
PHYSICAL REVIEW B 109, 094423 (2024)

Impact of gapped spin-orbit excitons on low-energy pseudospin exchange interactions
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The quest for exotic quantum magnetic ground states, including the Kitaev spin liquid and quantum spin
ices, has led to the discovery of several quantum materials where low-energy pseudospin-1/2 doublets arise
from the splitting of spin-orbit entangled multiplets with higher degeneracy. Such systems include d-orbital and
f -orbital Mott insulators. When the gap between the low-energy pseudospin-1/2 levels and the excited levels
of the multiplet or “excitons” is not large, the effective low-energy exchange interactions between the low-
energy pseudospin-1/2 moments can acquire significant corrections from coupling to the excitons. We extract
these corrections using an extended perturbation theory that takes into account the most relevant higher-order
perturbations. Such corrections can impact the exchange matrix for the low-energy pseudospin-1/2 levels by
renormalizing the strength and the sign of Heisenberg exchange or Ising anisotropies, and potentially even
inducing bond-anisotropic couplings such as Kitaev-� exchange interactions. We discuss recent experiments
on various cobaltate and osmate materials, which hint at the ubiquity and importance of this physics. Our
study suggests a distinct direction in the search for exotic spin liquids—quantum pseudospin-1/2 systems with
low-energy spin-orbit excitons.

DOI: 10.1103/PhysRevB.109.094423

Magnetic solids exhibit strong quantum fluctuations in the
limit of small spin. Spin-1/2 systems are thus natural candi-
dates to look for exotic phases of quantum matter including
quantum spin liquids. The simplest realization of such spin-
1/2 degrees of freedom corresponds to single electrons nailed
down at atomic sites in a single-orbital Mott insulator. The
low-energy ordering and dynamics of such Mott insulators
can be described using an effective Heisenberg model for
strong Hubbard repulsion, with higher-order ring-exchange
terms being important for moderate Hubbard repulsion. A
prototypical example is La2CuO4 [1–5], the undoped parent
compound of the cuprate high-temperature superconductors.

More interesting realizations of low-spin quantum mag-
nets occur in multi-orbital systems with spin-orbit coupling
(SOC), where the role of “spin” is played by an effec-
tive pseudospin-1/2 moment with entangled spin and orbital
degrees of freedom. In such cases, these pseudospins are
effective angular momentum degrees of freedom, which we
will generically denote by J . The most well-studied examples
are the J =1/2 Mott insulators in compounds such as the
layered Ir4+ perovskite iridate Sr2IrO4 [6–11], the honeycomb
and hyperhoneycomb polytypes of A2IrO3 (with A = Li, Na)
[12–14], or the analog Ru3+ honeycomb ruthenate α − RuCl3

[15,16]. In these cases, SOC splits the sixfold degenerate t2g

orbitals (including spin) into a lower J =1/2 doublet with a
large gap ∼0.2 − 0.6eV to the higher energy J =3/2 quartet,
termed a “spin-orbit exciton”.

Here, we will focus on a distinct class of interesting
pseudospin-1/2 magnets, which appear in a variety of d-
orbital transition metal oxides, and f -orbital heavy fermion

*These authors contributed equally to this work.

materials, where the pseudospin doublet arises from weak
splitting of a higher moment multiplet with SOC. An illus-
trative example is the case of a spin-3/2 multiplet, which
splits into a pair of Kramers doublets with Jz =±1/2 and
Jz =±3/2 due to SOC in a tetragonal crystal. In this case, the
lower Kramers doublet acts as a low-energy pseudospin-1/2
degree of freedom while the upper doublet may be viewed
as a “gapped exciton”. In order to understand the low-energy
emergent quantum phases of these pseudospin-1/2 magnets,
we have to first extract the effective Hamiltonian describing
the interaction between the low-energy doublets. This is com-
monly done using microscopic calculations of the two-site
exchange interaction between the pseudospin-1/2 moments
(e.g., from tight-binding models based on density functional
theory), or tuning parameters of symmetry-based model spin
Hamiltonians to fit experimental data from low-energy in-
elastic neutron scattering. This reduction of the Hamiltonian
from the full Hilbert space to the low-energy pseudospin-1/2
Hilbert space is important to enable numerical studies on
larger system sizes.

A key message of our paper is that in Mott insulators where
the splitting � between the pseudospin-1/2 low-energy dou-
blet and the “gapped exciton” is not very large, the correct way
to extract the two-site pseudospin exchange starting from an
electronic Hamiltonian is via a two-step procedure. The first
step involves second-order perturbation theory in the electron
hopping, which couples the entire pair of nearest-neighbor
multiplets. In Mott-Hubbard insulators, which have a fixed
number of electrons at each site, this results in an N 2 × N 2

matrix of exchange couplings between all N levels of the
multiplet at each site, with an exchange scale J ∝ t2/U where
t is a shorthand for the orbital-dependent electron hopping
matrix elements, and U is a shorthand for scales arising from
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Kanamori interactions. (Note that we will consistently use
ordinary symbols S, L, and J to denote spin or orbital or
total angular momenta, and stylized symbols such as J ,K to
denote exchange couplings between moments.) The second
step is to integrate out the higher levels of the multiplet, which
are split off by �, leading to an pseudospin-1/2 effective
model. This induces important exchange corrections, which
are on the scale of J 2/�, which is thus fourth order in the
electron hopping. We will discuss several examples showing
how the resulting low-energy effective Hamiltonian can differ
significantly from the naive result where we project to the
low-energy doublet from the outset.

Our paper is tied to recent studies of higher spin magnets.
For magnets with underlying spin J , it is fruitful to think
of the (2J + 1) levels in terms of an SU (N ) magnet with
N = 2J + 1, both for equilibrium properties [17] and spin
dynamics [18–21]. While the Hamiltonian does not neces-
sarily possess SU (N ) symmetry, this allows one to study
all local operators (dipoles and higher multipoles), which are
SU (N ) generators. In this particular case explored here, we
are assuming that the N levels are locally split, and we are
projecting to the lowest doublet in order to study the low-
energy spin dynamics. We note that this low-energy doublet
may not necessarily be a dipolar degree of freedom unlike
what has been explored previously in the semiclassical limit,
but may be a doublet with matrix elements for only higher
multipole operators. Generalization of our paper to other
cases, e.g., Mott insulators with a low-energy triplet at each
site, is straightforward.

Our study is also closely related to recent work on the
impact of spin-orbit excitons on low-energy pseudospin dy-
namics with applications to Sr2IrO4 [22] and the important
idea of “upper branch magnetism,” which treats the interaction
and dispersion of low-lying excitons [23]. We expect our
ideas to also be relevant to anisotropic and higher-order spin
interactions in heavy fermion systems.

Quantum magnets, which possess a pair of Kramers dou-
blets can be realized in several octahedrally coordinated Mott
insulators with SOC, so it is not an uncommon scenario. Ex-
amples of such systems include d7 cobaltates such as CoTiO3,
which exhibits low-energy Dirac magnons and dispersive
spin-orbit excitons [24–26], and candidate Kitaev materi-
als such as BaCo2(AsO4)2, BaCo2(PO4)2, Na3Co2SbO6, and
Na2Co2TeO6 [26–33]. These systems with strong trigonal dis-
tortion realize an effective spin J =3/2 moment, which is split
into two Kramers doublets by SOC. Other examples include
d1 Mott insulators such as Ba2MgReO6, which displays a
higher-temperature quadrupolar and lower-temperature dipo-
lar magnetic ordering transitions [34,35], and magnetically
ordered d3 materials such as Sr2FeOsO6 [36]. Here, the pair of
Kramers doublets arises from tetragonal splitting of a J =3/2
moment. For the purpose of this paper, we do not distin-
guish between moments, which arise from SOC of single
electron/hole and the total angular momentum, which might
arise from SOC and Hund’s coupling of several electrons.

A distinct type of weakly split multiplet is realized in d2

Mott insulators, which host an angular momentum J =2 mul-
tiplet that splits into a ground non-Kramers Eg pseudospin-1/2
doublet and an excited T2g triplet even in an octahedral crys-
tal field. Recent studies on the osmate double perovskites

Ba2MOsO6 (M = Zn, Mg, Ca) shows evidence for such
non-Kramers doublets [37–42]. In this case, the low-energy
τx and τz pseudospin operators transform as a two-component
electric quadrupole, while τy transforms as an Ising magnetic
octupole. These compounds exhibit ferro-octupolar ordering
of the non-Kramers doublets, while the higher-energy T2g

triplet acts as a “gapped exciton”. In this case, the small
Eg − T2g exciton gap arises due to a combination of Hund’s
coupling and SOC-induced virtual transitions from single-
particle t2g to eg levels.

We will discuss several models where the coupling be-
tween the lower and upper multiplet significantly impacts the
naive low-energy Hamiltonian. Using a two-step perturbation
theory, we show that this can renormalize and even poten-
tially flip the sign of the exchange couplings, or can generate
entirely new bond-anisotropic terms such as Kitaev or off-
diagonal � interactions. We test our two-step perturbative
results against an exact Schrieffer-Wolff transformation.

I. EXTENDED PERTURBATION THEORY

Let us consider a N -dimensional multiplet at each site
split by energy � into low-energy “pseudospin” multiplet
of degeneracy NL and a high-energy “exciton” multiplet of
degeneracy NH =N−NL. For the case of spin-3/2 split into
two Kramers doublets, N =4 and NL =NH =2. For the d2

ion split into a non-Kramers pseudospin and a triplet exciton,
we have N =5 with NL =2 and NH =3. When a neighboring
pair of sites are connected by a hopping Hamiltonian HT , the
standard procedure for computing the two-site pseudospin ex-
change involves treating HT within second-order perturbation
theory, integrating out the intermediate charge transfer exci-
tations, which are at much higher energy ∼U (the Hubbard
interaction). This leads to a N 2

L × N 2
L Hamiltonian matrix,

which can be recast in terms of exchange interaction parame-
ters between the pseudospins. However, when � is small, in a
manner to be clarified below, the correct procedure is a two-
step approach. The first step is to extract the full N 2 × N 2

Hamiltonian V , which espouses all second-order contributions
in HT to exchange couplings between the entire J multiplets
(i.e., both pseudospins and excitons). The second step is to
integrate out the high-energy excitons and obtain an effective
low-energy pseudospin Hamiltonian. Accordingly, we split up
the full two-site multiplet Hamiltonian, obtained at the end
of the first step above, as H = H0 + V , where H0 represents
the on-site splitting � between the pseudospin and exciton
levels, and V is O(t2/U ). This site-localized Hamiltonian
H0 has three distinct energy levels: (i) E (0)

0 corresponding to
both sites being in the pseudospin branch, (ii) E (0)

1 = E (0)
0 +�

corresponding to one of the sites being in the exciton branch,
and (iii) E (0)

2 = E (0)
0 + 2� when both sites live in the exciton

branch. The degeneracies of these levels are N 2
L , 2NLNH , and

N 2
H respectively. Typically, the effective Hamiltonian between

the sites is just extracted at O(t2/U ) as the projection of V
onto the E (0) manifold, i.e., H [1]

eff =P0 V P0, where P0 is the
projector onto the E (0) subspace. The exciton-induced correc-
tion is given by

H [2]
eff = P0 V P1

(
1

E (0)
0 − H0

)
P1 V P0, (1)

094423-2



IMPACT OF GAPPED SPIN-ORBIT EXCITONS ON LOW … PHYSICAL REVIEW B 109, 094423 (2024)

where P1 =1−P0; this expression in Eq. (1) is fourth order
in the hopping Hamiltonian HT between the sites, and is
typically ignored. While this term is ∼O(t4/U 2�), it can nev-
ertheless become comparable to the conventional exchange
coupling, when �∼O(t2/U ).

A. Split J = 3/2 moment

Here, we apply the extended perturbation theory to an
effective split J = 3/2 system (i.e., with NL = NH = 2).
Before exploring the physics, we establish a useful basis
for the two-site problem. Using σ a to denote the usual
Pauli matrices [43], we define the following convenient ba-
sis for the 4 × 4 Hermitian matrices (written in the basis
{|1/2〉 , |−1/2〉 , |3/2〉 , |−3/2〉}) that can act on each site:

ηa =
(

σ a 0
0 0

)
, τ a =

(
0 0
0 σ a

)
, (2)

ξ a
r = 1√

2

(
0 σ a

σ a 0

)
, ξ a

i = 1√
2

(
0 −iσ a

iσ a 0

)
. (3)

Here, a ∈ {0, 1, 2, 3} for each type of operator. In this basis,
the ηa operate within the Jz = ±1/2 subspace, the τ a oper-
ate within the Jz = ±3/2 subspace, and the ξ a

r and ξ a
i swap

states between these two subspaces. These 16 matrices are
more convenient than the usual J = 3/2 multipole operator
basis, because they naturally separate the two doublets. See
Appendix C for the change of basis to multipole operators.

For the purposes of integrating out the excitons to leading
order, we only need the following terms from the J = 3/2
interaction Hamiltonian:

V = J (ηη)
ab ηaηb +

∑
s=r,i

K(s)
ab

(
ηaξ b

s + ξ b
s ηa

)

+
∑

s,t=r,i

M(st )
ab ξ a

s ξ b
t . (4)

These three terms correspond to processes that do not excite
an exciton, excite exactly one exciton, and excite two exci-
tons, respectively. Other terms would annihilate states with
no excitons, so they cannot contribute to the physics of the
lower doublet at second order in perturbation theory [i.e., they
vanish when taking the projection via P0 to the lower-energy
sector in Eq. (1)]. Similar processes, but also including ex-
change between excited state levels, have been explored in the
context of “upper branch magnetism” in previous paper [23].

We are looking for an effective interaction matrix between
the pseudospin-1/2 moments, which we call Jeff . This should
be understood as the Hamiltonian

Heff = s̃T
1 Jeff s̃2, (5)

where s̃ refers to the vector of spin operators in the two dimen-
sional pseudospin space, and the numbered subscript indicates
the site index. The second-order perturbation calculation can
be done according to Eq. (1), yielding

Jeff = J (ηη) + δJK + δJM, (6)

where

(δJK )ab = − 1

2�

(
K(r)

cd − iK(i)
cd

)(
K(r)

e f + iK(i)
e f

)
× (λceaλdf b + λcebλdf a) (7)

and

(δJM )ab = − 1

8�

(
M(rr)

cd − M(ii)
cd − iM(ri)

cd − iM(ir)
cd

)
× (

M(rr)
e f − M(ii)

e f + iM(ri)
e f + iM(ir)

e f

)
× λceaλdf b. (8)

Here we have defined the lambda symbol by σ aσ b = λabcσ c.
Explicitly,

λabc =

⎧⎪⎪⎨
⎪⎪⎩

δbc a = 0
δac b = 0
δab c = 0
iεabc a, b, c �= 0

. (9)

It is clear from these equations that having K ∼
√
J (ηη)�

or M ∼
√
J (ηη)� could lead to changes on the order of J (ηη).

In Sec. IV, we will demonstrate some toy examples where this
occurs and completely changes the physics of the resulting
spin theory. For now we test extended perturbation theory on
physically realistic models.

B. Illustrative example

We consider a simple example to build intuition relating
to the above formalism. We consider a J =3/2 multiplet that
is split into two Kramers doublets via a tetragonal distortion,
encapsulated by the Hamiltonian

H0 = �[τ0(r) + τ0(r′) + 2τ0(r)τ0(r′)]. (10)

Here, τ 0 = (Qz2 + 1)/2 with Qz2 = J2
z − J (J + 1)/3.

When we consider a two-site problem with one such split
moment on each site, the interaction matrix V will generally
contain couplings between all the allowed multipoles that a
J = 3/2 moment can host. Here, we consider a V that contains
Heisenberg (dipolar) spin exchange, as well as quadrupole,
and octupole interactions given by

V = JH J(r) · J(r′) + JQ Qxy(r)Qxy(r′)

+ JT Txyz(r)Txyz(r′), (11)

where J are vector magnetic dipole operators, Qxy = (JxJy +
JyJx )/

√
3 is the magnetic quadrupole operator, and Txyz =

2Sym[JxJyJz]/3
√

3 is the Ising-like magnetic octupole oper-
ator with “Sym” denoting symmetrization.

Let us denote pseudospin-1/2 operators acting on the low-
energy doublet as s̃. A simple projection of the spin-3/2
Hamiltonian into this pseudospin-1/2 doublet leads to

H [1]
eff,ex = JH

(
s̃1

x s̃2
x + s̃1

y s̃2
y

) + JH

4
s̃1

z s̃2
z , (12)

which is completely devoid of any terms, which include the
impact of higher multipole interactions. However, using the
extended perturbation theory result in Eq. (1), we find

H [2]
eff,ex =

(
JH − 3JH (JQ − JT )

4�

)(
s̃1

x s̃2
x + s̃1

y s̃2
y

)

+
(
JH

4
− 39J 2

H

16�
− JQJT

�

)
s̃1

z s̃2
z . (13)

From the above, we can see that while the form of the cou-
plings is the same, the coupling strengths have the potential
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of being strongly renormalized by the presence of the exciton
if the multipole couplings JQ, JT ∼� or JQJT /JH ∼�. The
right combination of the multipole couplings can strongly
suppress the zz interaction, giving rise to a pure XY model,
or even flip the sign of the XXZ anisotropy.

II. MICROSCOPIC ELECTRONIC MODELS

Here we provide examples of how the above protocol may
be used in a typical microscopic calculation, and see how it
produces markedly different results compared to the standard
treatment outlined at the beginning of the previous section.
We consider two cases: a d1 honeycomb system subject to
trigonal distortion, and a d2 fcc system that hosts higher-order
multipole moments in its ground state. These cases both fea-
ture larger moments that are split to give a (pseudo)spin-1/2
ground state, are numerically tractable via an exact Schrieffer-
Wolff transformation (as outlined in Ref. [41]) in order to
assess the accuracy of the EPT approach. The microscopic
Hamiltonian for both of the cases is

Hloc = HCEF + HSOC + Hint, (14)

which includes t2g − eg crystal field splitting, SOC,
and electronic interactions, written in the orbital basis
({yz, xz, xy}, {x2−y2, 3z2−r2}). The CEF term is given by

HCEF =
∑
α,β

∑
s

Aαβc†
αscβs, (15)

where A is the local crystal field matrix written in the orbital
basis, and s is the spin. The SOC term is of the one-body form,

HSOC = λ

2

∑
α,β

∑
s,s′

〈α| L |β〉 · 〈s| σ |s′〉 c†
αscβs′ , (16)

where L are orbital angular momentum matrices and σ de-
notes the vector of Pauli matrices.. The operators cαs, c†

αs,
and nαs destroy, create, and count the electrons with spin s
in orbital α. The Kanamori interaction is given by

Hint = U
∑

α

nα↑nα↓+
(

U ′ − JH

2

) ∑
α>β

nαnβ

− JH

∑
α �=β

Sα · Sβ + JH

∑
α �=β

c†
α↑c†

α↓cβ↓cβ↑, (17)

where U and U ′ are the intra- and interorbital Hubbard in-
teractions, JH is the Hund’s coupling, and Sα and nα are the
electron spin operator and total particle number operator in
orbital α. The spherical symmetry of the Coulomb interaction
sets U ′ = U − 2JH [44].

A. d1 ions in a honeycomb lattice

A single-ion ground state of the Hamiltonian in Eq. (14)
with a single electron restricted to the t2g sector, is a fourfold
degenerate J = 3/2 manifold. A typical situation that arises
in 2D materials is when this ion is in an octahedral cage, and
the octahedra are used to form a honeycomb lattice. A natural
distortion axis for such a lattice is that along the octahedral
[111] direction, corresponding to the direction perpendicular
to the honeycomb plane. Such a distorted octahedron has, in

addition to the usual t2g − eg splitting, the following term in
the crystal field matrix:

δ

3
(Lx + Ly + Lz )2,

where δ is the distortion parameter. Restricting ourselves to
the t2g sector, the A matrix is given by⎛

⎝0 δ δ

δ 0 δ

δ δ 0

⎞
⎠. (18)

The effect of this distortion term is the split the J = 3/2
moment into two Kramers doublets, with |±1/2〉 as the
ground-state doublet, and |±3/2〉 the “exciton”, higher in
energy by �, as shown in Fig. 1(a). To obtain the pseudospin
exchange, we consider a two-site model of such octahedra,
connected via a hopping Hamiltonian of the form

Hγ
T =

∑
αβs

(T γ

αβc†
2βsc1αs + T γ †

βα c†
1αsc2βs), (19)

where T γ is the hopping matrix for the γ bond. We consider
a matrix for the z bond in the honeycomb inspired by the 90
degree bonding geometry in Ref. [7],

T z =
⎛
⎝0 t1 0

t1 0 0
0 0 t2

⎞
⎠. (20)

Here, t1, is the yz − zx hopping, and t2 is the xy − xy hopping.
The matrices for the x and y bonds can be obtained via C3 ro-
tation about the octahedral [111] axis. For the illustrative case,
we consider t1 = −100meV, and t2 = 50 meV, along with the
single ion parameters (λ, U, JH ) = (0.1, 2.5, 0.3) eV. In the
laboratory frame, the low-energy pseudospin exchange matrix
takes an XXZ form,

Hspin = JXY
(
s̃1

x s̃2
x + s̃1

y s̃2
y

) + JZZ s̃1
z s̃2

z . (21)

Figures 1(b) and 1(c) show the values of these exchange
parameters when calculated using EPT, contrasted with the
conventional method of directly projecting down to the lower
manifold (SOPT). The two approaches are also compared with
the exact two site Schrieffer-Wolff calculation. It can be seen
that the EPT is much closer to the exact calculation, and the
methods give significantly different coupling values. While
the SOPT Hamiltonian remains XXZ for all gap values, it can
be seen that for � ∼ 17meV, the spin Hamiltonian is actually
a pure XY model. It can also be seen that for a small enough
gap value, we approach a point where JXY ≈ −JZZ . At this
point, performing a single sublattice spin rotation such that
(s̃x → s̃x, s̃y → −s̃y, s̃z → −s̃z) would convert this into a pure
Heisenberg antiferromagnet. Thus, the addition of the exciton
mixing terms reveals a much richer class of spin Hamiltonians
accessible via tuning the trigonal distortion.

B. d2 ions in an fcc lattice

Another class of systems where this formalism is useful is
those where the pseudospin degree of freedom is made up of
non-Kramers states. These have recently been studied in the
context of d2 double perovskites, where a J =2 moment, when
placed in a cubic environment, splits as 2(Eg) ⊕ 3(T2g). The
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FIG. 1. (a) Level structure for a d1 ion with spin-orbit coupling and trigonal distortion. The lower |±1/2〉 states act as the effective spin-1/2
moment. (b),(c) Exchange couplings for the spin Hamiltonian in Eq. (21), computed using SOPT and EPT, and compared to the exact SW
calculation.

non-Kramers Eg ground state may be treated as a pseudospin
1/2 degree of freedom, with wavefunctions

|ψg,↑〉 = 1√
2

(|2〉 + | − 2〉); |ψg,↓〉 = |0〉. (22)

Within this non-Kramers doublet space, the Pauli matri-
ces τx, τy, τz are proportional to multipole operators, and
are given by τx ≡ (J2

x − J2
y )/2

√
3, τy ≡ JxJyJz/6

√
3, and

τz ≡ (3J2
z − J (J + 1))/6, with overline denoting symmetriza-

tion. Here, τx, τz are electric quadrupoles while τy is a mag-
netic octupole [39]. The form of the pseudospin Hamiltonian
has been shown to take the form

Hspin =
∑
〈i, j〉

[Koτiyτ jy + (K1 cos2 φi j + K2 sin2 φi j )τixτ jx

+ (K1 − K2) sin φi j cos φi j (τixτ jz + τizτ jx )

+ (K1 sin2 φi j + K2 cos2 φi j )τizτ jz], (23)

where φi j = {0, 2π/3, 4π/3} correspond to nearest neigh-
bors (i, j) in the {xy, yz, zx} planes. Ko and K1,2 respectively
correspond to the octupolar exchange and quadrupolar cou-
plings. An exact two-site calculation using a Schrieffer-Wolff
transformation to obtain the effective low-energy Hamilto-
nian indicated that the nearby T2g triplet is able to strongly
influence the exchange parameters of the Eg doublets. This

system thus provides with another testing ground for the EPT
formalism. As shown in Figs. 2(b)–2(d), it can be seen that
the dominant octupole-octupole exchange coupling shows a
significant increase in magnitude, while also showing that
the quadrupolar K1 coupling is has the opposite sign and
significantly higher magnitude compared to the SOPT case.

III. SOME INTERESTING TOY EXAMPLES

In addition to the above physically motivated examples, it
is important to study the variety of effects that this extended
perturbation theory can describe. In this section, we focus
on the case of a J = 3/2 system split into two doublets. In
this case, we have proven that any conceivable change in
spin models δJ can be realized with time-reversal invariant
couplings between the doublets, with coupling coefficients in
an intermediate scale between those of δJ and �. The explicit
proof of this is given in Appendix B in the form of an algo-
rithm that works backwards: taking any given δJ and working
out a set of time-reversal invariant couplings that produce this
δJ under perturbation theory. The system of equations that the
algorithm solves is underdetermined meaning the solutions
are not unique.

In the following subsections, we look at a few particularly
striking cases of interesting split J = 3/2 systems with clean

FIG. 2. (a) Level structure for a d2 ion within a double perovskite crystal. (b),(c),(d) Exchange couplings for the pseudospin Hamiltonian
in Eq. (23), computed using SOPT and EPT, and compared to the exact SW calculation.
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solutions, using the notation of Sec. I A. These demonstrate
the power of interdoublet couplings in changing the low-
energy physics. For each case, we consider the interaction
Hamiltonian to be given by Eq. (4) with

J (ηη) =
⎛
⎝J 0 0

0 J 0
0 0 J

⎞
⎠. (24)

Hence, the usual second-order perturbation theory will al-
ways predict a Heisenberg model. By carefully choosing the
interdoublet coupling coefficients, K(s) and M(st ), we can
drastically change the physics of the low-energy degrees of
freedom as predicted by EPT. These predictions agree with
a nonperturbative Scheiffer-Wolff transformation, suggesting
their improved trustworthiness over standard second-order
perturbation theory.

A. Changing the Heisenberg coupling

To begin we consider the case where the inter-doublet
couplings only change the value of the Heisenberg coupling.
The desired EPT correction takes the form

δJ =
⎛
⎝κ 0 0

0 κ 0
0 0 κ

⎞
⎠. (25)

Such a correction can be introduced using only K(i) couplings.
For κ > 0, this can be achieved by introducing

K(i) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0
√

κ�
2 0 0

0 0
√

κ�
2 0

0 0 0
√

κ�
2

⎞
⎟⎟⎟⎟⎟⎠, (26)

and for κ < 0, this can be achieved by introducing

K(i) =

⎛
⎜⎜⎜⎜⎜⎝

√−2κ� 0 0 0

0
√

−κ�
2 0 0

0 0
√

−κ�
2 0

0 0 0
√

−κ�
2

⎞
⎟⎟⎟⎟⎟⎠. (27)

Notice here that to completely reverse the sign of the interac-
tion (and therefore change the physics from a ferromagnet to
an antiferromagnet or vice versa), we need κ = −2J , so the
K(i) couplings introduced are on the order of

√|J |�, which
is the geometric mean of the spin interaction scale J and the
splitting scale �.

The validity of this EPT result in describing the low-energy
physics of this toy model is demonstrated in Fig. 3, where
we plot the change with respect to � while keeping the other
parameters fixed (the particular values chosen are justified
below). The figure contrasts the extended perturbation theory
with the standard projection (labelled SOPT) and with the
results of integrating out the exciton with a Schrieffer-Wolff
transformation (labelled SW). Since this is an illustrative cal-
culation, the full Hamiltonian used for this Schrieffer-Wolff
transformation is the J = 3/2 toy model described above with
no reference to an underlying microscopic electron model.

FIG. 3. Comparison of the J = 1/2 spin models extracted from
a split J = 3/2 model with various splittings. The plot shows the
� dependence of the identical diagonal components of the matrix
Jab in the Hamiltonian Heff = ∑

〈i, j〉 Jabsa
i sb

j . All off-diagonal com-
ponents vanish. The J = 3/2 model was chosen such that Jab =
diag(−1,−1, −1) under projection, with additional coupling K(i) =
diag(0, 6, 6, 6). All other couplings are taken to be 0. Notice that EPT
at � = 36|J | gives an antiferromagnetic Heisenberg interaction
with equal magnitude to the ferromagnetic Heisenberg interaction
found via projection.

Instead, our point is to show good agreement between the
EPT and SW results, so that simple second-order perturbation
theory in the exciton terms leads to good agreement (which
would be fourth order in the microscopic electron hopping).

The parameters used to produce Fig. 3 were chosen so that
simple projection gives a ferromagnetic Heisenberg model,
but extended perturbation theory gives an antiferromagnetic
Heisenberg model with equal magnitude at � = 36J .

B. Heisenberg to Kitaev

The EPT can also describe nonisotropic corrections to the
naively Heisenberg model of Eq. (24). We demonstrate this by
giving a model that produces a pure Kitaev interaction. The
desired correction on one of the bonds of a honeycomb lattice
is then

δJ =
⎛
⎝−J 0 0

0 −J 0
0 0 K

⎞
⎠. (28)

This produces the EPT result

Jeff =
⎛
⎝0 0 0

0 0 0
0 0 J + K

⎞
⎠. (29)

To avoid clutter, we consider here just the case K > 0. As in
the previous section, this correction can be achieved with only
K(i) being nonzero. In particular, we can produce Eq. (29)
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FIG. 4. Comparison of the J = 1/2 spin models extracted from a split J = 3/2 model with various splittings. The subplots show the
different elements of the matrix Jab in the Hamiltonian Heff = ∑

〈i, j〉 Jabsa
i sb

j . (a) � dependence of the xx component, which is identical to
the yy component. (b) � dependence of the zz component. All other components vanish. The J = 3/2 model was chosen such that Jab =
diag(−1, −1, −1) under projection, with additional coupling K(i) = diag(0, 6, 6, 3). All other couplings are taken to be 0. Notice that EPT
gives a pure Kitaev interaction at � = 36|J |.
with

K(i) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0
√

K�
2 0 0

0 0
√

K�
2 0

0 0 0 −J
√

�
2K .

⎞
⎟⎟⎟⎟⎟⎠. (30)

The various approaches to extracting the effective J = 1/2
spin model from this J = 3/2 model are contrasted in Fig. 4,
in a similar manner to Fig. 3. The parameters are chosen
such that the EPT methods results in Eq. (29) at � = 36|J |
with J < 0 and K = 2|J |. Here again we see the agree-
ment between the EPT and SW approaches implying that
the second-order perturbation theory in the exciton terms is
sufficient to obtain reliable results.

C. Heisenberg to K�

Extended perturbation theory can also lead to the devel-
opment of off diagonal terms in the resulting spin theory. To
demonstrate this we give an example producing a pure K�

interaction. Here the overall correction we want is

δJ =
⎛
⎝−J � 0

� −J 0
0 0 K

⎞
⎠, (31)

where � is a real number. This correction gives

Jeff =
⎛
⎝0 � 0

� 0 0
0 0 J + K

⎞
⎠. (32)

To engineer a Hamiltonian that produces the K� interaction,
we use the M(rr) and M(ii) couplings to generate the off-
diagonal terms and the K(i) couplings to fix the diagonal
terms. This works because of the decomposition from Eq. (6),

δJ = δJK + δJM . We find a solution with

δJM =
⎛
⎝−|�| � 0

� −|�| 0
0 0 0

⎞
⎠ (33)

and

δJK =
⎛
⎝−J + |�| 0 0

0 −J + |�| 0
0 0 K

⎞
⎠. (34)

To produce these corrections we take

M(rr) =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 2

√|�|�
0 0 2

√|�|� 0

⎞
⎟⎟⎟⎠, (35)

M(ii) =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 −2 sgn(�)
√|�|�

0 0 0 0

0 −2 sgn(�)
√|�|� 0 0

⎞
⎟⎟⎟⎠,

(36)

and

K(i) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0
√

K�
2 0 0

0 0
√

K�
2 0

0 0 0 −(J − |�|)
√

�
2K

⎞
⎟⎟⎟⎟⎟⎟⎠

. (37)

In the spirit of Figs. 3 and 4, we plot the results of var-
ious methods of integrating out the exciton in Fig. 5. The
parameters were chosen such that EPT results in Eq. (32)
at � = 36|J | with J < 0, K = 2|J |, and � = |J |. The
similarity between the EPT and SW lines demonstrate once
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FIG. 5. Comparison of the J = 1/2 spin models extracted from a split J = 3/2 model with various splittings. The subplots represent
different elements of the matrix Jab in the Hamiltonian Heff = ∑

〈i, j〉 Jabsa
i sb

j . (a) � dependence of the xx element, which is identical to the yy
element. (b) � dependence of the zz element. (c) � dependence of the xy element, which is identical to the yx element. The remain elements
have significantly smaller changes and may be seen in Fig. 6. The J = 3/2 model was chosen such that Jab = diag(−1,−1, −1) under
projection, with additional coupling K(i) = diag(0, 6, 6, 6), M(rr)

23 = M(rr)
32 = 12, and M(ii)

13 = M(ii)
31 = −12. All other couplings are taken to

be 0. Notice that EPT gives a pure K� interaction at � = 36|J |.
again that second-order perturbation theory (in exciton terms)
is sufficient to integrate out the excitons for the range of �

we consider. However, in this case, as shown in Fig. 6, the
Jxz and Jyz components in the SW calculation do not vanish.
While these effects are small compared to the other compo-
nents, it indicates that at low � there is some other effect,
likely involving mixing between the M and K terms. Since
this mixing cannot occur at second order, this suggests that
a higher-order expansion is necessary at lower values of �.
We are only concerned with intermediate values of � where
J � � still holds, so we are satisfied with the performance
of second-order perturbation theory and leave the study of
higher-order effects for future work.

IV. CONCLUSIONS

The extended perturbation theory described here is a sim-
ple and accurate technique for improving effective spin-1/2
models derived from second-order perturbation theory in

electron hoppings. By including the first excited multiplet on
each site then integrating it out via a second perturbation step,
the leading fourth-order effects are included in the resulting
Hamiltonian. The effectiveness of this approach was demon-
strated clearly in Sec. II for the case of d1 and d2 systems
where it accurately followed the results of nonperturbative
Schreiffer-Wolff transformations. In addition, the results of
our toy models in Sec. III demonstrate that this method can
produce a wide variety of effects that are not included in the
ordinary second-order approach.

In principle, one could take either perturbation step to
higher order. If we call the approach presented here a 2 + 2
extended perturbation theory (owing to the fact that we take
the second-order results of each step), we could also consider
a general n + m extended perturbation theory. The examples
above indicate that this is not necessary for either the realistic
systems or the toy models we considered. In general, we sus-
pect that 2 + 2 is sufficient for most systems. More involved
discussions of higher orders are left for future studies.

FIG. 6. (a) Comparison of the xz component of the model in Fig. 5, which is identical to the zx component. (b) Comparison of the yz
component of the model in Fig. 5, which is identical to the zy component.
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Based on the fact that this approach is simple to implement,
is accurate in describing the physics, and can produce new
effects, it should be considered for future effective Hamilto-
nian searches in a wider setting, especially when the ordinary
second-order perturbation theory does not accurately describe
the observed physics.
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APPENDIX A: EXTENDED PERTURBATION
THEORY DETAILS

In this Appendix, we fill in the details in the derivation of
Eqs. (7) and (8). As mentioned in the main text, we assume
that we have a 16 × 16 interaction matrix H3/2 that contains
all second order in HT contributions to the interactions be-
tween pseudospins and excitons on the two sites. We split up
the terms of H3/2 as follows:

H3/2 = H0 + V
= H0 + V (ηη) + V (ηξ ) + V (ξξ )

+V (ητ ) + V (ττ ) + V (τξ ). (A1)

Here H0 is the matrix that splits the spectrum on each site,
namely

H0 = �(τ 0 ⊗ η0 + η0 ⊗ τ 0 + 2 τ 0 ⊗ τ 0). (A2)

Each V (st ) denotes the collection of terms that couple s and t
operators on each site. For completeness, we write each one
out fully, but as stated in the main text only V (ηη), V (ηξ ), and
V (ξξ ) can contribute to the effective J = 1/2 Hamiltonian at
second order. By our conventions,

V (ηη) = J (ηη)
ab ηa ⊗ ηb, (A3)

V (ηξ ) = K(r)
ab

(
ηa ⊗ ξ b

r + ξ b
r ⊗ ηa

)
+K(i)

ab

(
ηa ⊗ ξ b

i + ξ b
i ⊗ ηa

)
, (A4)

V (ξξ ) = M(rr)
ab ξ a

r ⊗ ξ b
r + M(ii)

ab ξ a
i ⊗ ξ b

i

+M(ri)
ab

(
ξ a

r ⊗ ξ b
i + ξ b

i ⊗ ξ a
r

)
, (A5)

V (ητ ) = J (ητ )
ab (ηa ⊗ τ b + τ b ⊗ ηa), (A6)

V (ττ ) = J (ττ )
ab τ a ⊗ τ b, (A7)

and

V (τξ ) = N (r)
ab

(
τ a ⊗ ξ b

r + ξ b
r ⊗ τ a

)
+N (i)

ab

(
τ a ⊗ ξ b

i + ξ b
i ⊗ τ a

)
. (A8)

Here the J , K, M, and N symbols represent 4 × 4 matri-
ces of real-valued coefficients that determine the interaction
strengths of all the possible interactions. The indices a and b

are meant to be summed over {0, 1, 2, 3} according to Einstein
summation notation, whereas r and i are merely labels for
the ξr and ξi operators and should not be summed over. We
assume inversion symmetry between the sites, making J ηη,
J ττ , M(rr), and M(ii) symmetric matrices. We will assume for
the sake of perturbation theory that J ,K,M,N � �.

With just H0, the |Jz| = 1/2 subspace is entirely trivial; no
interactions occur between sites and on each site the two states
are perfectly degenerate. Therefore, our use of degenerate
perturbation theory is justified. Let P0 = η0 ⊗ η0 denote the
projector onto the subspace with |Jz| = 1/2 on both sites, and
P1 = I − P0. At first order, we get

H [1]
eff = P0VP0 = V (ηη). (A9)

At this order, only V (ηη) can contribute. This reproduces the
standard interaction Hamiltonian obtained through merely
projecting to the lower doublet.

To get our extended perturbation theory result, we look at
the second-order correction given by Eq. (1),

H [2]
eff = −P0VP1

1

H0
P1VP0. (A10)

With a little algebra one can show that this splits into two
terms H [2]

eff = H [2]
K + H [2]

M with

H [2]
K = −P0V (ηξ )P1

1

H0
P1V (ηξ )P0 (A11)

and

H [2]
M = −P0V (ξξ )P1

1

H0
P1V (ξξ )P0. (A12)

Notice that P0V (ηξ )P1 = P0V (ηξ ) vanishes on all states ex-
cept for those that have |Jz| = 1/2 on one site and |Jz| = 3/2
on the other. Hence, the only nonvanishing contribution sees
1/H0 as 1/�. Using this we can simplify our equation greatly,

H [2]
K = − 1

�
P0(V (ηξ ) )2P0. (A13)

Similarly, P0V (ξξ )P1 = P0V (ηξ ) kills all states except for those
with |Jz| = 3/2 on both sites, allowing the simplification

H [2]
M = − 1

2�
P0(V (ξξ ) )2P0. (A14)

By writing the ξ operators explicitly as tensor products of
Pauli matrices and recalling that we defined lambda through
σ aσ b = λabcσ c, we can rewrite H [2]

K = (δJK )abσ
a ⊗ σ b and

H [2]
M = (δJM )abσ

a ⊗ σ b. Following this procedure gives

(δJK )ab = − 1

2�

(
K(r)

cd − iK(i)
cd

)(
K(r)

e f + iK(i)
e f

)
× (λceaλdf b + λcebλdf a) (A15)

and

(δJM )ab = − 1

8�

(
M(rr)

cd − M(ii)
cd − iM(ri)

cd − iM(ri)
cd

)
× (

M(rr)
e f − M(ii)

e f + iM(ri)
e f + iM(ri)

e f

)
λceaλdf b

(A16)
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as presented in the main text. Therefore, we can describe our
effective Hamiltonian as

Heff = (Jeff )abσ
a ⊗ σ b = (J (ηη) + δJK + δJM )abσ

a ⊗ σ b.

(A17)

APPENDIX B: PROOF OF SURJECTIVITY OF THE
EXTENDED PERTURBATION THEORY EQUATIONS

In this Appendix, we prove the claim made in Sec. III that
the extended perturbation theory can create any change in the
spin model. In other words, Eqs. (7) and (8), which determine
δJ , are surjective onto the set of symmetric 3 × 3 matrices.
We will prove this claim by starting with an arbitrary δJ and
constructing K(i), M(rr), and M(ii) couplings that produce δJ .
An important feature of this construction is that it will only
involve nonzero coefficients for couplings, which preserve the
time-reversal and exchange symmetries. Hence, there are no
symmetry restrictions to finding these couplings in nature.

Consider an arbitrary symmetric 3 × 3 matrix, δJ . For
concreteness, we label the elements of this matrix as

δJ =
⎛
⎝ k1 m3 m2

m3 k2 m1

m2 m1 k3

⎞
⎠. (B1)

Here we have been intentionally suggestive with our labels.
Indeed the off-diagonal mi elements will be set by our choice
of M(rr) and M(ii), then the diagonal will be set by our choice
of K(i).

Starting with the off-diagonal elements, the simplest case
is that m1 = m2 = m3 = 0. In this case, we can set M(rr) =
M(ii) = 0 and move on to dealing with the diagonal elements.
Otherwise, suppose mi �= 0 for some i ∈ {1, 2, 3}. It will be
useful to define the following matrix-valued functions:

M1(a, b) =

⎛
⎜⎜⎝

0 0 0 0
0 b 0 0
0 0 0 −a
0 0 −a 0

⎞
⎟⎟⎠,

M2(a, b) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 −a
0 0 b 0
0 −a 0 0

⎞
⎟⎟⎠,

M3(a, b) =

⎛
⎜⎜⎝

0 0 0 0
0 0 −a 0
0 −a 0 0
0 0 0 b

⎞
⎟⎟⎠,

(B2)

where a and b are real numbers. In what follows, all arithmetic
involving indices is modulo 3.

Consider setting M(rr) = Mi+1(a, b), M(ii) = Mi+2(c, d ),
M(ri) = 0, and M(ir) = 0, for some real numbers a, b, c, and
d . Plugging these into Eq. (A16) and equating the off-diagonal
elements to the off-diagonal components of δJ , one finds the
following system of equations:

mi = − ac

4�
,

mi+1 = ab

4�
,

mi+2 = cd

4�
. (B3)

A solution to this system of equations is given by

a = −2sgn(mi )
√

|mi|�,

b = −2sgn(mi )mi+1

√
�

|mi| ,

c = 2
√

|mi|�,

d = 2mi+2

√
�

|mi| . (B4)

Hence, to have δJM have the desired off-diagonal elements,
define

M(rr) = Mi+1

⎛
⎝−2sgn(mi )

√
|mi|�,

− 2sgn(mi )mi+1

√
�

|mi|

⎞
⎠ (B5)

and

M(ii) = Mi+2

⎛
⎝2

√
|mi|�, 2mi+2

√
�

|mi|

⎞
⎠. (B6)

In general, the resulting δJM will have nonzero diagonal
elements [45], so to fully reproduce the desired δJ , we need
to find K(r) and K(i) such that

δJK =

⎛
⎜⎝k1 − δJM,11 0 0

0 k2 − δJM,22 0
0 0 k3 − δJM,33

⎞
⎟⎠. (B7)

For simplicity of notation, we define k̃i = ki − δJM,ii. Con-
sider setting K(r) = 0 and

K(i) =

⎛
⎜⎜⎝

a0 0 0 0
0 a1 0 0
0 0 a2 0
0 0 0 a3

⎞
⎟⎟⎠, (B8)

with a0, a1, a2, a3 ∈ R. Evaluating δJK and equating with the
desired form gives the following system of equations:

a0a1 − a2a3 = − 2

�
k̃1 ≡ κ1,

a0a2 − a3a1 = − 2

�
k̃2 ≡ κ2,

a0a3 − a1a2 = − 2

�
k̃3 ≡ κ3. (B9)

A useful trick for finding a general solution to these equa-
tions is to set

a0 = b − c,

a1 = b + c,

a2 = f + e,

a3 = f − e,

(B10)
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for some real numbers b, c, e, and f . This changes the
Eqs. (B9) to

b2 − c2 − e2 + f 2 = κ1,

−2ce + 2b f = κ2,

−2ce − 2b f = κ3.

(B11)

The last two equations imply that

ce = − 1
4 (κ2 + κ3) ≡ κ+,

b f = 1
4 (κ2 − κ3) ≡ κ−. (B12)

We are free to choose our solution such that e, f �= 0, in which
case we may combine Eqs. (B12) with the first equation of
(B11) to find

f 2 + κ2
+

f 2
− e2 − κ2

−
e2

= κ1. (B13)

This equation can be solved with

f =

⎧⎪⎪⎨
⎪⎪⎩

√
κ1 + |κ+| + |κ−| +

√
(κ1 + |κ+| + |κ−|)2 − 4κ2− κ1 � 0√

|κ1|
2 + |κ+| + |κ−| +

√( |κ1|
2 + |κ+| + |κ−|)2 − 4κ2− κ1 < 0

(B14)

and

e =

⎧⎪⎪⎨
⎪⎪⎩

√
κ1
2 + |κ+| + |κ−| +

√(
κ1
2 + |κ+| + |κ−|)2 − 4κ2+ κ1 � 0√

|κ1| + |κ+| + |κ−| +
√

(|κ1| + |κ+| + |κ−|)2 − 4κ2+ κ1 < 0

. (B15)

These solutions can then be used to find b = κ−/ f and c = κ+/e, and subsequently a0 = b − c, a1 = b + c, a2 = e + f , and
a3 = e − f . The resulting K(i) gives the desired δJK , completing the proof.

APPENDIX C: RELATIONS BETWEEN OPERATORS

Here we provide useful details about the operators used
in the main text to describe J = 3/2 degrees of freedom.
The definition of the multipole basis in terms of the dipole
operators, which form a J = 3/2 representation of the su(2)

TABLE I. The definition of the various multipole operators for
a J = 3/2 system in terms of the dipole operators. These operators
form a useful basis of su(4).

Moment Symmetry Symbol Expression

Jx

Dipole T1 Jy

Jz

Qyz
1√
3
JyJz

T2 Qzx
1√
3
JzJx

Quadrupole Qxy
1√
3
JxJy

Qx2−y2
1√
3
(J2

x − J2
y )

E
Qz2

1
3 (3J2

z − J2)

A2 Txyz
2

3
√

3
JxJyJz

T a
x

2
3 (Jx )3 − 1

3 (Jx (Jy )2 + (Jz )2Jx )

T1 T a
y

2
3 (Jy )3 − 1

3 (Jy(Jz )2 + (Jx )2Jy )

Octupole T a
z

2
3 (Jz )3 − 1

3 (Jz(Jx )2 + (Jy )2Jz )

T2 T b
x

2
3
√

3
(Jx (Jy )2 − (Jz )2Jx )

T b
y

2
3
√

3
(Jy(Jz )2 − (Jx )2Jy )

T b
z

2
3
√

3
(Jz(Jx )2 − (Jy )2Jz )

algebra, is presented in Table I. These definitions are well
known; we include them for the sake of completeness and
transparency with our conventions. The relationship between
this basis and the basis defined in Eqs. (2) and (3) is given in
Table II.

TABLE II. The relation between the magnetic multipole operator
basis for a J = 3/2 system and the basis introduced in Eqs. (2) and
(3). Here we have included the identity operator with the multipole
basis, so these basis describe the 16-dimensional space u(4).

Type Symbol Expression

η0 − 1
2 Qz2 + 1

2

ηx 2
5 Jx + 3

10 T a
x +

√
3

4 T b
xLower doublet

ηy 2
5 Jy + 3

10 T a
y −

√
3

4 T b
y

ηz 1
5 Jz + 3

5 T a
z

τ 0 1
2 Qz2 + 1

2

τ x 1
2 T a

x −
√

3
4 T b

xUpper doublet
τ y − 1

2 T a
y −

√
3

4 T b
y

τ z − 3
5 Jz + 1

5 T a
z

ξ 0
r

√
6

5 Jx −
√

3
5
√

2
T a

x − 1
2
√

2
T b

x

ξ x
r

1√
2
Qx2−y2

ξ y
r

1√
2
Qxy

ξ z
r

1√
2
Qzx

Mixing between doublets ξ 0
i − 1√

2
Qyz

ξ x
i − 1√

2
Txyz

ξ
y
i

1√
2
T b

z

ξ z
i −

√
6

5 Jy +
√

3
5
√

2
T a

y − 1
2
√

2
T b

y
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