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The Li-Haldane conjecture is one of the most famous conjectures in physics and opens a new research
area in the quantum entanglement and topological phase. Although a lot of theoretical and numerical works
have confirmed the conjecture in topological states with bulk-boundary correspondence, the cases with gapped
boundary and the systems in high dimension are widely unknown. What is the valid scope of the Li-Haldane
conjecture? Via the newly developed quantum Monte Carlo scheme, we are now able to extract the large-scale
entanglement spectrum (ES) and study its relation with the edge energy spectrum generally. Taking the two-
dimensional Affleck-Kennedy-Lieb-Tasaki model with a tunable boundary on the square-octagon lattice as an
example, we find several counterexamples which cannot be explained by the Li-Haldane conjecture; e.g., the
low-lying entanglement spectrum does not always show similar behaviors as the energy spectrum on the virtual
boundary, and sometimes the ES resembles the energy spectrum of the edge even if it is gapped. Finally, we
demonstrate that the newly proposed “wormhole mechanism” on the path integral of a reduced density matrix
is the formation principle of the general ES. We find that the Li-Haldane conjecture is a particular case in some
limit of the wormhole picture while all the examples of the conjecture we have studied can totally be explained
within the wormhole mechanism framework. Our results provide important evidence for demonstrating that the
wormhole mechanism is the fundamental principle to explain the ES.
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I. INTRODUCTION

In the past decades, entanglement has become a key con-
cept in describing quantum matters, especially exotic new
quantum phases from the quantum information viewpoint.
It leads to a unified understanding of quantum matter and
information and serves as a quintessential quantity to de-
tect and characterize the informational, field-theoretical, and
topological properties of quantum many-body states [1–4],
which combines the conformal field theory (CFT) [5,6] and
the categorial description of the problem [7–19]. Bipartite en-
tanglement entropy (EE) was widely used to identify quantum
phases and phase transitions [17,18,20,21]. For topologically
ordered systems, a topological EE term was also proposed to
detect the quantum dimension of the topological excitation
[3,18,22,23].
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More importantly, the entanglement spectrum (ES) con-
tains more information than EE [24]. The low-lying ES has
been widely employed as a fingerprint of CFT and topology in
the investigation of highly entangled quantum matter [25–42].
For topologically ordered phases with gapless boundaries, Li
and Haldane pointed out that the low-lying ES of topological
states will be similar to the energy spectrum of the edge
state, which is dubbed the Li-Haldane conjecture and relates
the low-lying ES to the energy spectrum [24]. Their work
demonstrated that the general ν = 5/2 topological states have
the same low-lying ES to identify the topology and CFT
structure on the boundary. Numerical results have also shown
that a relation between the low-lying ES and boundary energy
spectrum exists generally in some magnetic systems beyond
topological states [43,44]. Then, it was theoretically shown to
be a general relationship between the entanglement spectrum
of (2 + 1)d chiral gapped topological states and the energy
spectrum on their (1 + 1)d edges [28]. Following studies
[35,45–47] also confirm this conjecture. However, there is
generally no exact correspondence between the low-energy
spectrum of the edge Hamiltonian and entanglement Hamil-
tonian in the nonchiral topological phase without symmetry
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FIG. 1. (a) A geometrical structure of the partition function Z (n)
A .

The subsystem A is entangled with the environment A. Each replica
connects with each other in A, while the environment A for each
replica is independent. βA = n represents the imaginary-time length
in A and β is 1/T for the total system. (b) A schematic picture of
worldlines crossing a replica. The subsystem A is coupled with the
environment A via Jy. These worldlines which cross the bulk will
decay to zero as β → ∞ in principle. Meanwhile, the ones which
cross the imaginary-time edge of A will arrive at the next replica
without much cost.

enrichment [48], in which the boundary can be gapped. A
deep understanding of the correspondence between the en-
tanglement and physical boundary spectrum is still lacking.
Even though the Li-Haldane conjecture is always satisfied in
one-dimensional (1D) or quasi-1D systems, which has been
demonstrated widely in numerical results such as exact di-
agonalization (ED) and density matrix renormalization group
(DMRG)[25,35,43], whether it can hold in two-dimensional
or higher-dimensional systems is unclear so far.

Very recently, the extraordinary wormhole mechanism
based on the replica manifold has been proposed to unlock
the relation between the entanglement spectrum and energy
spectrum [44]. Via analysis of worldlines in the entangled
edge and bulk (Fig. 1), it successfully confirmed the edge
mode held an important position in the ES, which explained
the Li-Haldane conjecture well and provided a new window to
understand the many-body entanglement spectrum. To probe
the wormhole picture in a more general setting, we numeri-
cally study the entanglement properties of a two-dimensional
Affleck-Kennedy-Lieb-Tasaki (AKLT) model with tunable
boundaries. The typical positive and negative examples of the
Li-Haldane conjecture can be realized to further explore the
wormhole mechanism in this model.

In the wormhole picture, the coupling between the sub-
system and environment makes the imaginary path length of
imaginary time near the entangled boundary much shorter
than that in the bulk, which makes the perturbation near the
entanglement boundary in the environment important. As a re-
sult, the entanglement spectrum on the boundary may become
different from the physical boundary energy spectrum, which
is also consistent with the wormhole picture but beyond the
Li-Haldane conjecture. The Li-Haldane conjecture can be re-
garded as a special case in the wormhole picture while all the
examples we study can be self-consistent with the wormhole
picture. Our paper suggests that the wormhole picture can be

considered as a more universal physical picture to understand
and predict the ES in general cases.

II. MODEL AND METHOD

A. Model

In order to apply the wormhole effect picture to the per-
turbed boundary case and further demonstrate the general
prediction beyond the Li-Haldane conjecture, we investigate
the S = 1/2 Heisenberg model on the square-octagon lattice
with C4v lattice symmetry, whose Hamiltonian in the bulk can
be written as

Hb = J1

∑

〈i j〉
Si · S j + J2

∑

〈i j〉′
Si · S j (1)

where the inter-unit-cell coupling J1 = 1 as the unit energy
scale and intra-unit-cell coupling J2 > 0. The model hosts a
rich phase diagram for the ground states under the competition
between J1 and J2 terms. There are four phases including
the S = 2 Néel phase, AKLT phase, S = 1/2 Néel phase,
and plaquette valence bond crystal, which are separated by
three O(3) quantum critical points [49]. The AKLT state is a
symmetry protected topological (SPT) state [50,51] and has
gapless boundaries protected by the translation invariance and
spin rotation symmetry. The gapless boundary can be modeled
by an effective S = 1/2 Heisenberg chain [52]. This model
is the simplest two-dimensional SPT model and free of sign
problems, which is easy to implement in quantum Monte
Carlo (QMC) [53,54]. What is more, the AKLT phase is a typ-
ical SPT phase with bulk-boundary correspondence and can
be well described by the Li-Haldane conjecture. Surprisingly,
the influence of the gapless boundary even extends the physics
of the O(3) critical point and induces unconventional surface
critical behaviors [49]. To investigate the wormhole effect
picture deeply, we add other terms to the original Hamiltonian
to make the system far away from the standard Li-Haldane
conjecture case:

H = Hb + Js

∑

〈i j〉s

Si · S j + Jy

∑

〈i j〉y

Si · S j (2)

where Js is a small translation-invariance-breaking term on
the boundary and Jy is the coupling between the subsystem A
and environment A which can change the boundary condition
along the y direction. Figure 2 depicts the model Eq. (2) on
the square-octagon lattice. By tuning the perturbation and
coupling on the edge, positive and negative examples of the
Li-Haldane conjecture can be all explored well.

B. Method

We use the recently proposed QMC-based numerical
method to study the low-lying ES [44,55]. In the framework
of QMC, it is difficult to construct the ρA = TrA(|ψ〉〈ψ |) =
e−HA directly as ED [43] and DMRG do [35,46]. The ES can
be obtained through stochastic analytic continuation (SAC)
from the imaginary-time evolution of ρA in the QMC sim-
ulations [56–58]. Specifically, by introducing an effective
imaginary time n for the entanglement Hamiltonian, the

094416-2



DEMONSTRATING THE WORMHOLE MECHANISM OF … PHYSICAL REVIEW B 109, 094416 (2024)

Js

OBC

y

x entanglement boundary spin entanglement boundary spinphysical boundary spin

Js

A

A

J2J1

PBC
(a) (b) (c)

Jy

A

A

PBC

FIG. 2. Schematic figures of the model Eq. (2) on the square-octagon lattice under periodic boundary condition (PBC) along the x direction
and a tunable boundary in the y direction. (a) Open boundary condition (OBC) in the y direction and Js perturbations at the lower edge. (b,
c) A tunable boundary coupling Jy along the y direction and Js perturbations at the entanglement boundary which is marked by blue dashed
lines. A and A denote the subsystem and environment respectively. The Jy coupling can change boundary conditions along the y direction. In
particular, the system is under PBC or OBC when Jy = 1 or 0 respectively.

effective partition function can be written as

Z (n)
A = Tr

[
ρn

A

] = Tr[e−nHA ] (3)

where the effective imaginary time βA = n. By constructing
the modified manifold in the QMC simulations (Fig. 1), we
can obtain the imaginary-time spin correlation G(τA, q) =
〈Sz

−q(τA)Sz
q(0)〉 for the entanglement Hamiltonian HA and

then find the corresponding ES in the spectral function
G(ω, q) via SAC. We mainly concentrate on the AKLT state
of the model [Eq. (2)] in the bulk with the system size 32 × 32
and J2 = 0.3. The bulk has a large energy gap, where the
low-energy physics is governed by its boundary. In addition,
due to the spin rotation symmetry of the model, we can only
consider the imaginary-time boundary correlation for the sz

operator, G(τA, q) = 1
L

∑
i, j e−iqx ·(xi−x j )〈sz

i (τ )sz
j (0)〉, where sz

i
denotes spins on the physical or entanglement boundary.

C. The wormhole picture

The entanglement spectrum algorithm method inspired an
interesting wormhole effect inducing the low-lying ES to un-
cover the mysteries of entanglement spectrum [44]. In the
replica manifold, as Fig. 1(b) shows, the trace of environment
connects the upper and lower imaginary-time boundaries of
one replica, so it provides a convenient way for worldlines to
get to the upper edge from the lower edge instantly, dubbed
the wormhole picture. It makes the worldline avoid going
through the whole bulk replica with a huge cost. As Fig. 1
shows, the cost of the path in the path integral is proportional
to L × �(L), where L is the average path length of imaginary
time and �(L) is the average gap for this path. The smaller
cost L × �(L) will lead to the larger path weight which holds
a more important role in the low-lying spectrum. Via analysis
of the paths in the bulk and near the entangled edge at Fig. 1,
the bulk path length should be proportional to β × n and edge
path length should be proportional to 1 × n. Then, the ratio of
path length can be regarded as β : 1.

According to comprehensive consideration of path length
and gap, the ratio of cost between bulk path and edge path
can be estimated roughly as β�b : �e, where �b is the bulk
gap and �e is the edge gap. The inverse temperature β → ∞
at the ground state which renders β�b � �e. Therefore, the
cost of the edge path near the entangled boundary [red line
of Fig. 1(b)] is much lower than in the bulk [green line of
Fig. 1(b)]. Because the lower cost of the path provides larger
weight in the path integral, the edge mode plays an important
role in the low-lying ES. Thus the Li-Haldane conjecture has
been explained well within the wormhole mechanism.

However, if there is no bulk-boundary correspondence, the
general relation between entanglement spectrum and energy
spectrum is not clear so far. Generally, when the boundary is
influenced by perturbation, the change of ES is an open ques-
tion which is not guaranteed to be like the energy spectrum
under the Li-Haldane conjecture. According to the wormhole
effect mechanism, how the worldline crosses the edge is a
key point to unlock the relation between the entanglement
spectrum and energy spectrum. Therefore, it is interesting to
apply the wormhole effect picture to the perturbed boundary
and predict the entanglement spectrum.

III. RESULTS

In this section, we first study the influence of the pertur-
bation term Js on the entangled edge to the ES with a full
coupling strength Jy = 1, i.e., under the periodic boundary
condition (PBC) in the y direction. Then we tune the coupling
Jy to systematically explore how the correspondence between
the boundary ES and energy spectrum breaks down, including
the case of Jy = 0, i.e., the case of open boundary condition
(OBC).

A. Probing the perturbed boundaries

As Fig. 2 illustrates, when the boundary is gapped by the
perturbation, we make a comparison study between low-lying

094416-3



LIU, HUANG, YAN, AND YAO PHYSICAL REVIEW B 109, 094416 (2024)

0.0

0.2

0.4

0.6

0.8

(a) Js=0.0

ω

(b) Js=0.05
(c) Js=0.1 (d) Js=0.3

0.00

2.00

4.00

6.00

8.00

10.0

0.0

0.2

0.4

0.6

0.8

0                           π                          2π 0                          π                           2π0                          π                           2π

(e) Js=0.0

q

ω

0                           π                           2π

(f) Js=0.05

q

(g) Js=0.1

q

(h) Js=0.3

q

FIG. 3. Dynamical spectra for the J1 − J2 Heisenberg model on the square-octagon lattice under a modified boundary as in Fig. 2(a) with
L = 32 and β = 64. Upper row: Dynamical spectra on the bottom boundary. Lower row: Dynamical spectra on the top boundary. For better
presentation, we set the color bars to be logarithmic scale above 8.0.

spectra on the physical and entanglement boundaries, i.e., the
energy spectra on the physical boundary for a system under
OBC and entanglement spectra on the entanglement boundary
for a system under PBC (Jy = 1).

The energy spectra are presented in Fig. 3 through
doing numerical analytic continuation for the boundary spin-
spin dynamical spectral function. Without the translation-
invariance-breaking term, Js = 0, two physical boundaries
are both gapless and can be modeled by a one-dimensional
spin-1/2 Heisenberg model. The spin-spin dynamical spectral
function corresponds to the two-spinon excitation, which is
consistent with the feature of the gapless boundary of SPT
phases. Without symmetry protection, the boundary is not
guaranteed to be gapless. As shown in Figs. [3(a)–3(d)],
when Js increases, the perturbed boundary becomes gapped
in which the excitation becomes a magnon and the energy
gap is larger for stronger Js. Meanwhile, the other untouched
boundary remains gapless [see Figs. 3(e)–3(h)]. This case is
beyond Li-Haldane’s condition, and we will recount below
that the ES can still be explained by the wormhole mechanism
while the Li-Haldane conjecture fails.

Interestingly, for the entanglement case (not really an open
edge but replaced by an entangled edge), we find the entangle-
ment spectrum in Fig. 4 does not always show similar features
as the energy spectrum of subsystem A as an independent
physical system under OBC. Without the perturbation term,
Js = 0, the entanglement boundary is gapless as demonstrated
in Figs. 4(a) and 4(e), which is consistent with the Li-Haldane
conjecture.

With a small Js term on the entanglement boundary, the
entanglement spectrum on the lower boundary of A becomes
gapped, whether we tune the boundary coupling Js in A or
A as shown in Figs. [4(b)–4(d)] and [4(f)–4(h)] respectively.
Even if the case of tuning the Js in A barely satisfies the
Li-Haldane conjecture that the ES opens a gap similar as the
edge energy spectrum does, it can be treated as an extended
conjecture. However, the case of tuning the Js in A totally
violates the prediction of similar behaviors between the ES

and edge energy spectrum, because in this case the edge
energy spectrum of A is still gapless due to the fact that Js

is tuned in environment A, but we observe that the ES opens
a gap.

Actually, according to the path-integral wormhole picture
for the ES, this change can be understood naturally [44]. As
shown in Fig. 1(b), the red line path near the entangled edge
is the shortest path to contribute to the low-lying ES. Under
the PBC, or with a full strength coupling Jy = 1, the path goes
through the edges of both A and A alternately, thus the per-
turbation on the lower boundary of A or upper boundary of A
plays a similar role in the path integral and both of them result
in the gapped boundary ES. In the proposed wormhole mech-
anism picture [Fig. 1(b)] [44], the ratio of the cost between the
bulk path (green line) and edge path (red line) can be approx-
imately regarded as β�b : �e, where �b and �e refer to the
energy gap of the bulk and edge. For our model, the inverse
temperature β should go to ∞ in the bulk so the low-energy
entanglement spectrum should look similar to the generalized
entanglement edge of the energy spectrum whether or not
the perturbation gaps the generalized entanglement edge. It
clearly shows that the limitation of the Li-Haldane conjecture
can be detected via the tunable perturbation, while the worm-
hole picture can give the self-consistent explanation for ES in
the gapless or gapped cases. Besides, if we gap the lower edge
of A and the upper edge of A via adding the perturbation Js on
both entanglement boundaries of A and A, the ES gap becomes
twice as large as the case that only one boundary is gapped
(see Appendix C).

B. The role of the coupling between system and environment

To further explore the influence of wormhole effect on
the correspondence between energy and entanglement spec-
trum, we systematically study the ES with different coupling
strength Jy between the subsystem and environment.

The inverse temperature β is 50 and βA is 64 with the
environment perturbation Js = 0.3 [as Fig. 2(c) shows]. When
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FIG. 4. Entanglement spectra for the J1 − J2 Heisenberg model on the square-octagon lattice under a modified entanglement boundary as
in Figs. 2(b) and 2(c) with L = 32, βA = 64, and β = 50. Upper row: Entanglement spectra of the bottom edge as shown in Fig. 2(b). Lower
row: Entanglement spectra of the bottom edge as shown in Fig. 2(c). For better presentation, we set the color bars to be logarithmic scale above
8.0.

Jy is from 0 to 0.2, the ES gap gradually becomes large.
And then the gap gets smaller and smaller with increasing the
coupling strength as Fig. 5 shows. When 0 < Jy < 1, the ES
becomes gapped which is neither like the gapless boundary of
system A nor like the full gapped boundary of the environment
of A (the ES gap is different). The gap change looks non-
monotonous which is different from the Js = 0 case with only
wormhole effect (see Appendix A). According to the worm-
hole picture, the cost of the edge path should be proportional
to �e/ f (Jy), where f (Jy) is supposed to be a monotonically
increasing polynomial function of the coupling Jy [when Jy

is small, f (Jy) is very close to zero]. Then the ratio of cost
between bulk path and edge path can be roughly corrected as
β�b : �e/ f (Jy). When Jy is weak near zero, the edge cost
will become very large beyond β�b so that more worldlines
will choose the bulk path. Increasing Jy will transport more

environment perturbation to the subsystem, which makes the
bulk gap �b larger. Therefore, the ES gap becomes large as
we increase Jy as shown in Figs. [5(a)–5(c)].

For strong Jy, the cost of the edge path �e/ f (Jy) becomes
less than β�b due to the large f (Jy), which leads more
worldlines to go through the edge path. More importantly, the
wormhole effect can hold the dominant position when Jy is
large enough. It makes the ES gap becomes smaller as we
continue increasing the coupling to the full strength Jy = 1,
which is finally like the energy spectrum of the environment
boundary [Figs. 5(d)–5(f)].

When tuning the coupling, the correspondence between
entanglement spectrum and energy spectrum becomes invalid
which predicts the gapless ES inconsistent with numerical
results. The ES on the boundary of gapped phases can be
changed via the modification of the environment and the
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FIG. 5. The entanglement spectra of Fig. 2(c) with Js = 0.3, L = 32, β = 50, and βA = 64, where Jy is (a)–(f) 0.0, 0.1, 0.2, 0.4, 0.6, and
1.0. For better presentation, we set the color bars to be logarithmic scale above 8.0.
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coupling between the subsystem and environment. The worm-
hole picture explains why the ES can be hugely influenced
by the coupling. This analysis reveals that the interplay be-
tween the coupling and perturbation is also well captured by
the wormhole picture with replica amplification of the bulk
gap, which is a powerful tool to understand the entangle-
ment spectrum of systems with more complex interaction and
perturbation.

IV. DISCUSSION

In the original Li-Haldane conjecture, the coupling
strength between subsystem and environment was not ex-
plored. It is usually limited to special systems that have SPT
order or chiral topological order. It has been shown that such
a correspondence may not hold in the nonchiral topological
ordered states. There is no general physical picture to explain
it. Our paper reveals that an important missing point is the role
of coupling between the subsystem and its environment. From
the path-integral (wormhole) picture for the partition function
in the replica manifold (Fig. 2), it is clear that the coupling
makes the boundary of A and A contribute much more im-
portantly than the bulk. The worldlines near the entanglement
boundary cross the edge of A and A alternately so that both
boundary perturbations of A and A contribute to the low-lying
ES. This wormhole effect provides a simple picture and a
fundamental mechanism for the inconsistency of correspon-
dence between the energy and entanglement spectrum on the
boundary.

In this paper, we limited our study near the boundaries
for a gapped SPT phase and symmetric couplings Jy between
the subsystem and its environment. It is not clear how the
entanglement spectrum will be changed by perturbations and
couplings in general cases. It would be still natural that the
coupling between the system and environment also serves
as a key role. Without the coupling between the subsystem
and its environment, local perturbations in the environment
have large imaginary time in the replica manifold and cannot
contribute a lot to the ES. Although we only concentrated
on one boundary, these analyses also apply to the other un-
perturbed boundary, i.e., the upper or lower boundary of A
or A respectively. The importance of the coupling between
the subsystem and its environment in the wormhole picture
also reflects the quantum nature of entanglement. Without
any coupling, the whole system becomes a tensor product
of A and A and there would be no entanglement at all. And
for no coupling, the entanglement boundary of subsystem A
can be naturally described by an effective S = 1/2 Heisen-
berg chain (see Appendix D). When the bulk is a critical
point or gapless phase, it is still not clear whether the worm-
hole picture applies. In the wormhole picture, the ratio of
cost between the bulk path and edge path is approximately
β�b : �e. As we know, �b and �e are zero at the quantum
critical point or gapless phase. Both bulk mode and edge
mode may cross the replica with similar cost, which are
mixed together to contribute to the low-lying ES. Thus, it is
more complex for analyzing the contributions from bulk and
edge for the low-lying ES at the quantum critical point or
gapless phase.

V. CONCLUSION

In summary, we have systematically studied the relation
between the energy and entanglement spectrum on the bound-
ary in the AKLT phase of the S = 1/2 Heisenberg model on
the square-octagon lattice with a symmetry-breaking term on
the boundary and a tunable coupling between the subsystem
and its environment. The correspondence does not always
apply if the perturbation is added to the environment. The
entanglement spectrum can show different behaviors from the
energy spectrum of the subsystem as an independent system
under open boundary condition. Tuning the coupling between
the subsystem and environment can change the ES gap, which
indicates that the coupling accounts for the inconsistency of
the Li-Haldane conjecture. This inconsistency can be nat-
urally explained in the wormhole picture for the partition
function in the replica manifold. In the path-integral picture,
the wormhole effect induced by the coupling plays an impor-
tant role in transporting the interaction of the environment
and provides a pathway to control the ES. The wormhole
picture can explain the correspondence between the entan-
glement spectrum and energy spectrum for the gapless and
gapped cases which is indeed the fundamental mechanism of
the ES. The rapidly developed quantum circuits experiments
have successfully extracted the ES through measuring differ-
ent orders of Rényi entropies [59–62]. The basic idea is to
fit the low-lying ES according to the 1 ∼ n order Rényi en-
tropies [17], where the n is a cutoff order. Besides, the recent
cold atom experiment has successfully probed the Li-Haldane
conjecture in the topological states by using entanglement
Hamiltonian tomography and quantum variational learning
[63]. It makes the possibility that our results can be realized in
quantum circuits and cold atom systems via constructing and
controlling the AKLT or other SPT states.
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APPENDIX A: DIFFERENT COUPLING STRENGTH
WITH Js = 0.0

In this section, we tune Jy from 0 to 1.0 with β = 50
and βA = 64 to explore the wormhole effect on ES without
normalization. The wormhole effect can lower the edge modes
which is clearly shown in the original ES with Js = 0.0 in
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FIG. 6. The original entanglement spectra of Fig. 2(c) with Js = 0.0, L = 32, β = 50, and βA = 64, where Jy is (a)–(f) 0.0, 0.1, 0.2, 0.4,
0.6, and 1.0. For better presentation, we set the color bars to be logarithmic scale above 8.0.

Fig. 6. Because �τ = 1 for replica structure is too large to
obtain the high-energy part on ES by SAC, we only observe
the low-energy excitation in Figs. 6(a) and 6(b), which is
enough to analyze the important entanglement message. At
the Jy = 0 limit, the edge becomes a real physical edge and
the ES has a small gap. Although the ES should become a
gapless two spinon continuum in the AKLT phase, the finite-
size gap becomes larger in the ES because the wormhole
effect disappears at Jy = 0. The gap is amplified β times due
to the replica system. This amplification effect leads to the
ES gap.

Then, the gap of the ES becomes smaller and smaller
when Jy increases, which demonstrates that the wormhole
effect is magnified as Jy increases. Thus, the wormhole effect
makes the ES gap become smaller as Jy increases, which
lowers the bulk amplification effect and makes the bandwidth
become smaller at the same time. Actually, the gap change

cannot be derived directly from the original Li-Haldane con-
jecture. The coupling strength plays an important role in the
ES mechanism which has been confirmed in our numerical
results.

APPENDIX B: MORE BOUNDARY INTERACTIONS

If more boundary interactions are tuned near the entangle-
ment edge, it is unclear whether the ES will be like the edge
spectrum. We focus on the energy spectrum and entanglement
spectrum of Fig. 7, where the perturbation Js is added to two
boundaries with Jy = 1. When Js = 0.3, the edge spectrum
of the model becomes a gapped excitation [Fig. 8(a)] which
is similar to Fig. 3(d). If the perturbation Js is added to the
bottom edge of the subsystem and top edge of the environment
to gap them at the same time [Fig. 7(b)], the ES becomes also
gapped [Fig. 8(b)]. And its gap is nearly twice as large as

entanglement boundary spinentanglement boundary spin
physical boundary spin

(b)
OBC

(a) (c)

A

A

PBC

y

x

Jy

A

A

PBC

JyJsJ2J1

FIG. 7. The square-octagon lattice with the PBC in x direction. (a) The lattice with OBC in y direction with Jy = 1. (b) The lattice with
PBC in y direction. The blue dashed line cuts it into two entangled parts, A and A. And Js is added to the lower boundary of subsystem A and
upper boundary of A as green dashed lines show. (c) The lattice with PBC in y direction, where Js is added to the upper boundary and lower
boundary of environment A as green dashed lines show.
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FIG. 8. The original dynamical spectra (β = 64) and entangle-
ment spectra (β = 50 and βA = 64) of Fig. 7 with Jy = 1 and L = 32.
(a) Dynamical spectrum with Js = 0.3. (b) Entanglement spectrum
of the lower boundary of subsystem A at Fig. 7(b) with Js = 0.3.
(c) Entanglement spectrum of the lower boundary of subsystem
A at Fig. 7(c) with Js = 0.3. (d) Entanglement spectrum of the
upper boundary of subsystem A at Fig. 7(c) with Js = 0.3. For
better presentation, we set the color bars to be logarithmic scale
above 8.0.

the ES in Figs. 8(c) and 8(d), which demonstrates that both
subsystem and environment perturbation contribute to the ES
equally. It further proves that the coupling Jy can transport
the environment perturbation to the subsystem near the en-
tanglement boundary. Furthermore, we simulate the ES with
Js = 0.3 on the lower and upper boundaries of environment A.
In our expectation, the ES is also gapped on both boundaries
of subsystem A as Figs. 8(c) and 8(d) shows, similar to the
energy spectrum.

APPENDIX C: BOUNDARY CORRELATION FUNCTION

In order to detect the feature of the entanglement Hamil-
tonian, we obtain different sizes of the boundary equal-time
correlation functions |C1(r)| and |C2(r)| in Fig. 9, where
Ck (r) = 〈Sz

i Sz
j〉 marked in Fig. 9(c). The system sizes in the

simulation are from 16 to 40 with β = 50 and βA = 2L.
|C1(r)| represents the behaviors for the entanglement bound-
ary of A without coupling, while |C2(r)| shows the behaviors
for the boundary of A with the full-strength coupling. As
shown in Fig. 9(a), it is clear that |C1(r)| and |C2(r)| decay
in a power law which is consistent with the gapless boundary
behaviors. This means that the bound of A without coupling
is similar to the bound of A with full-strength coupling. Af-
ter rescaling the correlation functions C(r) = r−η f (r/L) with
η = 1, we show that |C1(r)| and |C2(r)| can almost collapse
into a single curve. The exponent η = 1 is the anomalous di-
mension which is suitable for the (1 + 1)D gapless boundary
of the AKLT state, though there is a logarithm correction to
the correlation function C(r) ∝ 1/r in a S = 1/2 Heisenberg

FIG. 9. Different lattice sizes L of boundary equal-time corre-
lation functions Ck (r) at Js = 0.3, Jy = 0.0, βA = 2L, and β = 50.
(a) The original boundary equal-time correlation |C1(r)| and |C2(r)|
with L = 16, 24, 32, and 40. (b) Rescaling of |C1(r)| and |C2(r)| for
different sizes L. The exponent η = 1 is the anomalous dimension.
(c) Ck (r) is marked at different entangled edges on the square-
octagon lattice (k = 1, 2, 3, and 4).

chain. And the collapse picture clearly shows that |C1(r)|
and |C2(r)| decay with the same power-law exponents, which
indicates the entanglement Hamiltonian can be modeled by
an effective S = 1/2 Heisenberg chain with and without cou-
pling.

APPENDIX D: FINITE-SIZE SCALING

Although the ES gap is magnified β times, it should satisfy
the finite-size scaling of the gap. Imaginary-time correlations
G(τ ) at q = π are measured with Jy = 0.0 and 0.1 at Js = 0.3,
and we perform the finite-size scaling analysis of the ES
gap in Fig. 10. In this calculation, the total system size is
from 16 to 40. These gap values are obtained from the fitting
of G(τ ) that should satisfy G(τ ) = be−�τ , where � refers
to the gap. The ES gap should obey the finite-size scaling
form � = �(∞) + bL−1, where b is the fitting parameters
and �(∞) is the ES gap in the thermodynamic limit. As
Fig. 10 shows, it is clear that all G(τ ) decay exponentially and
are fitted well by the gap formula which indicates � ∝ L−1.
The fitting of �(∞) is 0.0332(3) at Jy = 0.0 and 0.943(1)
at Jy = 0.1. If the amplification effect is considered, the real
gap �(∞)/β at Jy = 0.0 is about 6.65 × 10−4 close to zero,
which agrees well with the fact that the ES is gapless. These
fitting results further prove our prediction that the ES gap has
been magnified β times and explain why it looks so large at
small Jy.
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FIG. 10. The finite-size scaling of the entanglement spectra gap for Fig. 2(c) with Js = 0.3, β = 50, and βA = 2L. (a) Imaginary-time
correlation function G(τ ) at q = π with Jy = 0.0. (b) Imaginary-time correlation function G(τ ) at q = π with Jy = 0.1. (c) Different sizes of
entanglement spectra gap with Jy = 0.0 and 0.1.

APPENDIX E: IMAGINARY-TIME
CORRELATION FUNCTION

The inverse temperature β should be large enough to make
the system reach the ground state like β ∼ L. As Fig. 11(a)
shows, imaginary-time correlation function G(τ ) decays to
zero with β = 2L = 64, which is large enough to probe the
ground-state properties and spin excitation. The number of
replicas βA should be also large enough to probe the ground
state of the entanglement Hamiltonian, which is the same as
the set of β ∼ L. When βA = 2L, G(τA) also decays to zero
at large τ as Fig. 11(b) shows, which guarantees that we can
probe the ground state in this βA.

FIG. 11. Imaginary-time correlation function G(τ ) of the real
Hamiltonian (a) and entanglement Hamiltonian (b) at q = π with
the perturbation Js = 0.3 on the boundary of subsystem A, as
Figs. 2(a) and 2(b) shown.
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