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Kitaev-Heisenberg model on the star lattice: From chiral Majorana fermions to chiral triplons
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The interplay of frustrated interactions and lattice geometry can lead to a variety of exotic quantum phases.
Here we unearth a particularly rich phase diagram of the Kitaev-Heisenberg model on the star lattice, a triangle
decorated honeycomb lattice breaking sublattice symmetry. In the antiferromagnetic regime, the interplay of
Heisenberg coupling and geometric frustration leads to the formation of valence bond solid (VBS) phases—a
singlet VBS and a bond selective triplet VBS stabilized by the Kitaev exchange. We show that the ratio of the
Kitaev versus Heisenberg exchange tunes between these VBS phases and chiral quantum spin-liquid regimes.
Remarkably, the VBS phases host a whole variety of chiral triplon excitations with high Chern numbers in the
presence of a weak magnetic field. We discuss our results in light of a recently synthesized star lattice material
and other decorated lattice systems.
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I. INTRODUCTION

A central theme in the study of quantum magnetism has
been the discovery and classification of materials hosting dif-
ferent types of collective excitations. This has unearthed a
rich variety of ground-state phases which can serve as non-
trivial vacua, for example, for chiral topological excitations.
Such excitations are promising for spintronics applications
[1] and are realized in a variety of magnetic phases: First,
topological magnon insulators (TMIs) are conventional long-
range spin ordered magnets whose bulk magnon bands have
nonzero topological invariants. As a result they can display
magnon surface states with uni-directional propagation [2–5].
A second example beyond conventional ordered magnets are
valence bond solids (VBS) [6], with short range spin cor-
relations. Rather, neighboring spins form highly entangled
pairs and the corresponding dimer correlation function is
long-range ordered. In particular, in a singlet VBS state neigh-
boring spins approximate a spin singlet, forming a gapped
dimer ground state that may host chiral boundary modes of
triplon excitations. These were first predicted for the Shastry–
Sutherland model system SrCu2(BO3)2, where the addition
of Dzyaloshinskii–Moriya (DM) interactions leads to a spin-
orbit type coupling of triplons, such that gaps induced by a
small magnetic field endow the triplon bands with a nonzero
Chern number [7–9]. The third and most exotic example
are quantum spin liquids (QSLs) with topologically ordered
ground states [10–12]. Chiral QSLs with broken time reversal
symmetry (TRS) can host fractionalized surface modes with
unidirectional propagation akin to their electronic brethren of
the (fractional) quantum Hall effect [13].
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Finding stable chiral excitations in microscopic models of
insulating magnets has turned out to be a major challenge.
Often, the ground states themselves are very fragile, as has
been the case for many QSLs [14,15], or the topological edge
excitations may be unstable to decay processes from interac-
tions [16,17]. In this context, the Kitaev honeycomb model
with its bond-anisotropic Ising interactions stands out as a
rigorous example of a stable QSL [18] and a robust TMI phase
in large magnetic fields [19,20]. For small magnetic field the
gapless Kitaev QSL turns into a gapped QSL with chiral Ma-
jorana boundary modes. Moreover, the presence of perturbing
interactions like Heisenberg exchange present in any real ma-
terials’ realization gives rise to a rich phase diagram with
various long-range ordered magnetic phases [21,22] and, sur-
prisingly, TMI behavior in the field-polarized regime [19,20].
Hence, excitations of the (extended) Kitaev honeycomb model
can be tuned from chiral Majorana excitations to stable chiral
magnons as a function of increasing magnetic field. This is
not only interesting theoretically but of direct experimental
relevance because chiral magnetic excitations give rise to a
thermal Hall response [2,23]. The latter has been measured in
the Kitaev magnet α-RuCl3 [24,25], but whether its origin is
related to QSL or TMI behavior is still under debate [26,27].

Following Kitaev’s original proposal for the honeycomb
lattice [18] subsequent work established that his model can be
exactly solved on a wide variety of lattices with coordination
number three, e.g., different 2D and 3D lattices [28–32] and
even disordered amorphous lattices [33,34]. A particularly
interesting case is the star lattice—a honeycomb lattice with
each vertex decorated by a triangle as shown in Fig. 1—which
is one of the eleven Archimedian tilings in 2D [35]. There,
the Kitaev QSL was the first rigorous example of a chiral
QSL breaking TRS spontaneously [28,36]. The presence of
plaquettes with an odd number of sites leads to broken TRS in
a given flux configuration, such that the zero flux ground state
is a chiral QSL with Majorana edge modes. Despite much
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(a) (b)

FIG. 1. (a) A fragment of the star lattice is shown, with three colors to indicate the assignment of bond labels x, y, and z for the
Kitaev interaction given in the Hamiltonian, Eq. (1). (b) The derived phase diagram as a function of the parameter ϕ defined in Eq. (2).
Six phases are shown. At ϕ = π/2 and ϕ = 3π/2 the system forms a ferromagnetic CSL and an antiferromagnetic CSL, respectively. Two
magnetically ordered phases are found around ϕ < π , where the system forms ferromagnetic or stripy order, with the SU(2)-symmetric, pure
Heisenberg model appearing at ϕ = 0. Finally, two VBS are formed—a spin singlet VBS around ϕ ∼ π , where the exact SU(2)-symmetric
antiferromagnetic Heisenberg model is found at ϕ = π , and an unusual triplet VBS phase around ϕ = 1.7π , in which the system condenses
into a set of spin triplets, where the combined spin-1 state is given by |tα〉 defined in Eqs. (4)–(6).

research on the stability of the Kitaev QSL on the honeycomb
lattice [37–39] the effect of perturbing interactions on the
chiral Kitaev QSL has not been investigated on the star lattice.
This is even more surprising given that the pure antiferro-
magnetic Heisenberg model on the star lattice is one of the
rare established examples hosting a singlet VBS ground-state
phase with triplon excitations [40–46]. Additional motivation
comes from the recent synthesis of the first S = 1/2 materials
realization of the star lattice [47,48] (previous star lattice
realizations contained S = 5/2 spin clusters [49]).

In this paper we investigate the rich ground-state phase
diagram and distinct types of chiral excitations of the Kitaev-
Heisenberg model on the star lattice. We show that, in addition
to the chiral Kitaev QSL and various magnetically ordered
phases, a novel bond-anisotropic triplet VBS is realized. The
triplon bands show nonzero Chern numbers once a small
magnetic field is included to induce gaps. Thus, we establish
that—in analogy to the honeycomb Kitaev model, which can
be tuned with a magnetic field from hosting chiral Majorana to
chiral magnon excitations—the Kitaev-Heisenberg model on
the star lattice tunes from chiral Majoranas to chiral triplons.

One of the competing phases that can form in lieu of mag-
netic order or QSLs are VBSs. In their most common form,
neighboring pairs of spins anti-align into singlets, forming a
dimer covering of the entire lattice. On this background, ex-
citations involve breaking a singlet state and creating a spin-1
triplet—a so-called triplon mode that can be represented as a
bosonic particle [50]. Recently, interest has been generated
in triplons as a way of realizing a bosonic bulk-boundary
correspondence. This has been proposed both in 1D topo-
logical chain systems [51], as well as 2D bosonic analogues
of the quantum Hall effect [7–9,52,53]. In general, such ef-
fects have relied on the presence of Dzyaloshinskii–Moriya
(DM) interactions to generate complex hoppings in the triplon
Hamiltonian, allowing for nonzero Chern and winding num-
bers to appear. Here, we will show that the Kitaev interaction

provides an alternative route for a triplon Hall state forming
in the absence of DM interactions. For the Heisenberg-Kitaev
model on the star lattice we unearth an extremely rich phase
diagram containing singlet and triplet VBSs with a wide range
of Chern numbers.

The structure of the paper is as follows. In Sec. II we
introduce the model, describing the parameters used to tune
the system and discussing previous studies that have looked
at both the star and the honeycomb lattices. Following this,
our investigation is composed of three parts. In Sec. III we
start by numerically characterizing the ground-state phase
diagram using infinite density matrix renormalization group
(iDMRG) methods. In particular we find two phases in the star
lattice that do not have an analog on the Honeycomb lattice,
where geometric frustration leads to VBS ground states. We
discuss the chiral Majorana excitations of the Kitaev QSL
phase within a parton mean-field theory (MFT). In Sec. IV
we describe a four-unit-cell spin rotation that reveals a hidden
isometry of the ground-state phase diagram. We show that
the four non-spin-liquid phases may be categorized into two
sets, which are equivalent under this transformation. Finally,
in Sec. V we construct a bosonic mean-field theory describing
the triplon excitations of the VBS phase. The topological
properties of the triplon phases are derived and we confirm
the existence of topologically protected triplon edge modes.
We conclude in Sec. VI with a discussion of experimental
relevance and open questions for future research.

II. THE KITAEV-HEISENBERG MODEL

Since Kitaev’s original proposal, immense effort has been
expended to find a physical candidate capable of host-
ing such a QSL phase, leading to the discovery of a
number of so called Kitaev materials [37–39], such as
Na2IrO3 [54,55] and α-RuCl3 [56–58]. Although the exact
microscopics are still under debate, there is evidence that
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FIG. 2. The dependence of the J and K values on the parameter
ϕ is shown. The two pure Heisenberg and two pure Kitaev points
are labeled. DMRG phase boundaries are shown in the background
color.

these materials realize dominant Kitaev-type interactions,
along with subdominant Heisenberg coupling terms which
inhibit the formation of a spin-liquid ground state. Thus, the
Kitaev-Heisenberg (KH) model has been proposed and ex-
tensively studied as a potential description of these materials
[21,59–63]. On the honeycomb, the full KH phase diagram
contains two spin-liquid phases and four competing magnet-
ically ordered phases. Despite the insensitivity of the spin
liquid to lattice geometry, two of the competing phases found
on the honeycomb cannot be constructed on a lattice without
sublattice symmetry. These phases, namely the Néel and stripe
order, fall into a broadly antiferromagnetic region of the phase
diagram, and thus are geometrically frustrated when the lattice
contains odd cycles.

We start by defining the model on the star lattice, shown
in Fig. 1(a). On each site is a single spin-1/2, and bonds are
“colored” with a label α ∈ {x, y, z} such that no vertex touches
two bonds of the same color. We choose the Hamiltonian to
interpolate between two well-studied limits: the spin isotropic
Heisenberg and the anisotropic Kitaev limit where each bond
of type α is coupled only in the direction that matches the
coloring:

H = −
∑
〈 jk〉α

⎛
⎝Kσα

j σα
k + J

∑
ᾱ �=α

σ ᾱ
j σ ᾱ

k

⎞
⎠. (1)

Here 〈 jk〉α indicates a bond of type α that connects adjacent
sites j and k. The parameter K determines the strength of the
“on-coloring” coupling, where the coupling direction matches
α, and J determines the strength of the two remaining “off-
coloring” couplings. In analogy with previous studies [21,64],
let us introduce a single parameter ϕ ∈ [0, 2π ] that smoothly
maps onto the possibilities for K and J according to

K = 2 sin ϕ + cos ϕ,

J = cos ϕ, (2)

shown in Fig. 2. Here, two points where J = K can be found
at ϕ = 0 and π , representing the two SU(2)-symmetric points
where the system exactly describes a ferromagnetic or antifer-
romagnetic Heisenberg model.

III. GROUND-STATE PHASE DIAGRAM

We briefly recap the phase diagram of the standard Kitaev
model on the honeycomb lattice [21,64], which will be useful
for elucidating the novel features of the star lattice. The
full phase diagram in ϕ contains the two Kitaev spin-liquid
phases, and four distinct magnetically ordered phases. These
come in two pairs, where the two phases in each pair can be
mapped exactly onto one another by rotating the coordinate
system of certain spins in the lattice [59,62,65] according to
a four unit cell pattern.

Around ϕ = 0 (K, J > 0) the system orders into a ferro-
magnetic (FM) phase, with completely aligned spins. Around
ϕ = 0.6π (K > 0, J < 0) the system forms a stripy ordered
phase, which can be mapped onto the ferromagnetic phase
by the four unit cell spin rotation. Around ϕ = π (K, J < 0)
the system forms an antiferromagnetic (AFM) Néel ordered
phase, which is again isomorphic to a zigzag phase that ap-
pears around ϕ = 1.6π (K < 0, J > 0). The mapping implies
that the dynamics in each pair of isomorphic phases is identi-
cal.

Next, let us turn our attention to the star lattice, We nu-
merically determine the ground state across the full range of
ϕ using the density matrix renormalization group (DMRG)
method. DMRG is a variational optimization algorithm used
to find the ground state of many-body Hamiltonians. Although
it is predominantly used for characterizing 1D physics, recent
work has shown that it can provide an effective description of
several 2D frustrated systems [64,66]. Here, we construct the
Hamiltonian on a system with infinite cylindrical geometry,
with two unit cells (12 sites) spanning the finite circumfer-
ence. The ground state is represented with a matrix product
state ansatz with bond dimension χ = 1600, and is calculated
using the TeNPy library [67] for 1000 values of ϕ across the
full range [0, 2π ].

Using this method, we find that the phase diagram con-
tains six distinct phases, shown in Fig. 1(b). In the regime
where K > 0 (ϕ ∼ [−0.2π, 0.8π ])—which we will refer to
as the broadly FM regime—we find two magnetically ordered
phases. Around ϕ = 0, we encounter the standard FM phase
with aligned spins, which includes the FM Heisenberg point
at ϕ = 0.

Around ϕ = 0.6 we find a stripy phase with an equal pro-
portion of spin up and spin down sites. This phase may be
understood in direct analogy with the stripy ordered phase
found in the honeycomb model, where each triangle in the
star lattice can be treated as an effective spin half site, since
they form either a |↑eff〉 = |↑↑↓〉 or a |↓eff〉 = |↑↓↓〉 state.
These effective spin half triangles then order identically to
the stripe order found on the honeycomb. Remarkably, we
also find that the FM and stripy ground states can be mapped
onto one under an extended four unit cell rotation described in
Sec. IV.

In the regime where K < 0 (ϕ ∼ [0.8π, 1.8π ])—referred
to as the broadly AFM regime—the system forms two distinct
VBS phases. Around ϕ = π we have a singlet VBS, where
the states form spin singlets

|s〉 = 1√
2

(|↑↓〉 − |↓↑〉), (3)

094421-3



P. D’ORNELLAS AND J. KNOLLE PHYSICAL REVIEW B 109, 094421 (2024)

on the intertriangle bonds. At the point ϕ = π the system
is exactly an antiferromagnetic Heisenberg model, where
previous studies support our conclusions [40,42,43]. This
VBS phase has no analog on the honeycomb lattice, which
forms a Néel ordered ground state. This is due to geo-
metric frustration, where the presence of odd cycles on
the star lattice disallows the formation of the Néel AFM
phase.

Around ϕ = 1.7π , the system forms an exotic spin triplet
VBS. Here the spins on each bond pair into one of three triplet
states depending on the bond type. Bonds of type x, y, or z
form a |tx〉, |ty〉 or |tz〉 state, respectively, defined as

|tx〉 = i√
2

(|↑↑〉 − |↓↓〉), (4)

|ty〉 = 1√
2

(|↑↑〉 + |↓↓〉), (5)

|tz〉 = −i√
2

(|↑↓〉 + |↓↑〉). (6)

Note that the factors of i have been chosen such that the singlet
and triplet states have time reversal symmetry. We will show
below in in Sec. IV that the singlet and triplet VBS phases are
isomorphic under a generalized four unit cell spin rotation.

Around ϕ ∼ 0.5π and ϕ ∼ 1.5π the system forms two
extended chiral spin-liquid phases. We notes that the AFM
Kitaev phase is stable over a much smaller region of phase
space than the FM QSL. This can be explained by notic-
ing that the two competing phases (both the VBS phases)
have lower energy than their ferromagnetic counterparts,
whereas the energy scale of both Kitaev phases are identi-
cal. Thus, as we tune across the phase diagram, the VBS
phases very quickly become energetically favorable over
the QSL.

As in the honeycomb case, all phase transitions corre-
sponded to cusps in the ground-state energy, indicating that
the transitions are first order. However, it remains an open
and numerically challenging question whether they remain
first order in the thermodynamic limit. Full iDMRG results
are discussed in Appendix A. Finally, we have confirmed that
the pure Kitaev points (ϕ = 0.5π or 1.5π ) exactly recover the
chiral QSL studied Yao and Kivelson [28]. Here, the model
is exactly solvable and can be decoupled into noninteracting
Majorana fermions in the presence of a static Z2 gauge field
[18]. However, as soon as we tune away from these points (and
some Heisenberg interactions are present) the Z2 gauge field
is no longer conserved and the system ceases to be exactly
solvable. In Appendix B, we study the entire phase diagram
using a Majorana MFT [62,68]. As shown in Fig. 1(b) we
recover the DMRG phase diagram qualitatively but, as com-
mon for parton MFT, we find an enhancement of the region
of stability of the QSL regimes. Using this Majorana MFT we
are able to obtain the excitation spectrum of the chiral QSL
away from the two points where the model is exactly soluble.
In Fig. 3 we show the Majorana band structure on a cylinder
geometry with open boundary conditions. The nonzero Chern
numbers of the bulk bands give rise to chiral edge modes
(indicated in red), whose dispersions are weakly renormalized
by the presence of the Heisenberg interactions.

FIG. 3. The Majorana fermion band structure calculated for the
chiral QSL phase within a parton MFT for a strip-geometry, with
periodic boundaries in the x direction and open boundaries in the y
direction. We have tuned the model to the antiferromagnetic Kitaev
regime (α = 1.45π ) in the vicinity of the soluble point. Energies are
plotted as a function of momentum in the y direction, for a sample
with Lx = Ly = 200. The Chern number ν of the three bands is la-
beled. States are colored according to their inverse participation ratio,
where red indicates a localized edge mode and gray a delocalized
bulk mode. Note that we only plot the positive-energy Majorana
modes, however a set of three “occupied” negative-energy bands are
also present, related to the positive-energy bands by particle hole
symmetry. Each of these reflected bands has the opposite Chern
number to its positive-energy counterpart.

IV. ISOMETRIES OF THE KITAEV-HEISENBERG
PHASE DIAGRAM

One of the remarkable aspects of the Heisenberg-Kitaev
model on the honeycomb lattice is a hidden symmetry be-
tween different phases of the model [21,65]. In this section we
show that similar relations hold on the star lattice, which help
to understand the phase diagram and clarify the connection
between the distinct types of VBS phases.

Let us introduce a spin transformation by dividing the spins
in the system into four sets, each labeled with 0, x, y, or z,
arranged in a four-unit-cell pattern as shown in Fig. 4(a). Spins
marked with 0 will be left untouched, however on the other
spins we apply a π -rotation in spin space, where the axis of
rotation is determined by the site labels. Under such a rotation,
the sign of the two spin operators that do not line up with
the rotational axis will be flipped, for example, if the site j is
labeled with x, then we have

σ x
j → σ x

j ,

σ
y
j → −σ

y
j ,

σ z
j → −σ z

j ,

(7)

with a similar relation for y- and z-labeled sites.
Under this transformation, we note that every x bond is

always bordered by either a 0-x pair of sites or a y-z pair. Thus,
every x-type bond operator in H transforms according to

σ x
j σ

x
k → σ x

j σ
x
k ,

σ
y
j σ

y
k → −σ

y
j σ

y
k , (8)

σ z
j σ

y
k → −σ z

j σ
y
k .
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(a)

(b)

FIG. 4. (a) Plot of the four unit cell transformation that encodes
the isometry of the KH phase diagram. Each 0-marked site is un-
touched, however the sites labeled with x, y, or z each experience
a π -rotation around the labeled axis in spin space. Bond-types are
indicated by color. Enlarged unit cell is depicted with the dashed
rhombus. (b) The KH phase diagram as parametrized by ϕ defined
in Eq. (2). Dashed lines indicate points that are isomorphic under the
spin rotation.

Similarly, y bonds are bordered by 0-y or x-z, and z bonds are
bordered by 0 − z or x − y. These both transform analogously
under the spin rotation, where the on-coloring direction re-
mains unchanged and the off-coloring directions have their
sign flipped. Thus, our spin rotation is equivalent to transform-
ing the parameters of the Hamiltonian according to

K → K, J → −J. (9)

In terms of the single parameter ϕ, this is equivalent to trans-
forming to a new ϕ̃ that satisfies

tan ϕ̃ = − tan ϕ − 1, (10)

with the correspondence indicated with dashed lines in
Fig. 4(b).

Thus, we see that there is a correspondence between the
ferromagnetic Hamiltonian and the stripy ordered Hamilto-
nian, as well as a correspondence between the singlet VBS and
the stripy VBS Hamiltonians. We can similarly verify that the
transformation gives the correct relation between the phases:
First, The FM case is easy—starting with a FM alignment

in the z-direction, we can see that any site labeled with x
or y has its spin flipped, which leads precisely to the stripy
magnetically ordered phase. Second, we look at the more
subtle VBS correspondence. A spin singlet on an x-labelled
bond will be adjacent to either a 0-x pair of sites, in which
case the resulting state will be transformed as

|s〉 ∼ |↑↓〉 − |↓↑〉 → |↑↑〉 − |↓↓〉 ∼ |tx〉 , (11)

or the bond will border two sites of type y-z, in which case the
transformation is

|s〉 ∼ |↑↓〉 − |↓↑〉 → i |↓↓〉 − i |↑↑〉 ∼ |tx〉 . (12)

In both cases we see that (up to a phase) the singlet is mapped
onto a triplet |tx〉 state. Similar arguments apply for y and z
bonds. Thus, from the mapping we observe that the resulting
stripy VBS consists of a condensate of triplet states, where
each x bond has a |tx〉 triplet, each y bond has a |ty〉 triplet and
so on. This is perfectly consistent with our results in Sec. III
and Appendix B.

V. TRIPLON EXCITATIONS IN THE VBS

Having found an exact mapping between the VBS phases
we now focus on the singlet VBS around ϕ = π . Our objec-
tive is to find an effective description the phase and analyze its
excitation spectrum. The numerical calculation indicate that
spin singlets form on the intertriangle bonds, thus we shall
start by pairing the spins on these bonds and transform to
the bond operator representation introduced by Sachdev and
Bhatt [50,69]. Spins on a given bond are labeled with σL and
σR, and treated as a single site, collapsing the star lattice into
a Kagome lattice, as shown in Fig. 5. We can then rewrite
the Hamiltonian in a two-spin basis for each dimerized bond,
given by Eqs. (3)–(6).

To apply a MFT, let us re-express these states in terms of
bosonic creation operators. Starting with a vacuum |0〉 which
contains no particles whatsoever, we define four bosonic cre-
ation operators that create singlet and triplet states, s† |0〉 =
|s〉, t†

α |0〉 = |tα〉, which satisfy the relevant commutation rela-
tions, [s, s†] = 1, [tα, t†

β ] = δαβ , [s, t†
α] = 0. In this basis, the

spin operators take the following form:

σα
L = −i(s†tα − t†

αs) − iεαβγ t†
βtγ , (13)

σα
R = i(s†tα − t†

αs) − iεαβγ t†
βtγ . (14)

Of course, in doing so we have artificially enlarged our Hilbert
space. For a state to be legitimate, all sites must be populated
by a single boson—any state with empty or multiply occupied
sites will be in the “unphysical” part of the extended Hilbert
space. Thus, we introduce a chemical potential term to H that
enforces single occupancy per site on average,

Hμ = −
∑
j∈D

μ(s†
j s j + t†

α jtα j − 1). (15)

Additionally, we shall model the effect of an applied mag-
netic field on our triplon bands. For an arbitrary field h =
(hx, hy, hz ), the magnetic term in H is Hh = −∑

j hα (σα
jL +

σα
jR), which, when expressed in terms of our triplon operators,
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(a)

(b)

FIG. 5. (a) Diagram of the lattice with positions of spin singlets
highlighted in gray. Spins are labeled as σR/L depending on which
triangle they form a part of in the unit cell. (b) The derived Kagome
lattice once all the singlets are collapsed to a single site. Here, both
edges and sites have a Kitaev labeling α ∈ x, y, z, denoted by color.

becomes

Hh =
∑

j

hα2iεαβγ t†
βtγ . (16)

Since we expect the system to form a singlet VBS, let us
introduce a real singlet condensate density order parameter
s̄ = 〈s j〉. The three dimers in the unit cell [shown in Fig. 5(a)]
are equivalent by C3 rotation, so we may describe all singlets
with the same s̄. Finally, the total Hamiltonian can be rewritten
as

H = H0 + H2 + H4, (17)

with

H0 = N[s̄2(K + 2J − μ) + μ], (18)

H2 =
∑
j∈D

(K − 2J − μ)t†
α jtα j − (K + μ)t†

ᾱ jtᾱ j + hα2iεαβγ t†
βtγ

−
∑

jk∈D,α

Jα
jk s̄2(t†

αktα j − tα jtαk + h.c.), (19)

H4 = −
∑

jk∈D,α

Jα
jk (t†

b jtbkt†
cktc j − t†

b jt
†
bktc jtck + h.c.), (20)

where the parameter Jα
jk represents either K or J , depending

on whether α matches the bond coloring or not. In H4, the

indices b and c describe the two directions that do not match α.
Note that we may discard terms with three tα due to reflection
symmetry [70].

Finally, the quartic terms can be decoupled by introducing
the following standard mean fields:

Pα
jk = 〈t†

jαtkα〉 , (21)

Qα
jk = 〈t jαtkα〉 . (22)

Thus, we are left with a quadratic Hamiltonian
HMF(μ, s̄, Pα

jk, Qα
jk ) for the triplons and the four parameters

are determined self-consistently, this is detailed in
Appendix C. In practice, we found that the effect of the
quartic terms, and thus the P and Q mean fields, was
negligible. This is because the density of triplons was low
across the whole phase diagram, with 〈t†t〉 ≈ 0.05 on any
given site, and the effect of triplon-triplon interactions was
extremely weak, generally producing a ∼5% correction to the
energy of each band. Thus, in the following we shall neglect
the quartic terms, and all features discussed are also present
when quartic terms are included.

We now investigate the triplon excitation spectrum ob-
tained from the self-consistently determined Hamiltonian.
Since the unit cell contains three sites, each hosting three
triplon states, the excitation spectrum will contain nine en-
ergy levels. Provided these are gapped, the Chern number
of each band can be calculated. A detailed description of
the Bogoliubov-de-Gennes method and how the topological
invariant are obtained is provided in Appendix C.

Triplon spectra were determined using two parameters to
tune the Hamiltonian. The Kitaev anisotropy (i.e., the relative
strength of K/J) was controlled by sweeping over a range
of ϕ ∈ [0.9π, 1.4π ], approximately the range over which the
system forms a stable VBS. Additionally, we applied a mag-
netic field in the (1,1,1) direction, sweeping over a range of
field strengths hα = h ∈ [0, 0.35]. The results for these calcu-
lations are shown in Fig. 6.

In the pure Heisenberg limit, we have three exactly degen-
erate triplon bands, each corresponding to a tx, ty or tz-type
excitation, with a Dirac-like band touching at the � point. To
allow for topological excitations to form, two ingredients are
needed: gaps need to be opened between the bands, and TRS
must be broken to allow for nonzero Chern number. Applying
a magnetic field to the Heisenberg system is not sufficient for
topological bands, as a field simply splits the three degenerate
triplons with an energy shift, producing a |↑↑〉 state aligned
with the field with slightly lower energy, a |↓↓〉 state with
slightly higher energy, and a |↑↓〉 + |↓↑〉 band that is unaf-
fected. Similarly, introducing only a Kitaev anisotropy ϕ �= π

is also insufficient as the bosonic Hamiltonian retains TRS.
Spectra for these cases are shown in Figs. 6(a) and 6(b).

However, in the presence of both a magnetic field and
the Kitaev anisotropy, the system generally has nine distinct
gapped triplon bands, shown in Fig. 6(c). Most interestingly,
the bands have a rich phase diagram of possible Chern num-
bers depending on these two parameters. A full phase diagram
for these is shown in Fig. 6(d). With open boundaries, the
bands then have chiral triplon edge modes by the bulk-edge
correspondence, an example is shown in Fig. 6(e).

094421-6



KITAEV-HEISENBERG MODEL ON THE STAR LATTICE: … PHYSICAL REVIEW B 109, 094421 (2024)

(a) (d) (e)

(b)

(c)

FIG. 6. [(a)–(c)] Triplon excitation band structure, with the degeneracy of each energy indicated by line color—a legend is provided at the
top of panel (a). (a) Band structure for the pure Heisenberg case (ϕ = π ) with no applied field. The triple degenerate energy levels correspond
to states tα with α = x, y, z. (b) The band structure for a system with some Kitaev anisotropy (α = 1.25π ⇒ K ∼ −2.1, J ∼ −0.71) and zero
magnetic field. Here the triple degenerate bands are split into one double degenerate band and one nondegenerate band; however, all bands
remain gapless. (c) The band structure in the above case (ϕ = 1.25π ), with an applied magnetic field (h = 0.15). Here we see that all bands
are nondegenerate and gapped. (d) A plot showing the rich phase diagram of possible Chern numbers for the nine triplon bands as a function
of the two parameters: Kitaev anisotropy (α) and applied magnetic field (h). Regions where the bands are gapless are indicated in black and
regions where the numerical process failed to converge to a stable solution are shown in gray. Each area with a distinct coloring represents a
different set of the Chern numbers of the nine bands. For example, the region labeled A has Chern numbers (−1, 3, −5, 6, −6, 6, −5, 3, −1),
the B region has (−1, 3, −5, 6, −6, 3, −2, 3, −1), and the C region has (−1, 3, 1, 0, −6, 3, −2, 3, −1). (e) Band structure for a strip system
with periodic boundaries in the y direction and open boundaries in the x direction. We have set ϕ = 1.25π , h = 0.15—thus are in region B.
Bands are plotted as a function of ky for a strip containing 130 unit cells in the x direction. States are colored by their inverse participation ratio,
IPR = ∑

x |ψ (x)|4, where red indicates a localized edge mode, and gray indicates a delocalized bulk mode. Inset shows an enlarged section of
the band structure, where a pair of edge modes can be seen connecting two otherwise gapped bands.

VI. DISCUSSION AND OUTLOOK

We have studied the Kitaev-Heisenberg model on the star
lattice and determined the ground-state phase diagram. By
tuning the relative strength of the Kitaev and Heisenberg
couplings, we unearth a rich phase diagram with six dis-
tinct phases. Two of these—the FM and stripy order—have
analogues on the corresponding honeycomb model. Extended
chiral QSL phases are found around the exact Kitaev limits,
with the FM QSL being more stable than the AFM one. In
both phases, we find nonzero Chern numbers of the effective
Majorana bands which originate from the spontaneous break-
ing of TRS due to fluxes on the triangular plaquettes of the star
lattice. We confirmed the existence of chiral Majorana edge
modes weakly renormalized by the presence of the Heisen-
berg interaction.

In the AFM range of the phase diagram we find two phases
with no analogues on the honeycomb lattice, i.e., a singlet
VBS and an exotic triplet VBS. These appear because the
simple Neel AFM ordering that appears on the Honeycomb
is geometrically frustrated on the star lattice. We unveil a
symmetry between the two VBS states by generalizing the
sublattice-dependent spin rotation which relates the Hamilto-
nian of different parts of the phase diagram. We then develop
a bond operator formalism to show that the VBS phases have
a rich topological structure for the triplon excitations. The

introduction of a magnetic field in conjunction with the Kitaev
interaction leads to gapped bands with a whole variety of
(large) Chern numbers. Accordingly we find that the Kitaev-
Heisenberg model on the star lattice cannot only support chiral
Majorana excitations but also chiral triplon edge modes.

Our work raises a number of questions for further study.
First, the star lattice provides one of the simplest examples of
a nonbipartite lattice. For the pure Kitaev model the presence
of odd-number triangle plaquettes led to the first exactly sol-
uble chiral QSL with spontaneously broken TRS [28], and
for the pure Heisenberg limit was shown to realize a VBS
ground state [40]. Thus, an interesting avenue will be to ex-
plore whether the Kitaev-Heisenberg model shows similarly
rich phase diagrams on other nonbipartite decorated lattices,
possibly with exotic VBS phases. Second, the new triplet VBS
phase we discover around ϕ ≈ 1.7π shows intriguing topo-
logical triplet and singlet excitations but many open questions
remain. For example, in the absence of an external magnetic
field the dynamics are expected to be identical to the singlet
VBS phase due to the four-unit-cell rotation discussed above.
However, an applied magnetic field breaks this symmetry, and
the possibility remains that this phase could have qualitatively
very different properties than the singlet VBS. In addition,
it will be important to understand the stability of the topo-
logical triplons and their experimental signatures. Third, we
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showed that a sublattice dependent spin rotation can connect
different parameter regimes of the Kitaev-Heisenberg model
similar to the honeycomb lattice. Here on the star lattice it
also uncovers a connection between two distinct VBS phases.
It will be interesting to explore other lattice generalizations of
such isometries, which would possibly allow us to find exact
magnetic ground states even on amorphous lattices with net
zero magnetization.

Finally, there is a rich variety of modifications that could
be made to the Hamiltonian to further assess the robust-
ness of these different phases, especially focusing on their
chiral excitations. This is particularly timely in light of re-
cent experimental work which demonstrated the successful
synthesis of a spin 1/2 star lattice structure with antiferro-
magnetic couplings [47]. The material is expected to have
in-triangle couplings much stronger than the intertriangle
couplings. Thus, it would be worth considering the phase
diagram when the relative strength of couplings is adjusted.
In addition, it would be interesting to derive microscopic
Hamiltonians based on the microscopic orbital configuration
and ab-initio calculations, e.g., considering the effect of in-
cluding symmetric off-diagonal exchanges [68,71], as well as
Dzyaloshinskii-Moriya interactions [72,73].

In conclusion, the two limits of the pure Kitaev and Heisen-
berg models on the star lattice have been known to realize
sought-after quantum magnentic phases, e.g., a chiral QSL
and a singlet VBS. We have shown that the phase diagram of
the full Kitaev-Heisenberg model is much richer and allows to
tune from a phase with chiral Majorana excitations to an ex-
otic bond-selective triplet VBS phases with chiral triplon ex-
citations. We expect that competing exchange interactions on
other decorated lattices can lead to similarly rich physics and
hope that material synthesis will help with their realization.
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APPENDIX A: iDMRG RESULTS

Here we present the results of the iDMRG computation
used to numerically determine the ground-state phase dia-
gram. The calculation was performed using the TeNPy library
[67] using a 2×2 unit cell fragment of the star lattice, with 12
sites wrapping the system in the finite direction and 24 sites
in total. The ground state, represented with a matrix product
state ansatz with bond dimension χ = 1600, was calculated
for 1000 values of ϕ ∈ [0, 2π ], starting from an initial product
state. Two initial states were used, a ferromagnetically aligned
state and an anti-aligned state corresponding to the stripy
AFM ground state. In each case we determine the expectation
value of the magnetization in the z direction,

mz
j = 〈

σ z
j

〉
, (A1)

(a) (b)

(c)

(d)

FIG. 7. The iDMRG results for the star lattice KH model as a function of the parameter ϕ, defined in Eq. (2). Phase boundaries are
indicated with background color. (a) ground-state energy per site as a function of ϕ. The four non-KSL phases are shown with a diagram of
the corresponding phase. KSL phases appear at ϕ = 0.5π, 1.5π . (b) Expectation value of the z-component of magnetization for each site on
the lattice mz = 〈σ z

j 〉. (c) Spin-spin correlations for each bond in the on-coloring direction, 〈σα
j σα

k 〉. (d) Spin-spin correlations for each bond
in the two remaining off-coloring directions, 〈σα

j σα
k 〉. In panels (c) and (d), correlations for in-triangle bonds are colored in blue, whereas

intertriangle bonds are shown in orange.
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as well as the expectation value of the x, y, and z spin-spin
correlations for each bond,

sα
jk = 〈

σα
j σα

k

〉
. (A2)

The results are shown in Fig. 7. The phases that comprise the
ground state can be identified by considering these observ-
ables.

In the ferromagnetic phase all spins are aligned in the +z
direction. In the stripy phase, half of the spins have have
mz = +1 and the other half have mz = −1. The values of
sα

jk can then be inferred directly from the mα magnetizations,
indicating that the system is in a magnetically ordered phase.

In the VBS and QSL phases, the system has zero net
magnetization on all axes, so all mα vanish. In both the VBS
phases, the spin correlations on intertriangle bonds are much
stronger than that on the in-triangle bonds, suggesting that the
VBS is dimerizing on the intertriangle bonds. In the singlet
VBS (around ϕ = π ), both the on and off-coloring correla-
tions are negative on intertriangle bonds, indicating that the
spins are anti-aligned in all three axes, forming a singlet. In the
triplet VBS spins anti-align in the on-coloring direction and
align in the two off-coloring directions, which is consistent
with the triplet VBS phase described in Sec. III.

APPENDIX B: MAJORANA MEAN-FIELD STUDY

In this Appendix we introduce a Majorana parton mean-
field theory (MFT) description of the physics involved. The
uses of this method are twofold, first we shall corroborate the
ground-state phase diagram determined in Sec. III—providing
evidence that the results are robust for large system sizes.
Second, the MFT will allow us to characterize the topological
nature of excitations in the the KSL phases.

We construct the parton description following Kitaev
[18]. Each spin is represented with four Majorana operators
(c bx by bz ), such that σα

j → ic jbα
j . Under this transformation,

the Hamiltonian takes the form

H = −
∑
〈 jk〉α

⎡
⎣K

(
ibα

j c j
)
ibα

k ck + J
∑
ᾱ �=α

(
ibᾱ

j c j
)
ibᾱ

k ck

⎤
⎦. (B1)

To apply a mean-field treatment, the Majorana operators must
be paired up into fermionic bilinears, which can then be re-
placed with their ground-state expectation value—resulting
in a quadratic Majorana Hamiltonian. Of course, there are
several different ways that the operators can be paired up, each
giving a different MFT channel. We shall consider two phys-
ically motivated channels for decoupling the Hamiltonian, a
spin-liquid channel and a magnetically ordered channel.

1. Spin-liquid channel

In the Kitaev limit (ϕ = 0.5π or 1.5π ) J vanishes
completely, leaving only the “on-coloring” K part of the
Hamiltonian. Here, the Hamiltonian has an extensive set of
symmetries, since each bα

j operator appears only once in H .
Thus, there is an extensive set of fermionic operators ûα

jk =
ibα

j b
α
k , that commute with each other and the Hamiltonian.

These determine a set of static Z2 gauge fields, allowing for
an exact solution to be constructed [18].

Once we stray from the exact Kitaev limit, off-coloring
bond operators are introduced that break the exactly com-
muting structure of the ûα

jk operators, meaning that the Z2

fluxes are no longer conserved and no exact solution ex-
ists. However, at least in the limit of J  K we expect that
the spin-liquid phase will persist, and propose a mean-field
decoupling that can capture this state [62,68]. We start by
rearranging the Hamiltonian to the form

H =
∑
〈 jk〉α

⎡
⎣K

(
ibα

j b
α
k

)
ic jck + J

∑
ᾱ �=α

(
ibᾱ

j b
ᾱ
k

)
ic jck

⎤
⎦, (B2)

and introducing the following two sets of mean-field
parameters:

〈ic jck〉 = χ jk, (B3)

〈
ibα

j b
α
k

〉 = uα
jk . (B4)

Using the standard approximation ÛV̂ ≈ 〈U 〉V̂ + Û 〈V 〉 −
〈U 〉〈V 〉, we transform the Hamiltonian to the form

HSL =
∑
〈 jk〉α

[(
Kuα

jk + Juᾱ
jk

)
ic jck + χ jk

(
Kibα

j b
α
k + Jibᾱ

j b
ᾱ
k

)]

−
∑
〈 jk〉α

(
Kuα

jk + Juᾱ
jk

)
χ jk . (B5)

Note that here and in the following discussion, we will assume
summation over the two off-coloring spin operators labeled
by ᾱ.

2. Magnetically ordered channel

In the ferromagnetic case (ϕ = 0), we expect the ground
state to magnetically align, with some nonzero expectation
value for 〈σα

j 〉 = 〈ic jbα
j 〉. Clearly this is not captured by the

above mean-field theory, so we introduce a second channel
using the parameters 〈

ibα
j c j

〉 = mα
j . (B6)

Under this parametrization, the Hamiltonian is decomposed
into the following form:

HM = −
∑
〈 jk〉

[
K

(
imα

j bα
k ck + ibα

j c jm
α
k

)

+J
(
imᾱ

j bᾱ
k ck + ibᾱ

j c jm
ᾱ
k

)]
+

∑
〈 jk〉

[
Kmα

j mα
k + Jmᾱ

j mᾱ
k

]
. (B7)

Overall, our final mean-field Hamiltonian is given by the sum
of these two decouplings as HMF = HSL + HM .

The resulting quadratic Hamiltonian is parametrized by the
three sets of mean fields, and can be written in terms of the
Majorana vector � = (c, bx, by, bz )T . Here c = (c0, c1...cN ),
with an equivalent description for bα . Thus, the overall Hamil-
tonian may be expressed as

HMF(χ, u, m) = �T iA(χ, u, m)�, (B8)

where A is a real skew-symmetric matrix determined by the
mean fields. The ground-state expectation value of the mean
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(a) (b)

FIG. 8. The Majorana MFT results for the star lattice KH model as a function of the parameter ϕ, defined in Eq. (2). Phase boundaries
are indicated with background color. (a) Ground-state energy per site as a function of ϕ. The four non-KSL phases are shown with a diagram
of the corresponding phase. KSL phases appear at ϕ = 0.5π, 1.5π . (b) Expectation values of the z component of magnetization for each
site on the lattice mz = 〈σ z

j 〉, found using the magnetically ordered mean-field channel. Line color indicates the site position with respect to
arrangement of spins in the stripy phase. (c) Spin-spin correlations for each bond in the on-coloring direction, sα

jk = 〈σα
j σα

k 〉, where we sum
over the correlations calculated with both mean-field channels. (d) Spin-spin correlations for each bond in the two remaining off-coloring
directions, 〈σα

j σα
k 〉, calculated as in panel (c). In panels (c) and (d), correlations for in-triangle bonds are colored in blue, whereas intertriangle

bonds are shown in orange.

fields can be determined by diagonalizing the matrix iA, find-
ing the matrix projector onto the negative eigenstates P, and
then using the identity

〈iψ̂ jψ̂k〉 = −2iPjk, (B9)

where ψ̂ j is the corresponding Majorana operator at position
j in the Majorana vector �.

Thus, a self-consistent MFT can be determined for a given
Hamiltonian by starting with an ansatz for the three mean
fields. The quadratic Hamiltonian, HMF(χ, u, m), is then cre-
ated and the ground state is calculated. Next, updated values
for the mean fields are calculated according to Eqs. (B3),
(B4), and (B6). Given a new set of mean fields, one can
define a new Hamiltonian, and the process can be repeated.
This is iterated until a self-consistent set of mean fields is
found, where their values no longer change under such an
update. This was performed for 100 ϕ values across the range
[0, 2π ], each time starting from a set of initial ansätze and
selecting the final converged state with the lowest energy.
In each case, we tested two magnetically ordered ground-
state ansätze—ferromagnetic and stripy—and two spin-liquid
ansätze—ferromagnetic and antiferromagnetic. However, in
general we note that results often depended on the choice
of initial guess—starting with an unphysical initial state, one
often converges to an unphysical final state—some physical
intuition must be used to ensure the right states are chosen.

Results are shown in Fig. 8, where we plot the ground-
state energy, the on-site z-magnetization, mz

j , and the spin-
spin correlations, which are summed over both mean-field

channels,

sα
jk := 〈

σα
j σα

k

〉 = mα
j mα

k − χ jkuα
jk . (B10)

Note that the system always converged to a ground state where
one of the two decoupling channels vanishes.

Six phases are found, with the phase boundaries shown
in Fig. 8, as well as Fig. 1(b). Four of these phases—the
ferromagnetic and stripe order, as well as the two chiral spin-
liquid phases—have analogues in the honeycomb KH model.
For ϕ ∈ [0.83π, 1.26π ] a singlet valence bond solid appears.
Here, the mean fields on all triangle bonds vanish completely
and on intertriangle bonds we have 〈σα

j σα
k 〉 = −χ jkuα

jk = −1
for all α, with m = 0, indicating that the spins are fully anti-
aligned into a singlet. For ϕ ∈ [1.63π, 1.83π ], a similar VBS
appears with nonzero fields only on the intertriangle bonds.
However, in this case we have 〈σα

j σα
k 〉 = −1 for α matching

the bond coloring, and 〈σ ᾱ
j σ ᾱ

k 〉 = +1 for the two off-coloring
directions, ᾱ. This is consistent with a triplet valence bond
solid, where on each bond a triplet state forms whose direction
depends on the bond coloring.

Now we turn our attention to the topological nature of the
Kitaev phases around ϕ = π/2 and 3π/2. Here, the m-fields
vanish, as well as the off-coloring u-fields. This means that
the mean-field Hamiltonian is block-diagonal, with the c j

Majoranas and three sets of bα
j Majoranas completely decou-

pled from one another. Thus, we generically have 12 sets of
energy levels. The ground-state Chern number is encoded in
the c-type Majorana spectrum.

In both Kitaev phases, the system has two degenerate
ground states related by a sign flip of all u fields. This is a
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generic feature of the Kitaev model on any lattice with odd
cycles [28,33]. The Chern number of the ground state can
be calculated from the projector P onto the negative energy
eigenstates of the matrix iA. Here, the two degenerate states
have Chern numbers ±1. In open boundaries, this means that
chiral edge modes form at the boundaries. An example is
shown in Fig. 3.

APPENDIX C: TRIPLON MEAN-FIELD THEORY

In this section we shall provide a detailed explanation of
the methods used for solving the triplon Hamiltonian using
bosonic triplon MFT. It has the advantage that we can directly
obtain the topology of the triplon bands. This section has three
parts: First we discuss the momentum space construction of
the Hamiltonian, next we shall explain the methods used to
solve this Hamiltonian for the bosonic eigenstates. Finally, we
derive the form of the Chern number for a bosonic system.

1. Construction of the Hamiltonian

Let us start by restating the Hamiltonian derived in Sec. V,
given by

H = H0 + H2 + H4, (C1)

where

H0 = N[s̄2(K + 2J − μ) + μ], (C2)

H2 =
∑
j∈D

(K − 2J − μ)t†
α jtα j − (K + μ)t†

ᾱ jtᾱ j

+ hα2iεαβγ t†
βtγ

−
∑

jk∈D,α

Jα
jk s̄2(t†

αktα j − tα jtαk + H.c.). (C3)

The four-boson Hamiltonian is decoupled using the mean
fields,

Pα
jk = 〈t†

jαtkα〉 , (C4)

Qα
jk = 〈t jαtkα〉 , (C5)

taking the following form:

H4 = −
∑

jk∈D,α

Jα
jk

(
Pb

jkt†
c jtck + t†

b jtbkPc∗
jk + H.c.

− t†
b jt

†
bkQc

jk − Qb∗
jk tc jtck + H.c.

)
+

∑
jk∈D,α

Jα
jk

(
Pb

jkPc∗
jk − Qb∗

jk Qc
jk + H.c.

)
. (C6)

Note that here, the indices b and c denote the two subscripts
that are not equal to α for each term in the sum. Since we are
working in a translationally invariant system, we transform to
momentum space. We replace every position index j, with a
pair r, j, where r labels the unit cell position and j now labels
the site within the unit cell. Momentum-space annihilation
operators are defined as

t jr,α = 1√
N

∑
q

e−ir·qt jq,α. (C7)

Under this, terms in the Hamiltonian containing triplet opera-
tors are transformed according to∑

r

t†
jr+�,α

tkr,α =
∑

q

eiq�t†
jq,αtkq,α, (C8)

∑
r

t jr+�,αtkr,α = 1

2

∑
q

(eiq�t j−q,αtkq,α + e−iq�tk−q,αt jq,α ).

(C9)

Thus, we get a full Hamiltonian containing the following
seven sets of terms:

Constant shift: 3s̄2(K + 2J − μ) + 3μ, (C10)

On-coloring on-site potential: (K − 2J − μ)
∑
q, j

t†
jq,αt jq,α,

(C11)

Off-coloring on-site potential: (−K − μ)
∑
q, j

t†
jq,αt jq,α,

(C12)

Magnetic Field: 2ihα

∑
q, j

εαβγ t†
jq,βt jq,γ , (C13)

Hopping: −
∑

〈 j,k〉,α
Jα

jk s̄2
∑

q

eiq·�t†
jq,αtkq,α + H.c.

+
∑

〈 j,k〉,α

1

2
Jα

jk s̄2
∑
q, j,k

eiq·�t j−q,αtkq,α + e−iq·�tk−q,αt jq,α

+ H.c. (C14)

Adding in the mean fields (i.e., the quartic interactions) we get
a few additional terms:

Constant shift:
∑

bonds

∑
α

Jα
jk

(
Pb

jkPc∗
jk − Qb

jkQc∗
jk + H.c.

)
,

(C15)

Hopping: −
∑
q,α

Jα
jkeiq·�(

Pb∗
jk t†

jq,ctkq,c + Pc∗
jk t†

jq,btkq,b
) + H.c.

+
∑
q,α

1

2
Jα

jkQb∗
jk

(
eiq·�t j−q,c tkq,c + e−iq·�tk−q,c t jq,c

) + H.c.

+
∑
q,α

1

2
Jα

jkQc∗
jk

(
eiq·�t j−q,b tkq,b + e−iq·�tk−q,b t jq,b

) + H.c.

(C16)

A valid ground state is given by choosing μ and s̄ such that
the Hamiltonian satisfies the saddle point equations,〈

∂HMF

∂μ

〉
=

〈
∂HMF

∂ s̄

〉
= 0, (C17)

where the expectation value is calculated in the ground state.
Furthermore, P and Q must satisfy the self consistency rela-
tions [Eqs. (21) and (22)]. Self-consistent values for μ, s̄, P
and Q are determined by using a root finding algorithm
(scipy.optimize.root) to converge to a set of mean fields
that satisfy these conditions. At each step of the iteration,
the Hamiltonian is solved using the bosonic Bogoliubov-de-
Gennes method [74], and the mean fields are determined from
the bosonic ground state.
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2. Bosonic Bogoliubov-de Gennes method

To solve this Hamiltonian, we shall use the bosonic
Bogoliubov-de Gennes (BDG) method, detailed in [74]. This
method is well-understood, however for the sake of complete-
ness, and to introduce the notation used to derive the Chern
number in Appendix C 3, we discuss the method here.

Let us work with a generic set of momentum-space
bosonic annihilation operators, bq j , satisfying the bosonic
commutation relations [bq j, b†

pk] = δ(q − p)δ jk , where the
Hamiltonian is given by

Hq = h jk (q)b†
q jbqk + 1

2 (� jk (q)b†
q jb

†
−qk + �

†
jk (q)b−q jbqk ),

(C18)

where h is a hermitian matrix. We assume that h satisfies
the relation h∗(q) = h(−q), with the same for �. Using the
bosonic commutation relations, we may rewrite the first term
in the following form:

h jk (q)b†
q jbqk = 1

2

(
h jk (q)b†

q jbqk + hT
jk (q)bq jb

†
qk

) − 1
2 Trh.

(C19)

Thus, the Hamiltonian can be written in a generic BdG form
as

Hq = 1
2�†

qM(q)�q − 1
2 Trh, (C20)

where we have introduced the bosonic vector of cre-
ation/annihilation operators

�q = (bq0, bq1, . . . , b†
−q0, b†

−q1, ...)
T (C21)

and defined the BdG matrix

M(q) =
(

h(q) �(q)
�†(q) h(q)

)
. (C22)

To diagonalize this, let us consider the time-dependence of
�q, given by

∂t�q = i[Hq, �q]. (C23)

Applying the bosonic commutation relations, we arrive at the
following expression:

∂t�q = iηMq�q, (C24)

where the “metric” η is defined as

η :=
(
1

−1

)
. (C25)

We now define a rotated set of bosonic operators αq, with
�q = (αq0, ...,α

†
−q0, ...)

T , according to

bq j = u j · αq + v j · α†
−q, (C26)

b†
−q j = v̄ j · αq + ū j · α†

−q, (C27)

⇒ �q = Rq�q, for Rq =
(

U V
V̄ Ū

)
. (C28)

Here Rq is a rotation matrix that must be determined. To
preserve bosonic commutation relations for α, we require that
Rq satisfies

RηR† = η, (C29)

R†ηR = η. (C30)

After applying this transformation to our equation of motion
(C24), we arrive at

i∂t�q = R−1ηM(q)R�q. (C31)

Thus, eigenstates of the Hamiltonian are found by choosing a
transformation R that diagonalises the operator ηM(q), which
we write in the form

R−1ηMqR = ηD, (C32)

where D should have only positive eigenvalues, ensuring that
the bosonic modes all have positive energy. In practice, this
can be done by diagonalizing the matrix ηM and adjusting
the normalization of the eigenstates such that they satisfy
Eqs. (C29) and (C30).

Now, let us rewrite the original Hamiltonian as

Hq = 1

2

(
α†

q α−q
)
R†MqR

(
αq

α†
−q

)
− 1

2
Trh. (C33)

By rearranging Eq. (C30) to get the identity R† = ηR−1η, and
inserting it into the above, we can show that R†MqR = D and
the Hamiltonian takes the form

Hq = 1

2

∑
j

(ω jα
†
q jαq j + ω′

jα−q jα
†
−q j ) − 1

2
Trh, (C34)

where we have labeled the positive eigenvalues of ηM as
ω j and the negative eigenvalues of ηM determine ω′

j (which
are positive—negative energies would indicate an instability,
where the system can infinitely populate the negative energy
states). We rearrange the second set of bosonic operators to
get

Hq = 1

2

∑
j

(ω jα
†
q jαq j + ω′

jα
†
−q jα−q j )

− 1

2
Trh + 1

2

∑
ω′. (C35)

Of course, to implement the full mean-field theory, one
needs not only the bosonic spectrum but also the ground-
state expectation values for the mean fields, 〈0|b†

q jbq′k|0〉 and
〈0|bq jbq′k|0〉. These can be extracted from the rotation matrix
Rq by transforming the expectation value to our diagonalizing
basis {α}:

〈0|b†
q jbqk|0〉 = 〈0| (u∗

j · α†
q + v∗

j · α−q)

× (uk · αq + vk · α†
−q) |0〉 . (C36)

Since the ground state contains no bosons, the only term here
that does not vanish is

〈0|b†
q jbqk|0〉 = 〈0|(v∗

j · α−q)(vk · α†
−q)|0〉 (C37)

= 〈0|V ∗
jmVkm|0〉 (C38)

= (VV †)k j . (C39)

Equally, we can repeat the process for the other correlation
function of interest,

〈0|b−q jbqk|0〉 = (VŪ †)k j . (C40)

094421-12
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3. Bosonic Chern number

To define a bosonic version of the Chern number, let us
start by restating the results of the previous section. We have a
BdG matrix given by M(q)—assumed to be positive definite
[defined in Eq. (C22)], with a set of eigenstates |ψ j (q)〉 which
satisfy

ηM(q) |ψ j (q)〉 = λ j (q) |ψ j (q)〉 . (C41)

For a physical solution, we make the assumption that all
eigenstates are real, i.e., there is no dynamical instability.
Then we can show that if |ψ j (q)〉 is a right eigenstate of
ηM(q), from the hermiticity of Mq, we must have a corre-
sponding left eigenvector defined as

〈ψ j (q)| = 〈ψ j (q)| η, (C42)

with the same eigenvalue. Now, let us assume that the eigen-
states of ηM are all either positive or negative, then we can
calculate the quantity

〈ψ j |ηM|ψ j〉 = λ j 〈ψ j |ψ j〉 (C43)

⇒ 〈ψ j |M|ψ j〉 = λ j 〈ψ j |ψ j〉 . (C44)

The left-hand side here is always positive due to the positive
definiteness of M. This implies that positive eigenstates of ηM
have positive norm, and the negative eigenstates of ηM have
negative norm. Thus, we see that (in agreement with condition
(C30)) the states can be split into two sets and normalized,
which we will label with φ+

i and φ−
i with the following

norms

〈φ+
i |η|φ+

i 〉 = +1, (C45)

〈φ−
i |η|φ−

i 〉 = −1. (C46)

In this context, let us look now at finding relative phases
between adjacent eigenstates in k space. We can define the
phase between two states as

γ = arg[±〈φ±
i (k)|η|φ±

i (q)〉]. (C47)

In analogy with the standard discussion around Berry phase
[75], this quantity is not gauge invariant for a local gauge
|φi(q)〉 → eiα(q) |φi(q)〉. Thus, let us define a gauge-invariant
quantity—the Berry phase around a plaquette in k space,

γB(q) = arg[〈φ±
i (q)|η|φ±

i (q + δx )〉
× 〈φ±

i (q + δx )|η|φ±
i (q + δx + δy)〉

× 〈φ±
i (q + δx + δy)|η|φ±

i (q + δy)〉
× 〈φ±

i (q + δy)|η|φ±
i (q)〉], (C48)

where δx and δy represent a translation in momentum space
by 2π/L in either the x or y direction, L being the system
size. Here the factor of (±1)4 from state normalization clearly
vanishes. Let us simplify this expression by defining the sym-
plectic projector onto a single eigenstate,

φ̂±
i (q) = |φ±

i (q)〉 〈φ±
i (q)| η, (C49)

which is identical to a standard density matrix aside from the
extra factor of η. Using this expression we can rewrite the
Berry phase in the following form:

γB(q) = arg Tr[φ̂±
i (q)φ̂±

i (q + δx )

× φ̂±
i (q + δx + δy)φ̂±

i (q + δy)]. (C50)

Finally, the Chern number is calculated using the usual ex-
pression,

C = 1

2π

∑
q

arg Tr[φ̂±
i (q)φ̂±

i (q + δx )

× φ̂±
i (q + δx + δy)φ̂±

i (q + δy)]. (C51)
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