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Vison crystal in quantum spin ice on the breathing pyrochlore lattice

Alaric Sanders * and Claudio Castelnovo
TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom

(Received 3 November 2023; revised 26 February 2024; accepted 27 February 2024; published 19 March 2024)

Recent excitement in the quantum spin ice (QSI) community has come from the experimental discovery of
pseudospin- 1

2 breathing pyrochlores, including Ba3Yb2Zn5O11, in which inversion symmetry is broken by the
“up” and “down” tetrahedra taking different physical sizes. We show here that the often-neglected Jz± coupling
between Kramers ions, in combination with the breathing nature of the lattice, can produce an imaginary ring
flip term. This can lead to an unconventional “U (1)π/2 phase”, corresponding to a maximally dense packing
of visons on the lattice. The coherent, emergent QED dynamics of conventional QSI persist in this phase, in a
manner reminiscent of fragmentation in spinon crystals. We characterize the excitations of the system within the
enlarged QSI phase diagram, showing that the imaginary ring flip acts both as a chemical potential for visons
and as an effective three-photon vertex akin to strong light-matter coupling. The coupling causes a structured
high-energy continuum to emerge above the photon dispersion, which is naturally interpreted as three photon
up-conversion in a nonlinear optical crystal.

DOI: 10.1103/PhysRevB.109.094426

I. INTRODUCTION

Quantum spin ice (QSI) is one of the best-known three-
dimensional models realizing quantum spin liquid phases. In
addition to the gapped spinon excitations of classical spin
ice, QSI is characterized by the presence of an emergent
U (1) gauge field bearing a striking resemblance to compact
scalar QED [1], complete with emergent analogues of Dirac
monopoles (visons) and gapless gauge photons. Here we
adopt the “physical” naming convention in which the spinons
are said to carry magnetic charge in the emergent QED, while
visons carry electric charge. This convention is adopted to re-
flect the well-established (real) magnetic charge of the spinons
in spin ice materials [2,3], and the more recent suggestion that
visons may experience Lorentz force in the presence of an
externally applied magnetic field [4,5]. Correspondingly, we
shall use the language of Refs. [2,6], in which the Sz operators
correspond to the magnetic field, while canonically conjugate
rotor variables a, [Sz, a] = −i, are understood as the U (1)
vector potential of an emergent electric field [7].

Recent progress [8] has been made on the generalization
of quantum spin ice models to the breathing pyrochlore lat-
tice, motivated on the experimental side by breathing QSI
candidate materials such as Ba3Yb2Zn5O11 [9–15], and on
the theoretical side by intriguing predictions of axion-like
excitations [16] and higher-rank U (1) gauge theories [17,18].

*als217@cam.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

In this paper, we study a realistic model of breathing quan-
tum spin ice, showing that within the spin liquid phase the
breathing anisotropy and generic nearest-neighbor couplings
can conspire to create an all-in, all-out (AIAO) bias in the
electric field. If tuned beyond a critical strength in parameter
space, we demonstrate that such a bias field induces a phase
transition and the emergence of a vison crystal, or equiva-
lently, a U (1)π/2 phase.

The AIAO bias echoes an existing model in the magnetic
sector, which we summarize here as a useful analogy for our
generalization to the electric sector. In certain rare-earth py-
rochlore iridates (R2Ir2O7, R ∈ {Ho, Dy, . . .}), classical spin
ice is interpenetrated by a pyrochlore lattice of AIAO-ordered
iridium atoms that generate a staggered, AIAO magnetic field
h aligned with the local z axis on every pyrochlore site j
[19–24],

HR2Ir2O7 =
∑

t∈{Tetrahedra}

Jzz

2

⎡
⎣∑

j∈t

(
Sz

j − ηt
h

2Jzz

)⎤⎦
2

,

where ηt is +1 on the A tetrahedral sublattice and –1 on the
B sublattice. Both inversion and time reversal symmetry are
explicitly broken, prejudicing “in” (−) and “out” (+) spinons
to lie on different sublattices. The staggered field h drives
a strongly first-order monopole condensation transition [25]
from the divergence free 2-in, 2-out (2I2O) phase to a 3-in,
1-out (3I1O) spin-fragmented phase, ultimately reaching an
AIAO-ordered phase if h is further increased [21,26–28].

We show that an analog of the AIAO magnetic bias field is
generally present in the electric sector of a breathing spin- 1

2
quantum spin ice. The role of the iridium AIAO magnetic
field is played, subtly, by the Jz±Sz

i S±
j term (acting within

conserved spinon subspaces), assigning different phases to
spinon hopping processes S±

j depending on the state Sz
i of the
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spin at site i. When these terms are used to transport a virtual
spinon around a closed loop in the standard fashion of a ring
flip process, a nonvanishing phase correction emerges in the
effective Hamiltonian. The main consequences of this contri-
bution to the Hamiltonian may be summarized as follows:

(1) Nearest-neighbor microscopic spin interactions on the
Kramers breathing pyrochlore generically generate an AIAO
electric bias field (Sec. III).

(2) Numerics reveal that this electric bias field selects
between four possible phases: the known U (1)0 and U (1)π
phases, and two unconventional, fragmented vison crystal
states, which we refer to as the U (1)±π/2 phases (Sec. V)

(3) These phases are separated by lines of liquid-gas-like
first-order phase transitions, terminating at a critical end point
and becoming all continuously connected via the disordered
high-temperature phase (Sec. V).

(4) The bias field is decoupled from the emergent photon
dynamics to quadratic order (Sec. VI).

(5) The leading-order correction to the photon propagator
comes at cubic order in the emergent gauge field a, represent-
ing a three-photon vertex correction (Sec. VI A).

(6) Visons interact via an emergent Coulomb law, with
the bias field acting (within a large-S description) only as
a chemical potential for visons, prejudicing them to lay on
a certain sublattice set by the original breathing anisotropy
(Sec. VII).

The paper is structured as follows. We introduce the model
in Sec. II. The microscopic perturbation theory responsi-
ble for the AIAO electric bias field is outlined in Sec. III.
Section IV presents certain symmetries of the minimal model,
which we employ to explore the parameter space more effi-
ciently. We then study in Sec. V the phase diagram of this
AIAO-biased quantum spin ice using semiclassical simula-
tions [6,29]. We find a sharp, liquid-gas like phase transition
between the known U (1)0 QSI phase and an unconventional
π/2-flux phase. This transition appears to terminate at a
critical endpoint, which we investigate using finite-size scal-
ing. Section VI presents static and dynamic structure factors
within the U (1)π/2 phase. In Sec. VII we obtain a functional
form for the vison-vison interaction potential in the new
regime. Finally, we draw our conclusions in Sec. VIII.

II. BREATHING PYROCHLORE QUANTUM SPIN ICE

We begin by choosing a notation with which to index the
sites of the breathing pyrochlore lattice. The spins of the
model, residing on the pyrochlore sites, can be conveniently
thought of as living on the links of a parent diamond lattice,
as illustrated in Fig. 1 [30]. The pyrochlore tetrahedra are
centered on the diamond sites, and the smallest closed loops
of links form (buckled) hexagonal plaquettes. Four such pla-
quettes can be chosen to enclose three-dimensional volumes,
which we will refer to as voids [31]. It will be most convenient
to use the language of pyrochlore sites and tetrahedra for the
perturbative derivation of the effective Hamiltonian in Sec. III,
while the effective theory of the subsequent sections is more
elegantly described in the diamond lattice language.

We obtain the Hamiltonian of breathing quantum spin ice
by modifying the standard interaction terms in nonbreath-
ing, Kramers pyrochlore spin ice (Jzz, J±, Jz±, J±±) to take

Tetrahedron t

Plaquette p

Link/Spin site i

Void v

FIG. 1. Illustration of the pyrochlore and diamond lattices. Gray
tetrahedra share corners, which form the pyrochlore sites i (red
sphere, right), which are in one-to-one correspondence with the links
(red line, left) of the diamond lattice. Each diamond plaquette p
(green even-sides hexagon, left) is similarly in unique correspon-
dence with the hexagonal plaquettes of the pyrochlore lattice (green
alternating-sided hexagon, right). Four pairwise adjacent plaquettes
enclose a void v (blue region, bottom left).

different strengths on the two inequivalent tetrahedra, which
we name A and B [8,32–38]. We note in passing that the
lowered symmetry allows, in principle, for spin interactions
beyond those discussed here; we will, however, neglect such
interactions in the spirit of studying a “minimally breathing”
pyrochlore.

H =
∑

σ∈{A,B}
Hσ

zz + Hσ
± + Hσ

z± + Hσ
±±,

Hσ
zz =

∑
〈i j〉σ

Jzz,σ Sz
i Sz

j,

Hσ
± =

∑
〈i j〉σ

−J±,σ (S+
i S−

j + S−
i S+

j ),

Hσ
z± =

∑
i

∑
〈 j→i〉σ

Jz±,σ ζi jS
z
jS

+
i + H.c.,

Hσ
±± =

∑
〈i j〉σ

J±±,σ (γi jS
+
i S+

j + γ ∗
i jS

−S−), (1)

where, if μ(i) = 1, 2, 3, 4 denotes the pyrochlore sublattice of
link i, then

γ ∗
μ(i)μ( j) = −ζμ(i)μ( j)

=

⎛
⎜⎜⎜⎜⎝

0 1 e2π i/3 e−2π i/3

1 0 e−2π i/3 e2π i/3

e2π i/3 e−2π i/3 0 1

e−2π i/3 e2π i/3 1 0

⎞
⎟⎟⎟⎟⎠, (2)

σ is a dummy index for the diamond (i.e., tetrahedral) sub-
lattices A, B, and 〈i j〉σ denotes a pyrochlore bond belonging
to a tetrahedron on sublattice σ . The sum over i in the fourth
line runs over all pyrochlore sites, with the subsequent sum
〈 j → i〉σ running over the six (three A, three B) nearest neigh-
bors of i. Note that each spin component is understood with
respect to the local (pyrochlore sublattice dependent) axes
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tabulated in Appendix A. Our attention is restricted to the
case of Kramers doublets; the additional conditions satisfied
by non-Kramers and dipolar-octupolar doublets are given in
Table III for completeness.

We suppose that both Jzz,A and Jzz,B are much stronger
than the remaining couplings. Without loss of generality let
the A-sublattice coupling be stronger, Jzz,A � Jzz,B > 0. If we
neglect all other terms, the Hamiltonian becomes

H0 =
∑

t∈{Tetrahedra}
Jzz,σ (t )

(∑
i∈t

Sz
i

)2

, (3)

and the ground states belong to the canonical 2I2O ice en-
semble. The energy of a spinon excitation becomes sublattice
dependent, rendering the B-sublattice spinons (irrespective
of their charge) less energetically expensive. The spinon
gap is therefore controlled by Jzz,B. In this respect, we note
that the known breathing spin- 1

2 pyrochlore material to date,
Ba3Yb2Zn5O11, suffers from an exceedingly small value of
Jzz,B, leaving the A tetrahedra paramagnetically decoupled
down to ∼0.1 K [39].

III. PERTURBATION THEORY

We next revisit the perturbation theory of Hermele, Fisher,
and Balents [1], starting from the general symmetry-allowed
nearest-neighbor Hamiltonian in Eq. (1) compatible with the
effective spin-1/2 C3v symmetry.

In the standard fashion, we consider Jzz,A � Jzz,B �
|J±,σ | ∼ |Jz±,σ | ∼ |J±±|. We construct an effective Hamilto-
nian that operates solely within the 2I2O spin ice ensemble
using the standard expansion [1]

Heff = PV
∞∑

k=0

[
1 − P

−H0
V

]k

P, (4)

where P projects onto the 2I2O ice manifold, and the interac-
tion term is V = HA

± + HB
± + HA

z± + HB
z±. We have made the

usual approximation that the eigenvalue E of Heff is vastly
smaller than JA

zz and JB
zz (and therefore the spinon gap), al-

lowing us to set E − H0 
 −H0 and thereby remove any
nonlinearity from the eigenvalue problem. We also remind
in passing that second-order perturbation theory is known to
only generate farther range Ising (namely, Sz) interactions
that—when sufficiently small—do not disrupt the QSL phase
outright, but merely renormalize the emergent speed of light
[40]. In what follows, we suppose that the system remains
continuously connected to the QSL phase, with the Ising
interactions simply weighting the state distribution. Indeed,
previous gMFT work on the breathing pyrochlore [8] and on
the nonbreathing pyrochlore with finite Jz± [41] is suggestive
of a spin liquid phase that persists for a finite radius of both
Jz± and breathing perturbations. We will similarly neglect any
four-Sz and longer range Ising terms (e.g., those dubbed γ and
I2 in Table I) that occur at higher orders.

The processes generated at third and fourth order have suf-
ficiently many vertices to create a virtual spinon pair, transport
the spinons around a nontrivial (i.e., non-self-retracing) loop
on the diamond lattice, and annihilate them. The prototypical
example of such a process is the well-known ring flip term

TABLE I. Selected terms generated to fourth order in per-
turbation theory on the breathing pyrochlore lattice, including
second-neighbor Ising interactions 〈〈i j〉〉 and four spin interactions
between nearest-neighbor self-avoiding lines 〈i jkl〉. Expressions for
all corresponding effective coupling constants in terms of the original
interactions are given in Appendix B.

Origin Nontrivial terms

H 2
z± I (2)

2

∑
〈〈i j〉〉 Sz

i Sz
j

H 3
± g(3)

∑
p(Op + O†

p)

H 2
z±H± I (3)

2

∑
〈〈i j〉〉 Sz

i Sz
j

H 2
z±H± γ (3)

∑
〈i jkl〉 Sz

i Sz
jS

z
kSz

l

H 4
± g(4)

∑
p Op + O†

p

H 2
z±H 2

± ig′(4)
∑

p Op − O†
p

from H3
±, which generates g(3) = 3J3

±,A

4J2
zz,B

+ 3J3
±,B

4J2
zz,A

and the corre-

sponding Op = S+
1 S−

2 S+
3 S−

4 S+
5 S−

6 operator (where 1, 2, . . . , 6
label the six sites around the hexagon p ∈ {�}). Another
example at higher order comes from H4

±, which generates
“teardrop” ring flips [see Fig. 2(d)], as well as some additional
trivial energy shifts.

An illustrative selection of the resulting terms is given in
Fig. 2, and detailed in Table I. The coupling H±± can be shown
(see Appendix B) to generate only conventional ring-flips and
multi-Sz interactions up to fifth order, and we therefore neglect
it for the purpose of our discussion.

Importantly, in addition to the canonical inversion-even g
terms, we obtain an imaginary ring flip ig′(O − O†) from the
eight-spin ring exchange H2

±H2
z±. This term arises from the

sum over all strings of the form ζi1Sz
i S+

1 ζ ∗
j2Sz

jS
−
2 S+

3 S−
4 S+

5 S−
6 ,

where 1–6 refer to the pyrochlore site labeling of Figs. 2 and
3. When both i and j lie on the ring (i.e., i, j ∈ {1, 2, . . . , 6}),
as they do in Figs. 3(a) and 3(b), repeated applications of
the identity SzS± ≡ ±S±/2 replace both factors of Sz by
scalars. The effective operator is then proportional to Op, with
a possibly complex coefficient. Such complex ring flips are
generally forbidden by inversion symmetry, but are allowed
on the breathing pyrochlore where this symmetry is explicitly
broken.

We illustrate here an example of a nonreciprocal pro-
cess responsible for these imaginary ring flips. Consider the
process shown in Fig. 3(a), which represents a sum of all 4! or-
derings of the operator set {ζ16S+

1 Sz
6, ζ ∗

23S−
2 Sz

3, S+
3 S−

4 , S+
5 S−

6 }.
In exactly half of these, the S−

6 is to the left of the term
containing Sz

6, contributing a factor of −S−
6 /2. The other 12

terms have the opposite sign. Similarly, half of the terms
in the sum have Sz

3 to the left of S+
3 , giving an additional

permutation-dependent sign. It can be checked explicitly that
the four cases

Sz
3S+

3 S+
3 Sz

3

Sz
6S+

6 + −
S+

6 Sz
6 − +

are realized by six terms each. As all other terms in the string
commute, this would appear to suggest that the overall sum
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(a)

(c)

(b)

(d)

{ζ1iS
+
1 Sz

i , ζ∗2jS
−
2 Sz

j , S−
2 S+

2 }

1
2

3

4

6

5

1
27

3

4

6

5

1
2

3

4

6

5

1 2

{ζ1iS
+
1 Sz

i , S−
2 S+

3 ,

ζ∗4jS
−
4 Sz

j , S+
5 S−

6 }
{ζ1iS

+
1 Sz

i , ζ∗2jS
−
2 Sz

j ,

S+
3 S−

4 , S+
5 S−

6 }

{S+
1 S−

7 , S+
7 S−

2 , S+
3 S−

4 , S+
5 S−

6 } ζ∗2jS
z
j S−

2

ζ1iS
z
i S+

1

2

1

3
4 S+

3 S−
4

FIG. 2. Selection of processes (i.e., ring flip loops and retracing
paths) appearing up to fourth order (see also Table I), together with
their associated (unordered) operator sets. Black and white symbols
denote spins that are flipped in the process, respectively up-to-down
and down-to-up. Circles denote pyrochlore sites, i.e., spins. Spins
that are flipped twice (returning to their original state) are half-filled
in black and white. Gray spins are not flipped by the process. Curved
purple lines indicate the six-nearest neighbors of a ladder operator
S±, over which the sums over i, j run. Loops (a) and (b) illustrate
the two classes of terms arising from H2

±H 2
z± that are responsible for

generating complex ring flips, as explained in the main text. Loop
(c) is a fourth-order “teardrop” correction to the conventional ring
flip term. Self-retracing loop (d) generates only an Ising (namely, Sz)
interaction. Note that the smaller (i.e., A) tetrahedra are taken to face
out of the plane of the page, as in right panel of Fig. 1.

j

ζijS
+
i Sz

j

j

ζ∗ijS
−
i Sz

j

(a)

1
2

3

4

6

5

(b)

1
2

3

4

6

5

(c)

1
2

3

4

6

5

(d)

1
2

3

4

6

5

FIG. 3. Four of the individual terms contributing to Fig. 2(a).
The curved purple lines denote a factor of ζi jS

+
i Sz

j or ζ ∗
i jS

−
i Sz

j . As
indicated in the main text, (a), (b) lead to complex ring flips whereas
(c) leads to real ring flips. The term (d) cancels with another term in
the expansion and does not contribute.

vanishes exactly, and that processes like those of Fig. 3 do
not contribute to the ring flip. This intuition has, however,
failed to account for the factors of H0 in the denominator of
the expansion in Eq. (4). Reintroducing the propagators 1

−H0
,

where H0 is the Ising Hamiltonian (3), gives

S−
4 S+

3

1

−H0
ζ ∗

23S−
2 Sz

3

1

−H0
ζ16S+

1 Sz
6

1

−H0
S−

6 S+
5 (5)

+S−
4 S+

3

1

−H0
ζ ∗

23S−
2 Sz

3

1

−H0
S−

6 S+
5

1

−H0
ζ16S+

1 Sz
6 . (6)

In the term (5), the rightmost factor of H0 measures two
spinons, both on the small (i.e., A) tetrahedra and therefore
contributing a factor of 1/JA

zz. The corresponding propagator
in (6) instead measures one spinon on each of A and B sublat-
tice, giving a factor of 2/(JA

zz + JB
zz ). The leftmost and center

propagators for both expressions are respectively 1/JA
zz and

2/(JA
zz + JB

zz ), and so the terms do not cancel,

(5) + (6) = ζ16ζ
∗
23

1

JA
zz

2

JB
zz + JA

zz

[−1

JA
zz

+ 2

JB
zz + JA

zz

]
O.

There is an important subtlety associated with orienting
the ring flip operators O on the breathing pyrochlore lattice.
The loops in Fig. 2 are oriented with the smaller A tetrahedra
facing out of the plane of the page, with ladder operators ar-
ranged such that a counterclockwise traversal of the ring raises
(lowers) the spins encountered when moving from an A (B)
tetrahedron to a B (A) tetrahedron. The opposite convention
would generate instead O†. For consistency, it follows that g
must be even under exchange of tetrahedron sublattices, while
g′ must be odd.

For completeness, we mention that these H2
±H2

z±-type ring
processes also generate ring flips of the form SzSzO where the
dangling Sz factors are not part of the ring [i, j /∈ {1, 2, . . . , 6}
in the notation above, see Fig. 3(c)]. We interpret these as
ring flips modulated by SzSz correlations in the local envi-
ronment, which we elaborate on in Appendix B. We will
ultimately drop such eight-spin operators, restricting our at-
tention to the “pure” ring flips [6,42,43]. Note that for any
C ∈ C \ {0}, terms of the form CSzO + C∗SzO† violate time
reversal symmetry and do not appear in the effective Hamil-
tonian; it follows that 1-on, 1-off complex loops, such as the
case illustrated in Fig. 3(d), give no overall contribution.

For simplicity, we suppose that Jzz,A/Jzz,B = Jz±,A/Jz±,B =
J±,A/J±,B =: (1 + κ )/(1 − κ ), where κ is an ad hoc
anisotropy parameter. It is then possible to give an asymptotic
expression for g, g′ in the vicinity of κ = 0. Denoting the aver-
age couplings with an overline [e.g., Jzz = (Jzz,A + Jzz,B)/2],
we have

g ∼ − 6

J
3
zz

[
36J

4
± − 31

4
J

2
±J

2
z± + 2J

3
±Jzz

]
+ O(κ2), (7)

g′ ∼ − 51
√

3 J
2
±J

2
z±

2J
3
zz

κ + O(κ3). (8)

As required by the definition of O, it is true to all orders that
g′ is an odd function of κ , whereas g is even.

Take note that the fourth-order contribution to g has a far
larger combinatorial prefactor than the third-order term (216
as opposed to 12). This is suggestive of a slowly converging
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perturbative series in cases where J±/Jzz is moderately large,
potentially making fourth or even fifth-order terms competi-
tive with the third-order ring flip.

IV. THE g + ig′ MODEL

In the rest of the discussion, we restrict our attention to a
minimal model containing g and g′ as the sole parameters,

H = −
∑

p∈{�}
(g + ig′)Op + H.c. (9)

The sign of g′ reflects a choice of labeling for the A and B tetra-
hedra. The earlier convention J±,A � J±,B renders, without
loss of generality, g′ non-negative. It will be later convenient
to express g + ig′ = ρgeiφg (recall that g and g′ are real).

A. Large-S limit and semiclassical theory

We apply the canonical Villain expansion [44], introducing
an operator a canonically conjugate to Sz (with [a, Sz] = i).
As the a variables are quantum rotors, they are compact;
our paper, following standard convention, understands a to
be an operator on the Hilbert space L2(U (1)) of square in-
tegrable functions on the periodic [0, 2π ) interval, which will
ultimately be represented as a c-number in U (1) = R/2π in
the semiclassical theory. Ladder operators for spin S are then
replaced by the expression

S+ = eia/2
√

(s̃)2 − (Sz )2 eia/2, (10)

where s̃ = S + 1/2 (see also Refs. [1,6,42]). We expand Op to
leading order in 1/s̃ to obtain a modified form of the canonical
U (1) lattice gauge theory,

H

s̃6
= −

∑
p

[gcos(∇ ×p a) + g′ sin(∇ ×p a)] (11)

= −
∑

p

ρg cos(∇ ×p a − φg), (12)

where we introduced the lattice curl ∇ ×p a =∑
j∈p(−) ja j (mod 2π ), with an identical sign convention to

that, which was used in the definition of O, chosen to respect
the orientation of the plaquette Op operators. In the second
line above we reparameterized for convenience the coupling
constants as g = ρg cos(φg) and g′ = ρg sin(φg). With this
definition, it becomes clear that a is a compact U (1) gauge
field—∇ × a is the discrete line integral of a around a closed
loop, i.e., a gauge flux. The form of Eq. (11) now evokes
Eq. (1), with the role of the magnetic bias field h played by
φg. We therefore recognize φg as an AIAO bias for the ∇ × a
(electric) field.

Notice the subtle importance of working first on the pertur-
bation theory of the spin-1/2 system, to produce an effective
Hamiltonian that contains terms with the same number of
spin operators, and then taking the large-S limit. While we
have combined third- and fourth-order terms, which nomi-
nally have six and eight spin operators respectively, we argued
in Sec. III that the interesting contributions from the latter
arise when two of the eight spin operators (namely, the Sz

terms) have a known expectation value and can therefore be
included in the numerical coefficients. This reduces the eight

spin operators of interest to six spin operators, thence Eq. (9).
Turning then to large-S theory produces a well-defined Hamil-
tonian where all the contributions are of order s̃6. Of course,
the fact that some terms come from third-order perturbation
theory, and some from fourth order, remains reflected in the
parametric form of the Hamiltonian coefficients.

The Hamiltonian in Eq. (11) is cast in terms of a U (1)
lattice gauge field a. It will be useful to the later discussion
to introduce the unitary C, which rotates all spins about the
local x axis,

C :

(
Sz

i

S±
j

)
�→

(−Sz
i

S∓
i

)
. (13)

This operation reverses all Sz moments, inverting the sign of
all magnetic monopoles. Further, its action on S±,

C[S+] = S− ⇔ C[eia] = e−ia, (14)

suggests that Ca = −a, reversing the electric field strength.
Inspired by the observation that C reverses both electric and
magnetic field lines, we name this operation charge conjuga-
tion.

It follows immediately from this discussion that C maps
(g, g′) �→ (g,−g′). Further, it may be straightforwardly veri-
fied that, in the effective Hamiltonian, C is equivalent to the
formal inversion operation in which A and B sublattice labels
are interchanged, in a QSI analog of QED’s charge-parity
symmetry.

Note that Hzz and H± are invariant under C. It is there-
fore a symmetry of all pure-XXZ spin models, and indeed
all dipolar-octupolar spin ice Hamiltonians. This highlights
breathing Kramers QSI as a promising system for generating
complex ring flips [45]: both inversion and charge conjugation
symmetry need to be broken explicitly.

B. Definition of the periodic electric field

As a is a rotor variable belonging to U (1), ∇ ×p a is am-
biguous up to factors of 2π . Indeed, any summations of a must
be understood as an addition of phases, intrinsically modulo
2π . This ambiguity makes it somewhat subtle to define the
presence (or absence) of an electric monopole, i.e., a vison.

There is no ambiguity if one works directly with the Wilson
loops exp(i∇ ×p a) (deriving indeed from the product of spin
operators around an elementary hexagonal plaquette). Think-
ing of a as a lattice gauge field, it may be readily observed
that this quantity is the total phase acquired by the transport
of a virtual U (1) charge around the plaquette p, the Wilson
loop, which contains all the gauge-invariant information of the
lattice gauge theory.

For each void v of the lattice (see Fig. 1), we introduce the
lattice divergence of ∇ ×p a to be

∇ ·v (∇ ×p a) = ηv

∑
p∈v

(∇ ×p a) (mod2π ),

where ηv = +1 on the A-sublattice voids and ηv = −1 on the
B voids. It is then tempting to define a vison charge operator
Ṽ (v) = (∇ ·v ∇ × a)/(2π ). Since all a variables are defined
modulo 2π , we are forced to consider Ṽ modulo 1. Due to the
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FIG. 4. (Top panel) Exact vanishing of ∇ ·v ∇ ×p a on a particu-
lar lattice void, composed of the four plaquettes p1,2,3,4. One may
regard the link variables a as either U (1) rotors or real numbers.
(Bottom panel) Summation of phases involved in V (v) [Eq. (19)]
as viewed in the (−π, π ) chart. The topology of U (1) is depicted
using a circle, with the four red arrows representing the four ep

fluxes associated with the void v. As discussed in the main text,
the path must return to its starting point to remain consistent with
∇ ·v ∇ ×p a = 0 (mod 2π ). The removal of ±π phases forbids any
red arrow to enter the midpoint of the circle—this is in effect a topo-
logical singularity about which a winding number can be defined.

geometric cancellation illustrated in the top panel of Fig. 4,
we have Ṽ ≡ 0 (mod 1) [46].

Nonetheless, it is clearly useful to be able to measure the
sense in which the divergence is zero: there is a physical
difference, for example, between a void with all plaquette
fluxes close to zero and a void with predominantly π/2 fluxes.
In order to construct a vison charge operator that is sensitive
to this difference, we must first choose a chart for the lattice
U (1)-valued field ∇ × a, i.e., a partial mapping to an open
subset of the real axis; we shall refer to ∇ × a in a given chart
as ep, to indicate this subtle but important change. The con-
vention used in the majority of the literature [29] (implicitly
or otherwise) is to take ep ∈ (−π, π ), which for weak fields
is indistinguishable from standard QED. Regarding ep ∈ R as
∇ ×p a in a particular chart, the vison charge operator can
then be defined as

V (v) = 1

2π
ηv

∑
p∈v

ep, (15)

which in general takes any value in Z. This step makes V
sensitive to the journey taken by the phase as it loops back
to zero, identifying the vison charge as a winding number
(bottom panel of Fig. 4) that, in the chart (−π, π ), may
only take values −1, 0, 1. A summary of the chart-free and
chart-fixed variables is given in Table II of Appendix A.

For consistency with the existing QSI literature, we will
also work in the chart-fixed “0-flux convention” in which e ∈
(−π, π ). We emphasize that the visons are rendered well de-
fined only in the dilute limit, where they may be characterized

by their far-field vector potential—further comments on chart
dependence may be found in Appendix C. As a manifestly
chart-dependent quantity, V should be interpreted as a vison
marker, rather than the exact vison charge operator itself.
Where appropriate, we will also take steps (see Appendix C)
to illustrate that any electric sector behavior we remark on is
also observed in terms of purely chart-independent variables.

C. Quadratic Hamiltonian

In the special cases (g, g′) = (±1, 0) and (g, g′) = (0,±1),
the ground state of the semiclassical Hamiltonian in Eq. (11)
can be read off as ∇ ×p a = 0, π,±π/2 (mod 2π ), ∀ p,
which are the four uniform states consistent with the con-
straint ∇ ·v ∇ ×p a = 0 (mod 2π ). We name these states
U (1)0, U (1)π , and U (1)±π/2, respectively. Using these four
states as variational Ansätze, one finds that

ρg minn∈Z4 cos

(
πn

2
− φg

)
(16)

is an upper bound on the ground-state energy.
These uniform-flux states are robust against perturbations.

Indeed, if we write the Hamiltonian (11) in terms of ep (upon
fixing a chart) and consider small fluctuations ep � π/2,

H ∼
∑

p

[
−g − g′ep + g

2
e2

p + O
(
e3

p

)]
(17)

= −4gN − g′∑
v∈A

∇ ·v ep +
∑

p

g

2
e2

p + O
(
e3

p

)
, (18)

it becomes clear that in the vison-free ∇ ·v ep = 0 sector (as
appropriate for the low energy U (1)0 state), the g′ term con-
tributes only at higher than quadratic order.

Note that the divergence term,

∇ ·v ep ≡ ηv

∑
p∈v

ep = 2πV (v), ηv = ±1 for v ∈ A/B,

(19)

is a multiple of the large-S vison charge operator V (v). The
sum appearing in Eq. (18) runs over A voids only, and we
can thus identify the linear-order term as a staggered electric
potential that favors positive visons on the A voids (and there-
fore negative ones on the B voids, by global charge neutrality).
Due to the vison quantization, there is no linear response to a
small g′ perturbation of the U (1)0 phase, up until g′ reaches
a value comparable to the vison gap. Similarly, one can show
that the U (1)±π/2 phases have vanishing linear response to g
perturbations.

To measure the excess of positive visons on the A sublat-
tice, we define the order parameter as the average value of
the vison charge operator restricted to voids lying on the A
sublattice,

VA =
∑
v∈A

V (v)

Ntetra
=
∑

p

ep

2πNtetra
, (20)

which has vanishing expectation value at all temperatures
when g′ = 0, and tends to 1 at low temperatures in the vison
crystal phase. This quantity essentially measures the elec-
tric AIAO polarization (recall that by global vison charge
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FIG. 5. Explicit gauge field configurations realizing uniform flux
phases. (Left panel) aπ/2, generating the U (1)π/2 phase. (Right panel)
aπ , generating the U (1)π phase. Red arrows indicate gauge field val-
ues of a = π/2 (positive in the direction of the arrow); red cylinders
indicate a = π (no direction needed as +π = −π ); all unlabeled
bonds have a = 0. These examples were chosen such that on every
link j, 2aπ/2( j) = aπ ( j).

neutrality, VB = −VA), playing the role of the staggered mag-
netization for a Néel antiferromagnet.

D. Enhanced spectral periodicity and duality
in the minimal model

Examples of gauge field configurations for the U (1) lat-
tice gauge theory on the diamond lattice, generating uniform
π/2 and π flux phases are given in Fig. 5. Although the
fluxes themselves are commensurate with the periodicity of
the breathing lattice, the enlargement of the unit cell re-
tains a physical significance in the periodicity of the spinon
continuum [47]. Neutron spectroscopy is widely believed to
have access to these characteristic spinon correlations [48].
In essence, the Aharonov-Bohm phase acquired from spinon
transport fractionalizes the lattice translational symmetry into
a projective space group representation, which only “squares
out” to a true representation when an enlarged unit cell is
considered. The zero-flux phase can be described by tiling a
primitive unit cell with arr′ = 0 over the whole lattice, while
the smallest link variable configuration of a π flux phase
requires two primitive unit cells. It can be verified explicitly
that the smallest possible unit cell describing a U (1)π/2 phase
consists of four primitive unit cells, distinguishing the state
from the U (1)0 and U (1)π phases.

Figure 5 may also be interpreted as a duality of the effective
Hamiltonian. This is achieved by recognizing that the Abelian
group structure of the lattice gauge theory acts naturally on
the spin model. If a( j) is a lattice gauge field, then the unitary
operation on #,

Ra[#] =
⎛
⎝ ∏

j∈{links}
eia( j)Sz

j

⎞
⎠#

⎛
⎝ ∏

j′∈{links}
e−ia( j′ )Sz

j′

⎞
⎠ (21)

represents a transformation acting on the spin model, which
rotates the phase of the ring flip operator on any plaquette p
by Op �→ ei∇×paOp. The π -flux configuration aπ ( j) of Fig. 5
(right panel) results in Raπ

[O] = −O, reproducing the well-
known duality [47,49] between the U (1)0 and U (1)π phases.
The left panel of the same figure is a “square root” of the
U (1)π ↔ U (1)0 transformation, generating Raπ/2 [Op] = iOp

for all 16 plaquettes in the unit cell.

Charge conjugation, combined with the π/2 rotation
duality, makes the physics of the g, g′ phase diagram
D4 symmetric. The g, g′ model can therefore be fully
characterized by the half-quadrant g > 0, 0 < g′ < g. In the
special cases φg ∈ π

4 Z, these dualities are elevated to Z2 sym-
metries of the Hamiltonian, which we further distinguish into
the “axis” symmetry lines g′ = 0, g = 0 and the “diagonal”
symmetry lines g = ±g′. While the axis symmetries remain
intact down to zero temperature, we will show that the di-
agonal symmetries are spontaneously broken below a critical
temperature.

V. LARGE-S PHASE DIAGRAM

We are finally in a position to study the phase diagram
of the model in the large-S limit. We use a semiclassical
Monte Carlo approach developed by Szabó and Castelnovo
[29], based on the large-S expansion [6], adapted to our
effective quantum Hamiltonian in Eq. (9). We perform clas-
sical Monte Carlo on the low-energy effective Hamiltonian
[Eq. (9)], capturing the gauge-sector dynamics of the quantum
theory in a large-S sense [50]. The ring flip operator Op =
S+S−S+S−S+S− is regarded as a complex number of norm
� 1. The presence of a vison in void v is measured by V (v) =∑

p∈v argOp/2π , using the chart arg : C → [−π, π ).
We initialize the system in a random state, then lower the

temperature from T = 10ρg to T = 10−5ρg in logarithmically
spaced steps. At every temperature, we run a number of
annealing steps known from benchmarks to equilibrate the
system (typically ranging from 128 at high temperature to
512 at low temperature). At the end of a full cooling cy-
cle, we then reheat the system up to the initial temperature,
following the same temperature steps and comparing order
parameters throughout. The absence of any hysteresis is used
as indication that equilibrium has been likely attained in the
simulations. A sharp phase transition is observed in Fig. 6 at
g = g′ at low temperatures, separating the conventional U (1)0

phase from a phase in which all A sites are occupied by visons.
In the latter, all electric fluxes take the value π/2, hence the
name U (1)π/2 phase, bearing a striking resemblance to the
identically named phase found from slave-boson projective
symmetry group classification, see Ref. [48].

The transition from 0-flux to π/2-flux phases may be
understood as the chemical forcing g′ overwhelming the in-
trinsic vison chemical potential μg′=0 = 7.872367608(68)g
[29]. Neglecting any cohesive energy from interactions, the
phase transition would occur at g′/g = μg′=0/g 
 7.872 (φg 

0.460π ). However, we know from the (unitary) duality op-
eration Raπ/2C, defined in Eqs. (21) and (13), that the
phase-boundary structure of the global phase diagram must
be symmetric under g ↔ g′. It follows that the critical g′/g is
at most 1 (since g/g′ is also a critical point). Our numerics
clearly show g′/g = 1 to be the critical point, emphasizing
the substantial renormalization of short-ranged μ by interac-
tions and indeed the breakdown of the vison picture at high
densities.

We verified that the zero-temperature system energy satu-
rates the trivial bound in Eq. (16) from Sec. IV C to within
Monte Carlo error, suggesting that we have successfully iden-
tified all relevant low-temperature phases. Further, it suggests
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FIG. 6. Phase diagram of the g + ig′ = ρg exp(iφg) model from
semiclassical numerics, showing (a) the average expectation value
of the large-S average vison charge VA on A tetrahedra, (b) the
energy of the system relative to the 0-flux state, (c) and
(d) the expectation values 〈sin e〉 =∑p sin ep/Np and 〈cos e〉 =∑

p cos ep/Np, where Np denotes the total number of plaquettes. The

black, dotted curve Tpm/Tc = √
2[1.3 max(| cos(φg)|, | sin(φg)|) −

0.3 min(| cos(φg)|, | sin(φg)|)], is given as a guide to the eye, out-
lining the crossover between paramagnetic and U (1) behavior. The
resolution of φg is ∼π/100 in the region |φg − π

4 | < 0.1, and π/19
elsewhere, with data points indicated by the x-axis ticks.

that the smaller of g, g′ plays a trivial role at zero temperature,
merely shifting the ordinary QSI vacuum.

Fixing the overall energy scale ρg, we identify a charac-
teristic temperature Tpm associated with the crossover to the
disordered phase. Guided by the quadratic theory of Sec. IV C,
we are able to establish a phenomenological model that cap-
tures this behavior. Recall that expanding the Hamiltonian
about the 0-flux vacuum, Eq. (18), yields g as the tension
of the electric field (i.e., the permittivity of free space) and
g′ as a staggered chemical potential for visons. Applying the
duality Raπ/2 interchanges g and g′, rendering g′ the effective
field tension for excitations above the π/2-flux state, which
is indeed the preferred ground-state flux configuration when
g′ > |g|. It may be seen by a straightforward generalization
that the quantities T = max(|g|, |g′|) and Us = min(|g|, |g′|)
act respectively as field tension and chemical potential for all
values of φg. We see that Tpm ∼ √

2Tc(1.3T − 0.3Us) captures
well the general trend of the crossover. Although the dominant
contribution to the crossover’s shape is the weakening of field
tension, including a small Us contribution appears to improve
the visual agreement.

Raising T above Tpm brings about a vison liquid state,
featuring a random disordered electric field. We identify this
with spinon-free classical spin ice. The transition to the true
paramagnetic phase [51] is not observable in our approxima-
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U(1)−π
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Raπ/2C

FIG. 7. AIAO bias φg as a function of the uniform anisotropy
parameter κ and of Jz±/Jzz, where (1 + κ )/(1 − κ ) = Jzz,A/Jzz,B =
J±,A/J±,B = Jz±,A/Jz±,B. Sublattice-averaged J±, Jzz are defined in
the obvious way. Dotted contours represent lines of g′ = 0 and g = 0.
Solid lines represent zero-temperature phase boundaries, as estab-
lished by the numerics (see Fig. 6). (Inset) Detail near the singular
point g = g′ = 0, annotated with the two generating dualities of the
model, charge conjugation C : g′ �→ −g′ and rotation Rπ/2 : g �→ g′,
g′ �→ −g.

tion scheme, as we work within the no-spinon ensemble of
states.

A. Return to microscopic coupling constants

It is useful to now reconsider the phase diagram in terms
of the original microscopic variables of Sec. II, Jzz, J±, and
Jz±. A particular slice of parameter space is shown in Fig. 7,
using the uniform scaling parametrization of Sec. III. Close
to the critical point κ = 0, Jz±/Jzz ∼ 0.2, it is possible to use
Jz±/Jzz and κ as proxies for g, g′, see Eqs. (7) and (8). We
thereby obtain a clear physical interpretation of the D4 duality
structure derived in Sec. IV D—the four white lines (two
dotted, two solid) are lines of emergent symmetry generated
by the conjugate-shift operations Rn

aπ/2
C, n ∈ Z4.

Admittedly, the value of Jz± needed for g′ to overcome
g is very large compared with J⊥. There is therefore a risk
of the Ising interactions I2 
 J

2
z±/Jzz + O(J

2
z±J±) causing the

system to order before any appreciable g′ 
 J
2
z±J

2
±/J

3
zz can

be generated. Firstly, note that present nonperturbative esti-
mates of the QSI phase diagram [52] suggest that the U (1)π
phase remains stable up to J± ≈ Jzz, where I2 and g′ have
essentially identical energy scales. Secondly, we stress that
the calculation here is truncated at fourth order. We expect
very substantial renormalization of g and g′ at higher orders.

As a check of whether the QED physics survives such Ising
perturbations, we repeated our semiclassical calculations in
the presence of an antiferromagnetic second-neighbor I2 in-
teraction (note that I2 > 0 so long as Jz±,AJz±,B > 0). Up to
I2 
 g, we continue to see an extended pinch-point phase
with qualitatively identical photon dispersion to that shown
in Fig. 9 below. Although the differing powers of S makes
it somewhat difficult to quantitatively compare the I2 used in
large-S simulations to the I2 in the effective Hamiltonian, this
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result nonetheless supports the persistence of emergent-QED
physics in the face of nonringflip perturbations.

B. Critical end point

The duality arguments of Sec. IV D are consistent with a
continuous connection between the U (1)0 and U (1)π/2 phases
via the phase-incoherent spin ice paramagnetic phase—there
is no symmetry breaking across the transition. The line of first-
order phase transitions at g′/g = 1 therefore ends at a critical
end point.

We probed the critical exponents of the end point using
finite-size scaling analysis. We used 3D periodic systems of
cubic side lengths L = 4 − 12 unit cells. At each system
size, we initialized 256 independent systems to random initial
states, then performed a temperature sweep from 10ρg down
to 0.3ρg, then back up to 0.45ρg. Annealing times were chosen
to remove any hysteresis in the observables. In the case of spe-
cific heat, we computed an ad hoc cost function [53] designed
to estimate the quality of the scaling collapse over a grid of
Tc, α, and ν values. From this tableaux, we estimated both the
optimal fitting parameters and their uncertainties, including
Tc, based on the width of the optimal fit basin. We repeated
this analysis for the staggered polarization data 〈VA〉, with the
additional fitting parameter 〈VA〉c, obtaining also values for β

and γ .
Our results (shown in Fig. 8) are suggestive of 3D Ising

criticality, finding its critical exponents β, γ and ν to lie
within our error bars. Recall from Sec. IV D that on the line
φg = π/4, the operator Raπ/2C is precisely a Z2 symmetry that
is spontaneously broken on the g′ = g line—consistently with
Ising criticality at the end point. The story is, however, not
quite so neat: the exponent α overestimates the Ising value by
a factor of 3, well beyond what can be explained by our fitting
uncertainty. A further complication is that, although the full
range of parameters we quote satisfy Rushbrooke’s inequality
α + 2β + γ � 2, the bound only becomes saturated at the
extreme limits of our error bars. These observations shall
remain intriguing open questions for future work.

These peculiarities are perhaps less surprising against the
background of Debye-Hückel plasma criticality, which has
been variously reported as Ising, Gaussian, crossover-like and
tricritical [56–58], depending sensitively on the form of the
short-range cutoff [59].

C. Compactness of the e field

It is worth remarking on the aspects of the phase dia-
gram that are not symmetric about φg = π/4. Physically, the
vison charge on A tetrahedra VA =∑v∈A ∇ ·v ep/(2πNvoid)
is a multiple of the expectation value of the electric field
1
N

∑
p ep/(2π ), which one would naively expect to average

exactly to 1/2 on the phase boundary between the U (1)0 and
U (1)π phases above Tc. However, the critical value of the
vison-order parameter 〈VA〉c 
 0.38, and perhaps even more
surprisingly the high-temperature phase-incoherent state sees
an even smaller value, 〈VA〉 
 0.

To understand this, let us firstly note that systems with
φg = x and φg = π/2 − x are dual to one another. Indeed,
the system energy seen in Fig. 6(b) is symmetric about the
coexistence line φg = π/4 to within simulation accuracy, and

FIG. 8. Finite-size scaling collapse at the critical end point of the
g = g′ line, in terms of τ = (T − Tc )/Tc, for systems consisting of
L3 cubic unit cells. (a) Specific heat capacity var[E ]. (b) Reduced
thermally averaged staggered vison-order parameter, 〈VA〉 − 〈VA〉c,
where 〈...〉c denotes the thermal average at the critical point. (c) Sus-
ceptibility of the order parameter var[VA]. We performed a fit for Tc

and the relevant scaling exponent for each of the three quantities
separately, with results given directly in each panel. For reference,
the critical exponents of the 3D Ising model are ν = 0.629971(4),
α = 0.11008(1), β = 0.326419(3), γ = 1.237075(10) [54,55].

the expectation values 〈cos e〉 and 〈sin e〉 in Figs. 6(c) and 6(d)
are related to one another by mirroring about the coexistence
line.

Numerically, the order parameter VA is computed by V =∑
p arg(Op)/(2π ), where Op is a complex number formed by

a product of Sx ± iSy terms using the chart arg(z) ∈ (−π, π ].
As already discussed in Sec. IV B, this is a choice of chart con-
vention that privileges zero, as at high temperature, the system
samples a uniform distribution on (−π, π ]. This average con-
tains no physical information, only a marker of which chart
was used for ep. As the temperature is raised, 〈VA〉 “crosses
over” from a useful indicator of the number of topological
defects to a completely unphysical constant. This once again
emphasizes the ill definedness of visons in the high-density
regime [60]. For further discussion of the precise meaning of
the vison in QSI lattice gauge theory, see Appendix C.

VI. ELECTRODYNAMICS AT FINITE g′

The dynamical structure factor of our system (see Fig. 9)
continues to feature the known large-S photon dispersion in
the presence of g′. We interpret these plots as probes of the
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FIG. 9. Dynamical structure factor 〈Sz(q, ω)Sz(−q, 0)〉 at con-
stant g, with T/g = 0.1 (left panels) and T/g = 0.001 (right panels),
for various values of the ratio g′/g [in the U (1)0 phase, equivalent to
U (1)π/2 by symmetry]. The solid-red lines show the analytic (large-
S) photon dispersion from Ref. [42]. The system size is L = 12.

photon spectrum alone. The visons possess no kinetic proper-
ties in the large-S limit and only hop via instanton processes;
we are therefore unable to meaningfully probe their real-time
evolution [29]. For this reason, our simulations show a gapless
photon dispersion even when temperatures are high enough
to have a substantial vison population [29], as opposed to
the Debye-screened mass one would expect from a charged
plasma [42,43].

The 〈SzSz〉 correlations are invariant under the Raπ/2 dual-
ity transformation, and therefore the behavior in the U (1)π/2

phase is identical to that shown in Fig. 9 (with the roles of g
and g′ reversed). This statement was verified numerically as a
benchmark.

At g′ = 0 we see that the familiar large-S photon disper-
sion is in excellent agreement with the analytic result at low
temperature. Less obviously, the vast majority of the spectral
weight remains identical to the g′ = 0 large-S photon curve
even when g′/g is of order 1. It is only at higher temperatures,
where the photon states become highly populated, that the e3

p
vertex [see Eq. (23)] begins to have a measurable influence.
In this regime we observe a continuum above the photon line
that terminates abruptly at twice the renormalized maximum
dispersion energy. There is some structure discernible in the
continuum, which reflects the density of two-photon states.

g/4! g′/3! g′/3!g′/3!

g′/3!

(a) (c)(b)

FIG. 10. Leading-order loop corrections in the large-S field theory.

Excitingly, these anomalous features are visible in the ex-
perimentally accessible Sz correlation function, and could in
principle be used to detect a system sufficiently close to the
phase transition between the U (1)0 and U (1)π/2 phases, at
intermediate temperatures.

In addition to the two-photon continuum, Fig. 9 shows
a dispersionless excitation centered on the elastic line when
g′ is large and T/g = 0.1. We attribute it to thermal
fluctuations into the proximate U (1)π/2 phase. The flat mo-
mentum dependence indicates localized π/2-flux plaquette
fluctuations—although such fluctuations are of course present
at g′ = 0, nonzero g′ biases plaquette fluctuations in such a
way that their average is nonzero.

The leading-order contribution due to the g′ term in the
U (1)0 phase is cubic, which we suggest is analogous to strong
light-matter coupling in a nonlinear crystal. From this per-
spective, the high-energy features are naturally interpreted
as a two-photon continuum arising from three photon up-
conversion [61], which we compute analytically in the large-S
limit for comparison hereafter.

A. Large-S calculation of two-photon continuum

We show here how the continuum seen in the 〈SzSz〉 dy-
namical structure factor in Fig. 9 can be explained within
perturbative large-S field theory. We perform the calculation
for the U (1)0 phase, noting that the calculation would be iden-
tical in the U (1)π/2 or U (1)π phases, up to duality relations.

We decompose the large-S Hamiltonian into quadratic and
interacting parts in the standard fashion,

H0 =
∑

p

g

2
e2

p +
∑

v

g′2πV (v), (22)

HI =
∑

p

− g′

3!
e3

p − g

4!
e4

p + g′

5!
e5

p + g

6!
e6

p + · · · . (23)

The key insight is that the vison contribution V (v) is a nondy-
namical, topological term that does not enter the perturbation
theory.

To pick out the most relevant terms from this expansion, we
follow Ref. [6] and perform naïve RG scaling on (∇ ×p a)n,

r, τ �→ br, bs̃τ

a �→ b
1−d

2 s̃− 1
2 a∫

dτ dd r (∇ ×p a)n �→ (bd+1s̃)1− n
2

∫
dτ dd r (∇ ×p a)n,

where b > 1. In particular, we note that a pair of contracted
three-photon vertices scales as b−1−d s̃−1, which is the same
as a Hartree-Fock vertex. It follows that the dominant g′
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(a) g′2 vertex

Γ X WK Γ LUX

(b) MC g′/g = 0.8

10−4 10−3 10−2

〈Sz(q, ω)Sz(−q, 0)〉 (arb. units)

FIG. 11. Two-photon continuum in the g, g′ model. (a) Contri-
bution from the g′2 term to the self energy (arb. intensity units),
calculated analytically as discussed in the main text and Appendix G.
(b) Monte Carlo (MC) numerical results from Fig. 9, for g′/g = 0.8.
Both panels correspond to T = 0.1g.

contributions come from only the three (momentum-space)
diagrams (a), (b), and (c) shown in Fig. 10.

The Hartree-Fock contribution (a) is known [6] to
be a renormalization of the photon continuum. The
contribution (b) can be shown to vanish exactly because the
central propagator carries zero momentum. Remarkably, only
the leading-order nontrivial term (c) is found to give a con-
tribution from g′ to the spectral weight (see Appendix G
for details). Looking at Fig. 11, we see excellent agreement
between analytical and numerical results. The leading-order
calculation somewhat overestimates the maximum energy of
the continuum, and in particular the spectral weight at high
energy. We expect that such discrepancies will be resolved by
dressing the propagator at higher orders in perturbation theory.

B. Static Structure Factor

Perhaps the most direct measurement of vison crystal
formation is the appearance of Bragg peaks in the 〈ee〉 corre-

lations, shown in Fig. 12. Starting from φg = 0, screening of
the Coulomb interaction by the Debye plasma brings about a
Lorentzian blurring of the 〈ee〉 pinch points. This crossover is
controlled by two factors: the lowering of the vison gap upon
increasing g′, and the simultaneous increase of the ratio T/g
(recall that we are keeping the ratio T/ρg fixed at 1/2). Both
effects independently lead to an increase in the vison density.
Interestingly, we observe a blurring of the pinch points even if
g′ is increased at constant T/g (likely due to charge disorder
upon approaching coexistence at the transition line).

On either side of the coexistence line φg = π/4, a Bragg
peak emerges at the � point due to the statistically significant
excess of net vison charge on the A sites [as already mentioned
in preceding sections, e(k = 0) is indeed proportional to the
vison-order parameter VA].

At the coexistence point φg = π/4, we observe rod corre-
lations associated with domain walls that are frozen in as they
become metastable at low temperature. Rods extend in the
[110] and (to a lesser extent) in the [111] directions, reflecting
an anisotropic energy cost to domain wall orientation.

VII. VISON INTERACTIONS

Finally, we study the energetics of the visons in our
system—namely their chemical potential and interactions—
within the large-S approximation. In order to do so, we create
spin configurations where we arrange visons in a polarization-
free octupole pattern and measure the total field energy at
vanishing temperature, which we then decompose into a
chemical potential part and an interaction part by changing
system size.

We place positive and negative visons respectively on the
void sublattice where their charge is preferred by the stag-
gered chemical potential g′, making them metastable. It can
be shown that a zinc blende superlattice (see Fig. 13), corre-
sponding to the original diamond lattice rescaled by a factor
of 4m + 1, m ∈ Z, places the rescaled A(B) sites coincident
with the A(B) sites of the original lattice. We exploit this
to generate a sequence of increasingly dilute artificial vison
supercrystals, from which we may analyze the scaling of
the crystal cohesive energy (thus being able to differentiate
between chemical potential and interaction effects).

±2 −1 0 1 2

-2

0

2

0.000π

−1 0 1 ±2

0.125π

−1 0 1 ±2

0.250π

−1 0 1 ±2

0.375π

−1 0 1 ±2

0.500π

10−3

10−2

10−1

100

101

(hh0) (hh0) (hh0) (hh0) (hh0)

(0
0k

)

FIG. 12. Evolution of the static electric field correlator 〈e(k, 0)e(−k, 0)〉 for a 128 000-site system, across several values of φg = 0,

π/8, π/4, 3π/8, and π/2 (from left to right), while the ratio T/ρg = 1/2 is held constant. This trajectory in g, g′ space moves from deep
in the U (1)0 phase to deep in the U (1)π/2 phase via the disordered state, crossing the coexistence point φg = π/4 above Tc. Narrow peaks
within the pinch points (1, 1, ±1) and (−1, −1, ±1) are numerically equal, but may appear inequivalent due to plot rasterization. See Fig. 21
in Appendix D for a chart-invariant version of this plot.
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La0La0

FIG. 13. Zinc blende vison octupole in the cubic unit supercell,
showing on the left the exploded view of one vison’s local environ-
ment, and on the right the global vison arrangement, with electric
Dirac strings drawn in yellow. The long (counterorientated) string is
exactly three times the length of each of the short strings.

We do not have access to a closed form for the vison
creation operator, although a good approximation may in
principle be obtained from the Green’s function of the lattice
Laplacian [1]. Here we adopt instead a different procedure to
create the desired artificial vison arrangement:

VC0 We find a polarization-free arrangement of electric
Dirac strings that introduces the desired vison structure.

VC1 For every pair of connected visons, we simultane-
ously rotate the fluxes of all plaquettes crossed by the Dirac
string until branch cuts are crossed at the beginning and end
of the string. This places the system in an excited state corre-
sponding to a superposition of the desired vison (super)crystal
structure and some distribution of photons.

VC2 We anneal the system from an initial temperature
Thot > ρg down to Tcold � ρg, allowing the energy of the
metastable configuration to be read off once the photons have
thermalized.

A. Numerical results

The scaling of the system energy with the linear dimension
L of the system is show in Figs. 14 and 15.

Inspired by the quadratic theory in Eq. (18), we model the
visons as a Coulombic plasma with cohesive energy

E =
∑
v<w

q2
e (g, g′)ZvZw

|rv − rw| + Nvisonμ(g, g′), (24)

where Zv,w = ±1 is the sign of the charge of the visons la-
beled by v,w, rv,w are their positions and Nvison is the number
of visons [62]. It follows immediately from trivial rescaling
of the Hamiltonian that, at zero temperature, q2

e (g, 0) ∝ g and
μ(g, 0) ∝ g. The weak-field expansion in Eq. (18) suggests
that q2

e is independent of g′ to leading order, with corrections
arising from the polarized region in the immediate vicinity of
a vison.

The numerical scaling of the vison energy with system size
reveals that this intuition is essentially correct. The Coulomb
functional form is an excellent fit to the system energy in
Fig. 14(a) at all length scales, though the short-range energy
for L = 5 is marginally overestimated. Large values of the
electric field are more heavily penalized by the quadratic
theory than they are by the original cosine potential; near-
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FIG. 14. Scaling of vison interaction energy with system size
within the U (1)0 phase. Panel (a) shows the fits of the Coulomb
functional form Uv = MZnS q2

e/(La0 ) + μ to the data points with
L � 17. This model marginally overestimates the cohesive energy
at L = 5 (see the data points outlined by a solid black line box).
Note that qe may be interpreted as the elementary vison charge
in Gaussian CGS units. The inset shows the diamond superlattice
arrangement of visons, see also Fig. 13 for details. The lower panels
show the dependence of (b) the Coulomb constant q2

e and (c) the
chemical potential μ on g′. Panel (b) shows the dependence of the
q2

e fits on the short-range interaction cutoff, suggesting convergence
to the quadratic estimate q2

e = πg (horizontal dashed black line).
Panel (c) shows the dependence of the vison chemical potential μ on
g′, where a linear best fit μ(g, g′)/g = −1.1154(2)g′/g + 7.873(1)
appears to be in excellent agreement with the simulations. These
results are independent of the cutoff choice. For all plots, the absence
of error bars indicates uncertainties smaller than the marker size (for
reference, the standard error on the μ fits is of the order of 10−4g).

neighbor vison dipoles are therefore more favorable in our
numerics than the Coulomb estimate would predict. Indeed,
we believe that this excess of vison dipoles is responsible for
the homogeneous background seen in the static e correlators
of Fig. 12.

The dependence of the zero-temperature vison chemical
potential on g′, shown in Fig. 14(c), is very robustly linear,
suggesting that the chemical potentials associated with g and
g′ are essentially decoupled. The gradient is slightly less than
the quadratic estimate (−1), reflecting the influence of nonlin-
earities in sin(e).

Figure 14(b) reveals the best-fit vison charge q2
e to be

very close to the quadratic estimate at all values of g′.
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FIG. 15. Dependence of the vison interaction energy on g′.
(a) Scaling of the empirical vison interaction energy Uv − ∂μ

∂g g −
∂μ

∂g′ g′ with g′. (b) Log-log plot of the gradient of the interaction part
of the vison energy with respect to g′ against linear system size L,
exhibiting a potential crossover from L−2 to L−1 scaling. The error
bars reflect 1σ standard error from linear regression.

The apparent dependence of q2
e on g′ is due to the fail-

ure of the simple Coulomb model to properly capture the
higher-order moments of the vison-vison interaction. We see
that as short-ranged points are excluded from the fit, the de-
pendence disappears. Figure 15 revisits this issue, subtracting
off the robustly known chemical potential component to iso-
late the interaction part of the vison energy. We clearly see L−2

scaling consistent with the coupling of local dipole moments
to the inhomogeneous field in the immediate vicinity of a
charge. Although the fit data points at larger radius appear to
cross over to Coulomb 1/L scaling, this is an artefact of the
Gaussian error model used for the linear regression. Perhaps
more significantly, the L−2 scaling remains consistent with all
fits to within 1σ at all lengths. We can neither confirm nor rule
out some Coulomb contribution arising from g′ (we leave such
costly numerical exploration for future work).

Combining this measurement of the vison charge with the
photon dispersion measurement from Sec. VI, we are now
in principle able to compute a large-S approximation of the
fine-structure constant. There is, however, a subtlety arising
from the electric-magnetic duality: In the presence of both
gapped magnetic and electric monopoles, there are a priori
two dimensionless numbers of interest, the “electric fine struc-
ture constant” αe = q2

e/h̄c and the “magnetic fine structure
constant” αm = q2

m/h̄c, where qm is the charge of a spinon.
Dirac’s quantization condition imposes [63] a reciprocity re-
lationship on the two fine structure constants,

αeαm = 1
4 . (25)

This condition forces at least one of αm and αe to exceed the
confining threshold αc 
 0.21 [63–66], seemingly suggesting
that either spinons, visons or both are confined. Some care
should be taken before jumping to this conclusion, however.
Although it is known that matter-free quantum U (1) lattice
gauge theory has a strong-weak duality mapping electric and
magnetic fields to one another [1,67–69], it is a decidedly
different question to ask whether this duality survives in the
presence of dynamical matter. Previous numerics have shown
coexisting, Coulombic spinons and visons even with αe � 1
[63]. All this is to say that we should not naively interpret αe

as a tuning parameter for vison confinement.
Substitution of the large-S speed of light h̄cS=∞ 
 0.15ga0

[6,42] yields αe 
 21. This number is independent of g and
g′, and well above αc. Nonetheless, the Coulomb form of the
vison potential is characteristic of deconfined visons.

The Dirac quantization condition Eq. (25) allows us to
calculate the value of αm = 1/(4αe). At S = ∞, it is of order

 0.01, interestingly close to the value obtained from recent
exact diagonalization (αm,ED = 0.07 [40]). Accounting for
Hartree-Fock corrections to the speed of light [6] renormal-
izes αe to 
7.7; in surprisingly reasonable agreement with
1/(4αm,ED) 
 3.6.

VIII. CONCLUSIONS

In this paper, we studied the behavior of (Kramers) quan-
tum spin ice on a breathing pyrochlore lattice, by means
of perturbative arguments and large-S approximations. We
demonstrated that the broken inversion symmetry allows for
a term [ig′(O − O†)] that would have otherwise been forbid-
den. As shown in Fig. 7, the anisotropy itself needs not be
particularly large for g′ to be comparable with g. We therefore
suggest that the U (1)π/2 phase could be most easily realized
in a “minimally breathing” pyrochlore compound—the effect
requires breaking inversion symmetry without decoupling the
A tetrahedra.

The g′ interaction effectively frustrates the emergent elec-
tric field, as there is no path in state space that can smoothly
interpolate between the zero-flux state and the π/2-flux state.
Instead, the fluxes jump abruptly between the four values
allowed by the vison quantization condition. At finite tem-
perature, the phases are separated by first-order liquid-gas like
phase transition lines, terminating at critical end points, which
we tentatively placed in the 3D Ising universality class based
on a finite-size scaling analysis.

When g > |g′|, we found that the interactions between vi-
sons are well approximated by an essentially g′-independent
Coulomb law, in addition to a small correction term arising
from deviations from the Coulomb law at short range. The
more significant effect of g′ is the emergence of a staggered
chemical potential for the visons. It follows from duality that
the excitations above the U (1)π/2 vacuum are similar—one
may readily view them as vison holes interacting with each
other via a Coulomb potential with the roles of g and g′
interchanged.

The behavior we have uncovered can be seen as the (quan-
tum) electric analog of spin fragmentation in classical spin ice
[21,27,70,71], occurring for instance in iridate pyrochlores,
where the interpenetrating AIAO magnetic bias field causes a
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monopole crystal to condense while the spins retain a classi-
cal U (1) fluctuating component. Similarly in our system, the
U (1)π/2 vison crystal phase remains a spin liquid dual to the
original U (1)0 phase, undergoing fragmented Coulomb phase
dynamics. Unlike the magnetic sector analog, the electric
phenomenology is not due to an extrinsic (Ir magnetism) con-
tribution but it is inherent to the quantum spin ice system and
its interactions; moreover, in our case there is a microscopic
one-to-one mapping between the effective Hamiltonians of
both the U (1)0 and U (1)π/2 phases.

We further studied the dynamical structure factor of the
system, revealing, to leading order, a photon dispersion in-
dependent of g′. We interpret this as the long-wavelength
photons decoupling from a deep-UV fluctuating background,
just as real photons do in ionic crystals. More interestingly,
we found a correction at order e3 that directly influences the
photon self-energy, modifying the experimentally accessible
two-point Sz correlator. This correction is in essence a QSI
analog of second harmonic generation in a nonlinear crystal.
In the presence of a g′e3 vertex, two photons may be up-
converted to a single, higher-energy photon lying well above
the original photon dispersion.

Realization of non-negligible g′ requires an admittedly
fine-tuned energy hierarchy: We must have both large J±/Jzz,
in order to keep the g′ 
 J

2
±J

2
z±/J

3
zz interactions competitive

with the Ising term I2 
 J
2
z±/Jzz, and small overall g to avoid

a conventional 0-flux or π -flux phase. In the first instance, it
is fairly well established that at least the π -flux QSI phase can
persist up to and even beyond J± 
 Jzz [72], and therefore it
stands to reason that a π -flux QSI may indeed be tunable into a
π/2 phase without ordering. Secondly, the apparent ability of
applied external electric [73,74] and magnetic [75,76] fields
to modulate ringflips in the effective Hamiltonian suggests
that in the presence of nonzero Jz±, an applied field tuning
g between U (1)0 and U (1)π could drive the system into an
intermediate U (1)π/2 phase.

It has recently been pointed out that a linear e · E coupling
between the emergent and real electric fields is allowed by
symmetry [4]. Supposing such a coupling to be present, we
remark that the loop fluxes in the π/2 phase form an (un-
frustrated) antiferroelectret. In this case, one may expect an
electric susceptibility maximum close to the crossover tem-
perature Tpm (see Fig. 6). Electric field does indeed break
charge-conjugation symmetry C, and so in the absence of
inversion symmetry may contribute to g′.

In our study, we have identified a number of distinc-
tive phenomena that could be used as possible experimental
probes to test the effects of g′ in candidate materials. To
maximize the chances of hitting a “sweet spot” in parameter
space, we suggest that a candidate material should be sub-
jected to an applied [100] electric field, which is known to
effectively tune the g parameter [73]. We propose that an ex-
periment sweeping g from negative to positive should search
for four phenomena: (a) two divergences in thermodynamic
observables as the system transits across the phases U (1)0 →
U (1)π/2 → U (1)π ; (b) the appearance of a structured high-
energy continuum in 〈SzSz〉 correlations (see Figs. 9 and 11),
which can be accessed, e.g., using inelastic neutron scat-
tering; (c) shrinking of the k-space spinon Brillouin zone

due to symmetry fractionalization (see Ref. [52]); and (d)
rod-like correlations from domain wall formation in 〈ee〉 at
criticality (see Fig. 12). Although these 12-spin correlators
are for all practical purposes inaccessible, we suspect that
some vestige thereof may yet appear in the 〈SxSx〉 and 〈SySy〉
channels.

This paper highlights the richness of emergent QED
in frustrated magnets with broken inversion symmetry,
representing an unconventional lever with which the strong-
coupling QED of QSI may be tuned towards yet new phases
and phenomena.
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APPENDIX A: GEOMETRY

It is conventional to write the QSI Hamiltonian with
respect to the local reference frame for the spins. The con-
vention adopted here is the same as in Ref. [29]: S j =∑

α=x,y,z Sα
j eμ( j),α , where μ( j) denotes the pyrochlore sublat-

tice of site j and

e0,x = 1√
6

⎛
⎜⎜⎝

1

1

−2

⎞
⎟⎟⎠, e0,y = 1√

2

⎛
⎜⎜⎝

−1

1

0

⎞
⎟⎟⎠, e0,z = 1√

3

⎛
⎜⎜⎝

1

1

1

⎞
⎟⎟⎠,

e1,x = 1√
6

⎛
⎜⎜⎝

1

−1

2

⎞
⎟⎟⎠, e1,y = 1√

2

⎛
⎜⎜⎝

−1

−1

0

⎞
⎟⎟⎠, e1,z = 1√

3

⎛
⎜⎜⎝

1

−1

−1

⎞
⎟⎟⎠,

e2,x = 1√
6

⎛
⎜⎜⎝

−1

1

2

⎞
⎟⎟⎠, e2,y = 1√

2

⎛
⎜⎜⎝

1

1

0

⎞
⎟⎟⎠, e2,z = 1√

3

⎛
⎜⎜⎝

−1

1

−1

⎞
⎟⎟⎠,

e3,x = 1√
6

⎛
⎜⎜⎝

−1

−1

−2

⎞
⎟⎟⎠, e3,y = 1√

2

⎛
⎜⎜⎝

1

−1

0

⎞
⎟⎟⎠, e3,z = 1√

3

⎛
⎜⎜⎝

−1

−1

1

⎞
⎟⎟⎠.

Further, we introduce the four inequivalent vectors

b0 = a0

8
(+1,+1,+1),

b1 = a0

8
(+1,−1,−1),

b2 = a0

8
(−1,+1,−1),

b3 = a0

8
(+1,−1,−1),

connecting the center of a tetrahedron to the four nearest-
neighbor pyrochlore sites at its corners.
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TABLE II. Careful definitions of the (classical) coordinate quan-
tities used in QSI (see Fig. 1).

Object Position Domain

Sz
j links {±1/2}

∇t · Sz tetrahedra {−2, −1, 0, 1, 2}
aj links U (1)
∇ ×p a plaquettes U (1)
ep plaquettes (−π, π )
∇ ·v ∇ ×p a voids {0}
∇ ·v e voids 2π{−1, 0, 1}

APPENDIX B: DERIVATION OF THE COMPLEX
RING FLIP

This section presents the finer details involved in ob-
taining the quoted values for g and g′ in perturbation
theory. Many of the more verbose calculations involved
were performed using our noncommutative algebra package
commutation [79].

For completeness, we include an enumeration of the sym-
metry properties of the three allowed crystal field doublets in
psuedospin- 1

2 pyrochlores in Table III. It follows that complex
ring flips are not possible in dipolar-octupolar QSI: A basis
exists in which all coupling constants are real.

1. Geometric language for perturbation theory

The task before us is to simplify terms in the series ex-
pansion of Heff (9). As the calculation is fairly technical, it is
useful to develop a graphical language to express terms in the
perturbative expansion. To this end, we establish a rigorous
correspondence between terms in the perturbation expansion
and links (paths) on the diamond lattice:

1. J±S+
i S−

j Spinon transport between second-neighbor
(i.e., same sublattice) diamond sites. We associate this term
with the path across links i and j highlighted by a yellow
arrow in Fig. 16.

2. Jz±Sz
i S+

j Spinon transport between nearest-neighbor
(i.e., different sublattice) diamond sites, with a Sz

i dependent
Z2 phase. These are associated with a diamond link j high-
lighted a purple arrow in Fig. 16, with corresponding Sz spin
sites marked by purple circles.

3. J±±S+
i S+

j Double-hop of two A site spinons to the same
B site (or vice versa), illustrated for example by the green
arrows in Fig. 19 below.

These associations are illustrated in the legend of Fig. 16.

2. Algorithm for generating terms

We generate terms in the effective Hamiltonian as follows:
(1) Fix an order N in perturbation theory. This sets the

number of diamond lattice paths available for use.
(2) Attempt to arrange the paths into a closed loop, guar-

anteeing the annihilation of all spinons. (Up to reasonable
orders, this process can be done exhaustively.)

(3) Write down the N! perturbations of the set associated
with a particular spinon diagram. Calculate the virtual spinon
energy for each factor of the propagator [−H0]−1.

(4) Sum over all permutations of the operators.
As a check, we rederive the terms from Ref. [1] for the

breathing XXZ quantum spin ice.
(1) Fix N = 2.
(2) We are given a pair of two-link arrows and asked to

arrange them into a closed loop. The only way to achieve this
is to place two arrows in opposing directions on the same two
diamond links, as in Figs. 16(a) and 16(b).

(3) For loop (a), there are only two orderings:
J±,BS+

1 S−
2

−1
H0

J±,BS+
2 S−

1 and J±,BS+
2 S−

1
−1
H0

J±,BS+
1 S−

2 . In either
case, the propagator measures an intermediate virtual state
corresponding to two spinons on the A (i.e., small) sublattice,
of energy Jzz,A. Similarly, there are two orderings of loop (b),
both with intermediate-state energy Jzz,B.

(4) Sum over 2! configurations and thereby obtain con-

stants and terms proportional to
J2
±,A

Jzz,B
Sz

1Sz
2 and

J2
±,B

Jzz,A
Sz

4Sz
5.

These are nearest-neighbor Ising interactions that merely
renormalize the effective Jzz,A and Jzz,B. We will neglect such
corrections.

(1) Fix N = 3.
(2) The only ways to connect three two-link arrows and

annihilate any virtual spinons created in the process are
to arrange them around either (i) a triangular motif, as in
Fig. 16(c), or (ii) a hexagonal plaquette, as in panels (d) and
(e) of the same figure. In the hexagonal case, loop (d) has its
virtual spinons hop only on the A sublattice; loop (e) in the
same figure transports only via the B sublattice. Loop (c) is
again negligible.

(3) For both loop (d) and loop (e), all terms in their corre-
sponding operator sets commute. All virtual states in process
(d) have the same energy, Jzz,A; similarly all virtual states of
(e) have energy Jzz,B.

(4) Sum to give [81]

[
3!

J3
±,B

(Jzz,A)2
+ 3!

J3
±,A

(Jzz,B)2

]
S+

1 S−
2 S+

3 S−
4 S+

5 S−
6 .

TABLE III. Known crystal field doublets in rare-earth pyrochlores under the action of time reversal T and rotation C3 about the local z
axis. Rotation C2 about the local x axis gives Sz �→ −Sz and S± �→ S∓ for all cases. Here w = e2π i/3; and ζi j , γi j , and Jz± are defined in Eq. (1).
Table adapted from Ref. [80].

Doublet T C3 −ζ ∗
i j ≡ γi j Jz±

Eff. spin- 1
2 S �→ −S Sz �→ Sz S± �→ e± 2π i

3 S± 1, w, w2 �= 0
Dip.-octupolar S �→ −S S �→ +S 1 �= 0
Non-Kramers Sz �→ −SzS± �→ S∓ Sz �→ SzS± �→ e± 2π i

3 S± 1, w, w2 = 0
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(f)
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T

D

f

e

p

m

F

2

3

4

6

5

(g)

1

S−
n Z∗

n

2

3

4

6

5k

l

n

J±,BS+
k S−

lJ±,AS+
i S−

j

j

i

(a)

1

2

(b)

4

5

(c)

1

27

FIG. 16. Elementary perturbative processes in the spinon transport language. These diagrams correspond to the following opera-
tor sets: (a) {J±,BS+

1 S−
2 , J±,BS+

2 S−
1 }, (b) {J±,AS+

1 S−
2 , J±,AS+

2 S−
1 }, (c) {J±,BS+

1 S−
2 , J±,BS+

2 S−
7 , J±,BS+

1 S−
7 }, (d) {J±,BS+

1 S−
2 , J±,BS+

3 S−
4 , J±,BS+

5 S−
6 },

(e) {J±,AS+
1 S−

6 , J±,AS+
5 S−

4 , J±,AS+
3 S−

2 }, (f) {J±,AS+
1 S−

6 , J±,AS+
3 S−

2 , S−
4 Z∗

4 , S+
5 Z5} =: {E , F, e, f }, (g) {J±,BS+

5 S−
6 , J±,AS+

3 S−
2 , S+

1 Z1, S−
4 Z∗

4 } =:
{T, D, p, m}. (a) and (b) lead to nearest-neighbor Ising interactions, which are in total constant within the ice manifold (see text for details).
Diagram (c) is similarly constant within the ice manifold. (d) and (e) are the standard third-order XXZ ring flips; (f) and (g) are the complex
ring flips. We have defined Zj =∑〈i j〉 Jz±,A/Bζi jSz

i as the sum over all six-nearest neighbors of site j, weighted by the geometric ζ factors and
the appropriate Jz±,A/B for the tetrahedron that bond 〈i j〉 belongs to.

3. Teardrop exchange

The spinon energy calculation is more complicated at
fourth order and above. Consider as a first example the
teardrop exchange illustrated in Fig. 2(c). Note that this is
one of 12 distinct teardrops associated with the plaquette p
made up of links 123456, and that there is a spectator spin
that is flipped twice, returning it to its original state. The
loop depicted in the figure corresponds to the operator set
{J±,BS+

1 S−
7 , J±,BS−

7 S−
2 , J±,BS+

3 S−
4 , J±,BS+

5 S−
6 }. Of the 4! order-

ings of this set, eight enter the four-spinon sector, introducing
a factor of two in the denominator. The remaining 16, like the
third-order calculation, correspond to creating spinon pairs,
transporting them around a loop, and annihilating them. This
process then gives an overall factor of[

4

2J3
zz,A

+ 16

J3
zz,A

]
J4
±,B[S−

7 S+
7 + S+

7 S−
7 ]Op

in the series expansion of Heff . Summing over the twelve
teardrops on plaquette p and simplifying S−

7 S+
7 + S+

7 S−
7 = 1

ultimately gives the contribution

12

[
18

J3
zz,A

J4
±,B + 18

J3
zz,B

J4
±,A

]
Op.

4. Complex ring flips

We identify two distinct channels that contribute to the
fourth-order complex ring flips, depending on the placement
of the two Jz± S+ terms on the hexagon, which we label ortho
and para [see Figs. 16(c) and 16(d)]. For the purposes of this
section, we define A := Jzz,A/2,B := Jzz,B/2.

a. ortho channel

Define the following operators, corresponding to those
shown in Fig. 16:

e = S−
4 Z∗

4 , f = S+
5 Z5,

E = J±,AS−
6 S+

1 , F = J±,AS−
2 S+

3 .

One can then see that permutations involving Ee or F f acting
on a ground state create 4-spinon virtual states, while all other
arrangements remain in the 2-spinon sector:

Spinon energy product Terms

(A + B)2(A + 3B) f FEe + eEF f
(2B)2(A + 3B) F f eE + Ee f F
2B(A + B)(A + 3B) F f Ee + EeF f + f FeE + eE f F
(A + B)3 f EFe + eFE f
2B(A + B)2 eF f E + E f Fe + f EeF + FeE f
(2B)2(A + B) e f EF + e f FE + f eEF + f eFE

+EFe f + FEe f + EF f e + FE f e
(2B)2(A + B) E f eF + Fe f E

After the H0 values are taken care of, commutation proper-
ties can be used to simplify the expression for Heff to

Hortho = α1( f EFe + eFE f ) + α2{{e, f }, EF }
+ α3(E f eF + Fe f E ),

α1 = 1

A + 3B

(
1

(A + B)2
+ 1

(2B)2
+ 2

2B(A + B)

)

+ 1

(A + B)3
,
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α2 = 1

2B(A + B)2
+ 2

(2B)2(A + B)
,

α3 = 1

(2B)2(A + B)
. (B1)

b. para channel

Let us then consider the para ring flips. Using the labeling
convention in Fig. 16, the operators are

p = Z1S+
1 m = Z∗

4 S−
4

T = J±,AS+
5 S−

6 D = J±,BS−
2 S+

3 .

Correspondingly, the six possible inequivalent spinon chan-
nels are

Spinon energy product Terms

(A + B)3 pT Dm + pDT m + mT Dp + mDT p
2B(A + B)2 pT mD + mT pD + DmT p + DpT m
2A(A + B)2 pDmT + mDpT + T mDp + T pDm
4B(A + B)2 pmT D + mpT D + DT pm + DT mp
4A(A + B)2 pmDT + mpDT + T Dpm + T Dmp
4AB(A + B) T pmD + T mpD + DpmT + DmpT

Observing that the commutators [D, T ] and [m, p] vanish,
we obtain

Hp,para = α4(pDT m + mT Dp)

+ α5

[
A(pT mD + mT pD + DmT p + DpT m)

+ B(pDmT + mDpT + T mDp + T pDm)

+ A + B
2

(pmDT + T Dmp)

+ (A + B)(T pmD + DmpT )

]
,

α4 = 2

(A + B)3
,

α5 = 1

2AB(A + B)2
. (B2)

The final expression for g, g′ and the decorated ring flip
terms is quite cumbersome, and does not provide much insight
beyond the symmetry properties discussed in the main text.
We give these expressions below for completeness in terms of
the symmetrized parameters,

Jzz = Jzz,A+Jzz,B

2 , J± = J±A+J±B

2 , Jz± = Jz±,A+Jz±,B

2 ,

� = Jzz,A−Jzz,B

2 , δ = J±A−J±B

2 , x = Jz±,A−Jz±,B

2 ,

g + ig′ = 1

(Jzz − �)3(Jzz + �)38J
3
zz

[
1728J4

(
J

6
zz + 3J

4
zz�

2
)+ 96J3

(
J

7
zz + 216J

5
zzδ� + J

3
zz(72δ − �)�3

+ 12J2
{
J

6
zz

(− 31J
2
z± + 48δ(18δ + �) + 6i

√
3Jz±x − 35x2

)+ J
2
zz�

4
(
J

2
z± + 14i

√
3Jz±x − 3x2

)+ 6�6
(
J

2
z± + x2

)
+ 4J

4
zz�

2
(
6J

2
z± + 648δ2 − 12δ� − 5i

√
3Jz±x + 8x2

)+ 2J
3
zz�

3
(
3i

√
3J

2
z± + 94Jz±x + 7i

√
3x2
)

− iJ
5
zz�
(√

3J
2
z± − 146iJz±x + 5

√
3x2
)− iJzz�

5
(
5
√

3J
2
z± − 42iJz±x + 9

√
3x2
)}

+ 24Jδ
{− Jzz�

5
(
13J

2
z± + 2i

√
3Jz±x + 9x2

)+ 2J
3
zz�

3
(
35J

2
z± + 144δ2 + 6i

√
3Jz±x + 31x2

)− J
5
zz�(57J

2
z±

− 864δ2 + 10i
√

3Jz±x + 53x2) + 2J
6
zz(3i

√
3J

2
z± + 6Jzzδ − 42Jz±x − i

√
3x2)

+ 4J
2
zz�

4
(
i
√

3J
2
z± − 3Jzzδ + 2Jz±x − 3i

√
3x2
)+ �6

(− i
√

3J
2
z± + 6Jz±x + 3i

√
3x2
)

+ J
4
zz�

2
(− 9i

√
3J

2
z± + 70Jz±x + 11i

√
3x2
)}

+ 12δ2
{
4Jz±�6(2Jz± − i

√
3x) + J

6
zz

(− 53J
2
z± + 16δ(9δ + �) − 14i

√
3Jz±x − 33x2

)
+ J

2
zz�

4
(− 25J

2
z± + 2i

√
3Jz±x + 11x2

)+ 2J
4
zz�

2
(
35J

2
z± + 216δ2 − 8δ� + 8i

√
3Jz±x + 11x2

)
+ 2J

3
zz�

3
(− 13i

√
3J

2
z± + 62Jz±x − 9i

√
3x2
)+ iJzz�

5
(
11

√
3J

2
z± + 10iJz±x + 7

√
3x2
)

+ iJ
5
zz�
(
15

√
3J

2
z± + 114iJz±x + 11

√
3x2)}],

ξ̃1 = 24(k2 − x2)

16J
3
zz

(
J

2
zz − �2

)2 i
(
2(i +

√
3)(J± + δ)2(Jzz + �)2

(
10J

2
zz − 5Jzz� + �2

)

− 2(−i +
√

3)(J± − δ)2(Jzz − �)2
(
10J

2
zz + 5Jzz� + �2

))
,
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ξ̃2A = 1

4J
3
zz(Jzz − �)(Jzz + �)2

(
3(J± − δ)

(
(4 + 4i

√
3)(J± + δ)(Jzz + �)

(
8J

2
zz − �2)

+ (4 − 4i
√

3)(J± − δ)(Jzz − �)
(
10J

2
zz + 5Jzz� + �2

))
(Jz± + x)2

)
,

ξ̃3 =12(J
2
± − δ2)

(
8J

2
zz − �2

)(
J

2
z± − x2

)
J

3
zz

(
J

2
zz − �2

) .

The term ξ̃2B may be obtained from interchanging A and B
in ξ2A.

The nonringflip processes mentioned in Table I, given here
to leading order, are

I2 = 3J
2
z± − x2

4Jzz
+ O

(
J

2
z±J±

)
,

γA1 = −12J2
z±,BJ±,A

JzzJzz,A
,

γA2 = −6J2
z±,BJ±,A

JzzJzz,A
,

where γA1 and γA2 correspond to particular classes of in-
equivalent self-avoiding walks of length 4 centered on an A
tetrahedron, as shown in Fig. 17. As before, the equivalent B
sublattice terms may be exchanged by interchanging A with
B. Note that, by exploiting the 2I2O condition, there are many
equivalent expressions for the γ couplings—for example, a
four-body term corresponding to four spins in a straight line is
equivalent to a linear combination of γ1, γ2, and a long-ranged
two-body term.

5. Other terms

In addition to the real and complex ring flips (g + ig′)Op

discussed in the main text, perturbation theory generates
eight-spin operators of the form SzSzOp coupling the ring flip
to dangling Sz moments nearest neighbor to the sites visited
by the ring flip, parameterized by four independent complex
couplings ξ̃1, ξ̃2A, ξ̃2B, and ξ̃3 as illustrated in Fig. 18,

∑
p

⎧⎨
⎩

∑
(i j)∈{1,2A,2B,3}

(ξ̃(i j) )S
z
i Sz

j

⎫⎬
⎭Op + H.c., (B3)

where the sum runs over all pairings of spins i and j that
are normal to, but not lying on, the ring. There are four
symmetry-inequivalent pairings, here labeled 1, 2A, 2B, 3,

γ1A γ2A
I2

FIG. 17. Four- and two-body Sz-like interactions generated by Jz±.

corresponding to nearest-, second-nearest-, and third-nearest-
neighbor normal spins.

Note that this expression could have been equivalently
written in terms of the radial spins [green dots in Fig. 18(b)].
The equivalence stems from the fact that we work in the
2I2O manifold: if Sz

n and Sz
r are, respectively, normal and

radial spins belonging to a tetrahedron consisting of spins
n, r, 1, 2, the 2I2O constraint may then be used to replace Sz

r
by −Sz

n − Sz
1 − Sz

2. If sites 1 and 2 coincide with a ring-flip,
the factors of Sz may be replaced by eigenvalues as described
in Sec. III.

In the large-S field theory (see Sec. B 1), such terms may
be read (in terms of the vector potential a, e ∼ ∇ × a, Sz/s̃ ∼
∂t a) as (∂t a)2ei∇×a. The ξSzSzO interactions then generate
a series of terms of the form ȧ2(∇ × a)m, m ∈ Z�0. Under
the naïve scaling used in Sec. VI A, such terms scale like
b(d+1)(2−m)/2, becoming irrelevant beyond the quadratic m = 0
Ising term.

6. Relevance of H±±

In principle, the spinon sublattice mixing from H±± may
also contribute to g′. However, as we mentioned in the main
text, such contributions are higher order than those from Jz±

(a)

(b)

ξ̃1

ξ̃2Bξ̃2A
ξ̃3

FIG. 18. (a) Normal Sz operators used in the definitions of the
ring flip terms appearing in Eq. (B3). (b) A pyrochlore plaquette
(black dots) and its nearest-neighbor off-ring sites (red and green
dots), showing the four symmetry-inequivalent spin pairings. Red
nearest neighbors correspond to those shown in panel (a). The lo-
cations of the Sz sites of the four effective interactions ξ̃1, ξ̃2A,B, and
ξ̃3 are also indicated in panel (b).
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S+

S+

S−
S− S−

S−

FIG. 19. Examples of leading-order contributions of H±± to
(left) real ring flips and (right) complex ring flip processes.

and have been neglected in our paper. Effective operators
within the ice ensemble must annihilate all virtual spinons
they create. In order to create a closed spinon loop, it is
necessary to either (a) use two factors of H±± on adjacent
bonds, or (b) use a combination of H±± and Hz±. Examples of
both are sketched in Fig. 19. It can in fact be shown that local
geometry of case (a) exactly removes any imaginary part—all
diagrams akin to (a) have conjugate “partners” with opposite
imaginary part, with the double-flipped spin on a different
sublattice.

APPENDIX C: CHART DEPENDENCE
AND VISON DEFINITION

In Sec. IV B, we wrote down a local definition of a
vison in terms of the winding number of four phases. It
should be stressed that this notion of a vison is chart de-
pendent. For example, consider an A-sublattice void bounded
by the four plaquettes p1, p2, p3, p4 with corresponding Wil-
son loops eiep4 = exp[i (π/2 + 3ε)], eiep1 = eiep2 = eiep3 =
ei (π/2−ε), 0 < ε � 1. This structure is considered to have a
vison in the chart e ∈ (−π, π ), but has no vison in the chart
e ∈ (π/2,−3π/2). This presents an issue if we wish to treat
these vortex states as “matter”, decoupled from the gauge
field—it seems that we can fluidly move between them by a
trivial change of coordinates.

There is no such problem in a continuum gauge field.
Starting from the closed surface bounding a void v of the dia-
mond lattice, we can arbitrarily subdivide each plaquette into
infinitesimally small subplaquettes (see Fig. 20), ultimately

V = 1 V = 0 V = 0

FIG. 20. Subdivision of a void-shaped cell in a continuum U (1)
gauge theory on length scales below lattice spacing.

converging to the integral

1

2π

∫
∂v

∇ × a · dS,

which is Dirac quantized in the usual way. In the winding-
number language, we subdivide our straight line phases into
arbitrarily small segments, ultimately reaching a point where
each small plaquette carries an arbitrarily small field.

A partial resolution of this chart dependence on the
lattice comes from carefully constructing a coarse-grained
continuum limit. Suppose for now that the system contains
only zero fluxes. Let us then introduce a defect on some void
v using a half-infinite Dirac string, and fix some ε > 0 to be a
small parameter. There exists a large volume � containing the
point defect, such that all elementary plaquettes making up its
surface ∂� satisfy |e| < ε, which may be verified by noting
that at large separations e ∼ 1/r2. This procedure resolves
the ambiguity associated with assigning directions to the four
phases of Fig. 4: Any large phases are simply subdivided by
taking larger Gaussian surfaces until all fields are small. In the
limit ε → 0+, the vison charge approaches an integrated field
curvature, ∑

v∈�

∇ ·v e =
∑
p∈∂�

epnp →
∫

∂�

e · dS.

We have defined np = ±1 to be orientation consistent with the
outward normal of the volume �. We recognize this integral
to be the usual Chern number [60] of the Dirac monopole.
The argument presented here does not generally apply in the
presence of multiple visons, which ultimately place a lower
bound on ε depending on their separation. Indeed, the visons
become increasingly ill defined as their mean separation ap-
proaches the lattice scale.

APPENDIX D: CHART-INDEPENDENT STATIC
STRUCTURE FACTORS

The Z2 duality transform Raπ/2C interchanges the phases
U (1)0 ↔ U (1)π/2, suggesting that the physics of the model
should be the same for φg = θ and φg = π/2 − θ . It is,
however, not immediate to see this symmetry in the static
electric-sector correlators 〈ee〉, illustrated in Fig. 12, as a
consequence of having chosen a specific chart, namely the
(−π, π ) one (see Sec. IV B).

Figure 21 shows the static structure factors as seen through
manifestly chart invariant plaquette correlations, 〈sin e sin e〉
and 〈cos e cos e〉. Where φg < π/2, we see 〈sin e sin e〉 corre-
lations with very similar features to 〈ee〉 (Fig. 12). Similarly,
when φg > π/2, we see that 〈cos e cos e〉 
 〈(e + π/2)(e +
π/2)〉 reveals (shifted) 〈ee〉 correlations. At φg = 0, 0.125π ,
the 〈cos e cos e〉 correlations reveal the Bragg peaks at (000)
and (111) expected of a static order on the pyrochlore lattice.
Both the (000) and (111) peaks are surrounded by Gaus-
sian diffuse features corresponding to thermal fluctuations.
Though the energy scale ρg =

√
g2 + (g′)2 is held constant

in this plot, the strength of the fluctuations is controlled by
T/g rather than T/ρg, and the diffuse features are therefore
more intense at φg = 0.125. Of course, an identical discussion
applies to the sin e correlations at φg = 0.375π, 0.5π .
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0.000π 0.125π 0.250π 0.375π 0.500π
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(0
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)

FIG. 21. Evolution of static electric field correlations from Fig. 12 in terms of chart-independent Wilson loop quantities. Plot titles reflect
the value of φg. Temperature T/ρg = 0.5 is held constant. Bragg peaks are present at (000) in all plots, excepting (φg = 0, 〈cos e cos e〉) and
(φg = π/2, 〈sin e sin e〉); they may, however, be difficult to discern due to rasterizaton.

Yet another view of the phase transition comes from
Fig. 22, showing cuts along the line h = 0. Photon cor-
relations are known to vanish exactly along this line; this
observable probes only effects due to the visons. The Debye
screening of the photons manifests as a Lorentzian centered on
(002), of characteristic width set by the Debye length (itself
a function of vison density) [29]. As one may expect, the
vison density is maximal at the phase transition where the field
tension T = max{|g|, |g′|} is smallest relative to the tempera-

0 2

(00k)

10−4

10−2

100

〈e(
q)

e(
−q

)〉

(a)

T = 0.1ρg

0 2

(00k)

(b)

T = 0.5ρg

0.0000

0.0625

0.1250

0.1875

0.2500

0.3125

0.3750

0.4375

0.5000
φg/π

FIG. 22. Evolution of electric field correlator 〈e(q)e(−q)〉 along
the [00k] line with varying φg. Panel (a) shows the crossing of the
sharp phase transition; panel (b) a smooth crossover above the critical
temperature. Symmetry guarantees no photon contribution along this
cut. The Bragg peak at k = 0 was explicitly cut off from this plot.
The simulation parameters between panels (a) and (b) are identical;
the low-temperature system has domain walls that cause oscillations
in k space.

ture. Thermally excited, isolated vison dipoles manifest as a
uniform background in k space: indeed, this background is
largest at the degeneracy point φg = π/4.

At low temperature [Fig. 22(a)] we see that traces at φg

and π/2 − φg overlap for most of the Brillouin zone, differing
only by the presence of a Gaussian diffuse peak at (000). This
feature is due to fluctuations in the Bragg peak at (000) in
the U (1)π/2 phase. Note that the duality transform Raπ/2C
maps e �→ π/2 − e, preserving all nonsingular correlations.
At higher temperature [see Fig. 22(b)], the chart boundary for
e distorts this picture: when a fluctuation in e is large enough
to cross the chart boundary at π , the fluctuation manifests in
the correlation function as a uniform background, associated
with a nearest-neighbor vison dipole [29]. This issue is more
pronounced in the U (1)π/2 phase than the U (1)0 one due to
the closer proximity of the chart boundary to the mean value
of e.

APPENDIX E: SEMICLASSICAL SIMULATION

Our Monte Carlo algorithm is identical to that established
by Szabó and Castelnovo [29]. The method is based on clas-
sical Monte Carlo simulations of the large-S path integral
formulation of the U (1) gauge theory, implemented by a
Metropolis algorithm consisting of the following stages:

MC1 Apply a random gauge transformation to every
tetrahedron.

MC2 Attempt to rotate spins about the local z axis, accept-
ing the move with probability ∝ exp(−β�E )

MC3 “Ring flip” step: Attempt to change the z compo-
nents of the six spins around a plaquette by some angle δ in an
alternating ring flip pattern. For a hexagon p of spins labeled
by 1,2,3,4,5,6, this is the transformation{

Sz
1 �→ Sz

1 + δ, Sz
2 �→ Sz

2 − δ, Sz
3 �→ Sz

3 + δ,

Sz
4 �→ Sz

4 − δ, Sz
5 �→ Sz

5 + δ, Sz
6 �→ Sz

6 − δ

}
.
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The move is either rejected if any Sz is moved outside of
[−1, 1], or accepted with probability ∝ exp(−β�E ). This
step mimics the infinitesimal, large-S action of the Op opera-
tor.

Depending on the observable we are attempting to mea-
sure, we employ the following two basic processes.

Annealing. Starting from 1/β > ρg, we run a fixed number
Nstep of Metropolis steps and then lower the temperature.
We use Ntemp temperatures, which are logarithmically spaced
between Thot and Tcold. These two variables must be tuned
carefully. To simulate a realistic annealing process, one should
choose Nstep to be large enough for the system to explore
the full configuration space. Moreover, if Nstep is chosen to
be exceedingly small, one effectively quenches the system
into a metastable state. Such metastability is unavoidable in
the critical regime, where costly domain walls are kinetically
prevented from annihilating (cf. Fig. 12 and Sec. VI B).

Time evolution. The semiclassical equation of motion

∂t Si = ∂Heff[{S}]
∂Si

× Si (E1)

is integrated numerically while time series for relevant corre-
lators are stored. As an order of magnitude estimate for the
time taken by Monte Carlo to explore the full phase space,
we exploit the emergent speed of light cQSI,large−S ∼ 0.15ga0

[6]: for a photon to complete a full loop on the three-torus of
side 8La0 (when g′ = 0), one requires ρgt = 8L

0.15 , i.e., we must
capture at least ∼50L oscillation periods.

Time-evolved world lines of the system are then averaged
over the thermal ensemble of initial states, essentially comput-
ing a Monte Carlo summation of a zeroth-order approximation
to the real-time path integral.

APPENDIX F: ELECTRIC - MAGNETIC CONVENTIONS

The classical Maxwell equations in the presence of mag-
netic monopoles read (in Gauss units)

∇ · e = 4πρe, (F1)

∇ · b = 4πρm, (F2)

∇ × e + 1

c

∂b
∂t

= −4π

c
Jm, (F3)

∇ × b − 1

c

∂e
∂t

= 4π

c
Je. (F4)

These equations constrain the transformation properties of e
and b under discrete symmetries. The modified Faraday law
implies that ∂t b, ∇ × e, and Jm must all transform the same
way under parity and time reversal. This in turn guarantees
that e and b have opposite properties under these transforma-
tions, i.e., precisely one of the two is a vector and precisely
one is even under time reversal.

In conventional electromagnetism, we take e to be a T -
even vector, automatically making b a TRS-odd pseudovector.
The spin ice literature is divided on this assignment-the
convention established by Hermele et al. [1] calls the coarse-
grained Sz moments, a TRS odd vector, an electric field; the
convention established by Castelnovo et al. [2] calls this the

TABLE IV. Symmetry conventions.

Hermele et al. [1] Castelnovo et al. [2] Maxwell [82]

e Sz
i nμ(i) (∇p × φ)nμ(p)

b (∇p × a)nμ(p) Sz
i nμ(i)

T e(r, t ) −e(r,−t ) +e(r, −t ) +e(r, −t )
T b(r, t ) +b(r, −t ) −b(r, −t ) −b(r, −t )
Ie(r, t ) +e(−r, t ) −e(−r, t ) +e(−r, t )
Ib(r, t ) −b(−r, t ) +b(−r, t ) −b(−r, t )

magnetic field, see Table IV for a summary. Neither conven-
tion is ultimately equivalent to Maxwell theory.

The units of (emergent) electromagnetism we work in are
Gaussian. Explicitly, the units of electric charge qe and mag-
netic charge qm are defined such that the vison-vison and
spinon-spinon interaction energies are

Um(R) = q2
m

R
, (F5)

Ue(R) = q2
e

R
, (F6)

as the quasiparticle separation R → ∞.

APPENDIX G: LARGE-S PERTURBATION THEORY IN g′/g

Starting from a system in the U (1)0 phase, we develop
a quantitative understanding of the perturbative effect of g′
on the system. We will show that the sin e term acts as an
anharmonic medium for the photons analogous to a nonlinear
crystal. The Hamiltonian of Eq. (11) is first expanded about
the 0-flux vacuum in falling powers of 1/s̃ = (S + 1/2)−1,
where it is noted that e ∼ Sz/s̃ ∼ s̃−1/2, and then separated
into quadratic and interacting parts,

H0[a] = gz

2

∑
j

(
Sz

j

s̃

)2

+
∑

p

g

2
e2

p +
∑

v

g′2πV (v) , (G1)

HI [a] =
∑

p

− g′

3!
e3

p − g

4!
e4

p + g

6!
e6

p + · · · . (G2)

By taking the expansion, we are supposing that ep is in some
sense small, and it is therefore safe to assume in this sec-
tion that ep and ∇ ×p a are essentially synonymous. (Strictly
speaking, a chart is being chosen for a in addition to ep.) As
noted in the main text (Sec. VI A), V (v) in the large-S limit is
a nondynamical topological term decoupled from the gauge-
field dynamics, and it may be set to zero for the purposes
of this calculation. The term proportional to gz in Eq. (G1),
where z = 6 counts the number of spins on a plaquette, arises
from the Villain expansion of the ring-flip [1,6,43].

It can be shown that the next-leading, mixed-operator cor-
rections from g′ are of the form g′(Sz/s̃)2ep. In the spirit
of presenting a minimal effective theory that captures the
high-energy features from semiclassical numerics, such terms
have been dropped from HI . These terms essentially amount
to a renormalization of the three-photon scattering vertex e3

already discussed in the main text (Sec. VI A).

094426-21



ALARIC SANDERS AND CLAUDIO CASTELNOVO PHYSICAL REVIEW B 109, 094426 (2024)

The partition function of the system can finally be written
as

Z =
∫

Da exp(−S0[a] − SI [a]), (G3)

S0[a] =
∫

dτ H0[a], (G4)

SI [a] =
∫

dτ HI [a]. (G5)

We compute the imaginary-time correlator
〈Sz(q, τ )Sz(−q, 0)〉 by expanding the interaction
exp(−SI [a]) = 1 +∑∞

k=1 S
(k)
I [a] where S (k)

I contains only
kth powers of a,

〈Sz(q, τ )Sz(−q, 0)〉 = 1

Z

∫
Da Sz(q, τ )Sz(−q, 0)

× [1 + S (4)
I [a] + S (6)

I [a]
]
e−S0[a],

(G6)

S (4)
I [a] =

∫
dτ
∑

p

− g

4!
ep(τ )4, (G7)

S (6)
I [a] = −

∫
dτ

g

6!

∑
p

ep(τ )6 + 1

2

(
g′

3!

)2 ∫
dτ1dτ2

×
∑
p1,p2

ep1 (τ1)3ep2 (τ2)3. (G8)

Note in particular that, due to the form of HI , S (k)
I contains

only powers of a3 and higher. Due to the vanishing of odd-
powered terms in the action, the leading order in the series is
then S (4)

I . The Hartree-Fock corrections arising from S (4)
I [a]

were calculated in Ref. [6]. They correct the energy of the
existing photon modes and renormalize the speed of light,
but do not introduce any additional modes. We shall therefore
neglect them hereafter.

It is necessary at this point to move from indexing by
links and plaquettes to indexing by tetrahedron and pyrochlore
sublattice. We index a spin uniquely by the position Rt of its
nearest A-type tetrahedron and its pyrochlore sublattice λ ∈
{0, 1, 2, 3}. Similarly, a plaquette may be uniquely indexed by
its nearest-neighbor A-void location Rv and its plaquette sub-
lattice μ ∈ {0, 1, 2, 3}. It may be readily verified that the spin
(Rt , λ) is located at the position Rt + (1 − χ )bλ/2, and the
center of the plaquette (Rv, μ) lies at Rv − (1 − χ/3)bμ/2,
where χ ∈ [0, 1) is the breathing anisotropy of the original
pyrochlore lattice. For notational simplicity we will set χ = 0,
as it has only a marginal effect on the derivation to follow.

Following the standard QED approach [6,42], we in-
troduce bosonic operators associated with each site cRt ,λ,
[cRt ,λ, c†

Rs,ρ
] = δtsδλρ and define their associated Fourier

modes to be cλ(k) = √
2/Nt

∑
t∈A exp(−ik · Rt )cRt ,λ. Here Nt

is the total number of tetrahedra, which is equal to the total
number of voids. Inspired by QED, we make the definitions

aλ(k, t ) = 1√
2s̃εk

[c†
λ(k, t ) + cλ(−k, t )], (G9)

�λ(k, t ) = −∂aλ(k)

∂t
= i

√
εk

2s̃
[c†

λ(k, t ) − cλ(−k, t )], (G10)

where � = Sz/s̃ is now understood as the canonical momen-
tum conjugate to a, and εk is to be determined. The Fourier

transforms of e and � may then be written in terms of the a
variables,

e

(
Rv − bμ

2

)
=
∑
η=±1

∑
λ �=μ

ηa

(
Rv − bμ

2
+ η

a0bμ × bλ√
8‖bμ × bλ‖

)

=
√

2

Nt

∑
k∈BZ,λ

Zμλ(k)eik·(Rv−bμ/2)aλ(k),

�(Rt + bλ/2) =
√

2

Nt

∑
k∈BZ

�λ(k)eik·(Rt +bλ/2),

where

Zμλ(k) = −2i sin

(
a0√

8

k · bμ × bλ

|bμ × bλ|
)

.

After making this substitution, the Wick rotated quadratic
action Eq. (G4) reads

S0[a] =
∫

dt

2s̃εk

∑
k

{[
ε2

k + 1

z
Z (k)2

]
λλ′

2c†
λ(k)cλ′ (k)

+
(

ε2
k−

1

z
Z (k)2

)
λλ′

[cλ(k)cλ′ (−k)+c†
λ(k)c†

λ′ (−k)]

}
,

(G11)

from which we see that the anomalous terms may be can-
celed by diagonalizing z−1/2Z and setting εk to its unique
nonvanishing (doubly degenerate) eigenvalue. This fixes εk,
recovering the standard photon dispersion. The term intro-
duced by the g′ coupling arises from the third-order term in
the expansion of sin e,

Veff = g′

3!

∑
Rv ,μ

e(Rv − bμ/2)3

= g′

3!

∑
k1,k2,k3

�
μ1 μ2 μ3
k1 k2 k3

aμ1 (k1)aμ2 (k2)aμ3 (k3), (G12)

where

�
μ1 μ2 μ3
k1 k2 k3

= δk1+k2+k3√
Nt/2

∑
λ

Zλμ1 (k1)Zλμ2 (k2)Zλμ3 (k3). (G13)

At order S(6), there are two g′-mediated diagrams in the
photon self energy (Fig. 10). The bubble diagram has no con-
tribution, as the propagator connecting the two vertices carries
zero momentum, and from the form of � in Eq. (G13) this
contribution must vanish [recall that Z (0) is the zero matrix].
The remaining diagram gives a contribution to the spectral
weight that, after summing over Matsubara frequencies, re-
duces to〈

Sz
σ (q, ω)Sz

τ (−q, 0)
〉

= s̃2〈�σ (q, ω)�τ (−q, 0)〉

= εpεq−p

(2s̃)2

1

2

(
g′

3!

)2 ∑
p∈BZ

3∑
λ,ξ=0

δ(εp + εq−p − iω)

× �
σ λ ξ

−q q − p p �
τ λ ξ

q p − q −p

× [1 + nB(εp) + nB(εq−p)]. (G14)
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Hidden in the structure of the � terms is a symmetry-
enforced Kronecker delta between μ and ρ. We plot (the

trace of) this this term in Fig. 11, with an arbitrary intensity
scale.
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