path is found
then algorithm concludes that the system has percolated at t .
Otherwise, the system is unpercolated at time t .

APPENDIX B: SOLUTION OF SINGLE-STRING MODEL

The rate matrix for the stochastic process defined in Fig. 8
can be written in Dirac notation as

W = − (r0 − r−)|1〉〈1|

+
∞∑

�=1

[−(r−+r+)|�〉〈�|+r+|� + 1〉〈�| + r−|�〉〈� + 1|] ,

(B1)

where we omit the absorbing state |0〉 (so the probability
vectors will not be normalized).
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This matrix has eigenvectors

|ψ (z)〉 =
∞∑

�=1

|�〉
[

z� − r+ + (r0 − r−)z

r0 − r− + r−z

(
r+
r−z

)�−1
]

(B2)

with eigenvalues

λ(z) = r+(z−1 − 1) + r−(z − 1) . (B3)

One can therefore write

|1〉 = −
∮
C

dz

2π i

1

z

r0 − r− + r−z

r+ + (r0 − r−)z
|ψ (z)〉 , (B4)

where the contour C encloses the origin (in a counterclockwise
direction) but not the pole at z = r+/(r− − r0). This implies,
for any � � 1,

Pr(�, t ) = 〈�|eW t |1〉 (B5)

= −
∮
C

dz

2π i

1

z

r0 − r− + r−z

r+ + (r0 − r−)z
etλ(z)

×
[

z� − r+ + (r0 − r−)z

r0 − r− + r−z

(
r+
r−z

)�−1
]

(B6)

=
∮
C

dz

2π i
z�−2 r+ − r−z2

r+ + (r0 − r−)z
et[r+(z−1−1)+r−(z−1)] ,

(B7)

with the same conditions on the contour. (The substitution
z′ = z−1r+/r− has been used in the second term in the in-
tegrand.) As described in Sec. IV A 2, this integral can be
performed numerically to find Pr(�, t ) and hence the string
distribution N (�, t ).

1. Mean string length at late time

The mean length of the string at time t is

�̄(t ) =
∞∑

�=1

� Pr(�, t ) = I (C) , (B8)

where, using Eq. (B7),

I (C) =
∮
C

dz

2π i

1

z

1

(z − 1)2

r+ − r−z2

r+ + (r0 − r−)z
et[r+(z−1−1)+r−(z−1)] ,

(B9)

and the contour C must be restricted to |z| < 1. To determine
the large-t behavior, consider a circular contour C′ of radius
|z| = √

r+/r− > 1. Since C′ encloses a pole at z = 1, the

integrals around the two contours are related by

I (C′) = I (C) + Res

(
1

z

1

(z − 1)2

r+ − r−z2

r+ + (r0 − r−)z

× et[r+(z−1−1)+r−(z−1)], z = 1

)
(B10)

= I (C) − r+(r+ − r− + 2r0)

(r+ − r− + r0)2
− (r+ − r−)2

r+ − r− + r0
t ,

(B11)

where Res denotes the residue. The contour C′ passes
through stationary points of λ(z) at z = ±√

r+/r− and so
can be evaluated for large t using the saddle-point approx-
imation; the result decreases exponentially with t because
λ(±√

r+/r−)<0.
The dominant behavior of I (C) at long time is therefore

simply given by the residue of the pole at z = 1,

�̄(t ) ≈ (r+ − r−)2

r+ − r− + r0
t + r+(r+ − r− + 2r0)

(r+ − r− + r0)2
(B12)

for large t .

2. Early time

Using the integral representation, Eq. (B7), one can also
find the contribution to Pr(�, t ) of leading order in t for each
�. This is given by the lowest power of t that contributes to the
residue of the pole at z = 0, which comes from the (� − 1)th
term in the Taylor expansion of the exponential. The result
is

Pr(�, t ) ≈ t�−1r�−1
+

(� − 1)!
, (B13)

to leading order in t for each � � 1.

3. Zero-temperature limit

As described in the main text, the contraction and an-
nihilation rates are given by r− = 1 and r0 = PG(−2
)
respectively. For small T/
, we have PG(−2
) � 1 and so
these rates are approximately equal. In the limit T/
 → 0,
where they are exactly equal, Eq. (B7) can be expressed in
terms of the modified Bessel function Im [58], defined by

Im(q) =
∮

dz

2π i
z−m−1e

1
2 q(z+z−1 ) . (B14)

Comparing with Eq. (B7), this gives

Pr(�, t ) = e−t (r++r− )

(
r+
r−

) �−1
2

[I�−1(2t
√

r+r−)

− I−�−1(2t
√

r+r−)] (B15)

= e−t (r++r− )

(
r+
r−

) �−1
2 �

t
√

r+r−
I�(2t

√
r+r−) . (B16)
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