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X-ray magnetic circular dichroism in RuO2
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We present a numerical simulation of the x-ray magnetic circular dichroism (XMCD) of the L2,3 and M2,3

edges of Ru in antiferromagnetic RuO2 using a combination of density functional plus dynamical mean-field
theory and configuration interaction treatment of the Anderson impurity model. We study the dependence of
the dichroic spectra on the orientation of the Néel vector and discuss it in the context of altermagnetism.
An approximate equivalence between the XMCD spectra for geometries with x rays propagating parallel and
perpendicular to the Néel vector is found and shown to be exact in the absence of valence spin-orbit coupling
and a core-valence multipolar interaction.
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I. INTRODUCTION

Recently, a metallic compensated magnet RuO2 has at-
tracted considerable attention. The combination of its rutile
structure with an antiparallel ordering of spin moments gives
rise to a number of phenomena such as the anomalous
Hall effect (AHE) [1–8] or charge-spin conversion effects
[9–16], and strongly spin-polarized electronic band struc-
tures [2,6,9,15,17–23], unusual among compensated collinear
magnets. Moreover, some of these effects depend on the
orientation of the Néel vector L and may be switched by
manipulating it. The term altermagnet [9,15] was introduced
for RuO2 and similar materials to reflect the alternating spin
polarization in the momentum space.

Altermagnetism is a nonrelativistic concept, i.e., it relies
on the spin rotation SU(2) symmetry of the Hamiltonian
in the absence of spin-orbit coupling (SOC). However, the
above transport and charge-excitation effects are possible
only if altermagnetic order and SOC are present simulta-
neously. The SOC thus plays a dual role. On one hand,
it allows the altermagnetic order to be detectable through
some of the technologically interesting transport effects. On
the other hand, it gives rise to magnetocrystalline anisotropy
and possibly a weak ferromagnetism with a small net
magnetization m. To prove the altermagnetic origin of trans-
port phenomena, e.g., AHE, one must not only measure
a finite signal, but also distinguish the altermagnetic con-
tribution associated with L from the contribution due to
weak ferromagnetism or possibly the external magnetic field
associated with m, which requires a careful quantitative
analysis [24].

The x-ray magnetic circular dichroism (XMCD) provides
an alternative. The XMCD is an odd magneto-optical effect,
which arises from the same antisymmetric part of the conduc-
tivity tensor σa = 1

2 (σ − σT ) as the valence band phenomena,
such as AHE or magneto-optical effects in the visible range
and therefore follows the same symmetry rules. However,

the XMCD, especially in lighter elements, arises due to the
SOC in the core state and is only weakly affected by the
valence SOC reflecting the typically small orbital moments
[25–27]. The theoretical altermagnetic contribution to XMCD
can be obtained as the XMCD with the valence SOC switched
off. In other words, in the x-ray spectral range it is the core
SOC which allows the altermagnetic order to be expressed in
the magneto-optical spectra, while the valence SOC, which
causes the spurious weak ferromagnetism, has only a marginal
contribution [28]. In the optical or transport effects the valence
SOC plays a dual role, which cannot be resolved by simply
switching it off.

In this paper we compute XMCD at L2,3 and M2,3 edges of
Ru for various orientations of the Néel vector L, see Fig. 1.
Recently, Sasabe et al. [29] calculated XMCD in RuO2 using
the atomic model in an external Zeeman field, and discussed
their results in the context of a strong-coupling (insulator)
picture of an excitonic magnet [30]. Our calculation of XMCD
is performed for the antiferromagnetic metallic state [17]
obtained with the density functional plus dynamical mean-
field theory (DFT+DMFT) [31–33]. The method identifies
a Fermi-surface instability as the origin of the antiferromag-
netism of metallic RuO2 [17].

II. COMPUTATIONAL METHOD

Starting with a density functional theory (DFT) calculation
for the experimental structure of RuO2 [34] using WIEN2K

[35], we construct a multiband Hubbard model [36,37] span-
ning the Ru 4d states. The Ru 4d crystal field levels are
summarized in Table I. The electron-electron interaction
within the Ru d shell is parametrized by U = 3.0 eV and
J = 0.45 eV. The interaction parameters affect the magnitude
of the ordered Ru moment [17], and thus the XMCD inten-
sities, as examined in the Supplemental Material (SM) [38]
(see also Refs. [39–44] therein). We use the same DMFT
implementation for the multiband Hubbard model as in
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FIG. 1. Crystal structure of RuO2 and orientations of magnetic
structures studied in this work. Solid (dashed) lines indicate the
mirror (glide) plane m.

Refs. [45–47]. Material-specific details can be found in SM
[38].

The XMCD spectra are calculated for (i) the Ru4+ atomic
model and (ii) DMFT plus Anderson impurity model (AIM)
using the method of Refs. [45–47] based on a configuration in-
teraction impurity solver. The two models implement the same
atomic Hamiltonian, which is coupled to an electronic bath
via the hybridization function �(ω) in (ii). The ordered Ru
moments are generated by the (self-consistently determined)
spin-polarized bath in (ii). In (i) we impose a Zeeman field
chosen to generate the same moment as obtained in (ii). A
detailed comparison of the two models in SM [38] reveals
similar spectra. The computationally cheap atomic model is
therefore used for the symmetry analysis of the results.

The SOC is not included in the DMFT self-consistent
calculations. However, SOC within the Ru 4d shell is in-
cluded in the AIM when computing the XMCD intensities.
The spin-polarized hybridization densities �(ω) are trans-
formed to capture the desired Néel vector orientations in these
simulations.

III. RESULTS

The XMCD is the difference of the absorption spectra for
the right-hand and left-hand circularly polarized light prop-
agating along the direction k̂. It is convenient to view the
antisymmetric part of the conductivity tensor σ as an axial
(Hall) vector h(ω) = [σ a

zy(ω), σ a
xz(ω), σ a

yx(ω)]. For simplicity
we will not show the ω dependence from now on, but indicate

TABLE I. The Ru 4d orbital energies in RuO2 derived from the
DFT calculation for the experimental rutile structure. The 4d orbitals
are represented in a local coordinate (x′y′z′) in the left top panel of
Fig. 1.

dxy d3z2−r2 dx2−y2 dzx dyz

Energy (eV) 3.283 3.522 −0.127 0.036 0.067

the dependence on k̂ as well as the orientation of the Néel
vector L,

�F (k̂, L) = F+(k̂, L) − F−(k̂, L) = 2 Im h(L) · k̂. (1)

The Hall vector h(L) contains information about XMCD for
any direction k, but depends on the crystallographic orienta-
tion of L. In Fig. 2 we show the elements of σ at the Ru M2,3

edge for L along the [001̄], [110], and [1̄00] directions.
Owing to the local nature of core-level excitations the ob-

served signal is given by a sum of contributions from the two
Ru sites [48]. Depending on the orientation of L, the two Ru
sites are connected by some relativistic symmetry operation or
not. In the former case XMCD may vanish due to cancellation
between the site contributions even if these are nonzero. In the
latter case a nonzero XMCD exists if allowed locally by the
site symmetry.

A. Symmetry considerations

In the following we will make use of mirror symmetries to
discuss the dependence of the XMCD signal, i.e., h(L) as a
function of L. The mirror (glide) planes are marked in Fig. 1.
XMCD is forbidden if there is a mirror plane parallel to the
x-ray wave vector k, since it maps the right-hand circular
polarization on the left-hand one and vice versa. Since the
local moments transform as axial vectors, a crystallographic
mirror (glide) plane m is retained as an element of the rela-
tivistic symmetry group either if m is parallel to L and maps
the magnetic sublattices on one another or m is perpendicular
to L and maps each magnetic sublattice on itself. Using these
simple rules we can understand the behavior of the calculated
XMCD.

For L ‖ [110] the two Ru sites are inequivalent. There is
no symmetry relationship between the XMCD contributions
from the two Ru sites and therefore no cancellation between
the site contributions h(i=1,2) as shown in Fig. 3. The total
XMCD signal is nonzero unless XMCD is symmetry forbid-
den locally on each site. The mirror plane m(110) maps each
Ru site on itself and is perpendicular to the local moments,
which implies that only h(i) ‖ [110] is allowed.

For both L ‖ [001̄] and L ‖ [1̄00] the two Ru sites are
equivalent. For L ‖ [001̄] the presence of two nonparallel mir-
ror planes, the glide planes n(100) and n(010) mapping the two
Ru sites on each other, forbids the total XMCD signal for any
direction of k: h(1) = −h(2). Moreover, the mirror plane m(001)

implies that h(i)
x = h(i)

y = 0 on each site as shown in Fig. 3.

For L ‖ [100], the glide plane n(010) implies h(1)
z = −h(2)

z and
h(1)

x = −h(2)
x (see Fig. 3). The glide plane n(100), indicated by

the red dashed lines in Fig. 1, which maps the two Ru sites on
each other, must be coupled with the time reversal n(100)T in
order to be a symmetry operation. Therefore the two Ru sites
yield the same contribution h(1)

y = h(2)
y (see Fig. 3). Finally, we

observe that h(i)
z = 0 locally owing to the mirror plane times

time-reversal operations m(001)T .

B. L and M edge of RuO2

Figure 4 shows Ru L2,3- and M2,3-edge absorption spectra
with left and right circularly polarized x rays and the XMCD
intensities calculated using the local density approximation
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FIG. 2. Real (red) and imaginary (blue) part of the optical conductivity tensor at the Ru M2,3 edge for different orientations of the Néel
vector L. Here, the Ru4+ atomic model (J = 0.50 eV) is used.

plus DMFT (LDA+DMFT) AIM method. The L- and M-edge
spectra have similar shapes consisting of a main peak and
a shoulder, indicated by vertical lines [49], and agree well
with the the available experimental absorption data on the
M2,3 edges [50]. The shoulders arise from the Ru t2g bands,
which host the spin moment. The eg bands are spin split
but empty. Consequently, the XMCD intensities are largely
concentrated in the shoulder for all M2,3 and L2,3 edges. A
similar shape of the XMCD spectra was observed on the M2,3-
edge XMCD of SrRuO3, a prototypical ferromagnetic metallic
Ru4+ oxide [51].

Our results show that a nonzero XMCD exists for L ‖
[110] and any k not perpendicular to L as well as L ‖ [1̄00]
and k not perpendicular to [010]. On the other hand, the
XMCD signal vanishes for the experimental easy axis L ‖
[001̄]. It was shown that L can be tilted in the [110] using
an external magnetic field [24]. While we have included the

FIG. 3. The imaginary part of the Hall vectors h(i) at the Ru M2,3

edge for site 1 (yellow) and site 2 (green) obtained for different
orientations of the Néel vector L. Here, the Ru4+ atomic model
(J = 0.50 eV) is used. The XMCD spectra of the Ru4+ atomic model
are found in SM [38].

valence SOC in the calculation of the XMCD spectra using
both methods (i) and (ii), we did not include the magnetocrys-
talline anisotropy in our calculations. Therefore we can only
speculate about the external field effect. Looking at the site
contributions for the L ‖ [110] in Fig. 3 we observe that site
1 dominates over site 2. Assuming that the external field has
only a moderate influence on the size of the local moments,

FIG. 4. The x-ray absorption spectroscopy (XAS) calculated for
the two circular polarizations (red and blue) at the Ru M2,3 edge
(top) and L2,3 edge (bottom) together with the XMCD intensities
(shaded) calculated for different orientations of the Néel vector L
and x-ray propagation vector k using the LDA+DMFT AIM method.
The calculated spectral intensities are broadened by a Lorentizan of
1.0 eV [half width at half maximum (HWHM)]. The experimental
L3-edge x-ray absorption spectrum is taken from Ref. [49]. The L3

main line and shoulder feature are indicated by vertical lines.
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FIG. 5. Ru M2,3-edge XMCD intensities �F (a) in case (a) and
�F (b) in case (b) calculated without SOC within the Ru 4d shell and
3p − 4d core-valence multiplet interaction for the two different Néel
vectors L and x-ray propagation vectors k̂ by the LDA+DMFT AIM
method.

we may conclude that it does not alter the present result
substantially.

C. No valence SOC, no core-valence multipole interaction

Comparing the XMCD spectra in Figs. 4(a) and 4(b) we
observe a similarity pronounced in particular on the L3 and
M3 edges. In Fig. 5 we show that this is not accidental.
In Ref. [28] we have observed that turning off the valence
SOC and the multipole part of the core-valence interaction
may change the XMCD spectra qualitatively. This is because
the Hamiltonian without these interactions possesses a higher
symmetry. In the present case, switching off the valence SOC
and the multipole part of the core-valence interaction results
in an equality of the two spectra �F (a)(ω) = �F (b)(ω). This
may appear surprising given the apparently different geometry
in case (a) k ‖ L while in case (b) k ⊥ L. In the Appendix we
provide an analytic proof, which uses only the presence of
twofold axes along the [110] and [11̄0] directions.

IV. CONCLUSIONS

We have calculated the XMCD spectra on the Ru
L2,3 and M2,3 edges of antiferromagnetic RuO2 using the
LDA+DMFT approach. The present XMCD spectra differ
from the recent calculations using the atomic model [29]. The
origin of this discrepancy can be traced to different values
of the crystal field and Hund’s coupling parameters. We have
analyzed the symmetry of the XMCD spectra for various ori-
entations of the Néel vector. The results apply to any collinear
antiferromagnet with the rutile structure. No XMCD is al-
lowed for the easy axis [001] orientation of the Néel vector L.
We have predicted the XMCD spectra for the experimentally
accessible [110] orientation.
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APPENDIX: XMCD WITH NO CORE-VALENCE
EXCHANGE AND NO VALENCE SOC

Here, we prove analytically the numerical results of Fig. 4.
We start with several definitions. The circular dichroism
�F (k̂, L) = F+(k̂, L) − F−(k̂, L), which is the difference of
the absorption spectra for the right-hand and left-hand circu-
larly polarized light, can be obtained from the Fermi golden
rule

F±(k̂, L) =
∑

f

|〈 fL|T̂ ±
k̂

|iL〉|2δ(ω − E f i;L). (A1)

Here, |iL〉 and | fL〉 are the eigenstates of the Hamiltonian,
E f i;L is the excitation energy, and T̂ ±

k̂
are the dipole oper-

ators for the right- and left-hand polarization with respect
to propagation vector k̂. Owing to the immobility of the
core hole the x-ray absorption spectrum is a sum over site
contributions.

We will use the geometry of Fig. 6 with the x rays coming
along the x axis and the quantization z axis of spin and angular
momenta parallel to the crystallographic c axes. To evaluate
XMCD �F (a) and �F (b) for the geometries for Figs. 4(a) and
4(b) we will vary the angles ϕ (orientation of the crystal) and
α (orientation of the local moment)

�F (a) = 1

2

[
�F (0, 0) + �F

(π

2
, π

)]
,

�F (b) = �F
(π

4
,
π

2

)
. (A2)

Here, we use the angles ϕ and α in �F (ϕ, α) to represent k̂
and L in the geometry of Fig. 6. Using the relations between
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the dipole operators T̂ x, T̂ y, and T̂ z,

T + = −T x − iT y,

T − = −T x + iT y, T 0 = T z,

we express the dipole operators T ±
x̂ for the circularly polarized

light propagating along the x-axis, helicity basis for k̂ ‖ x,
using dipole operators in the helicity basis for k̂ ‖ z [52]. We
drop the ẑ subscript in T ±

ẑ for sake of readability.

T ±
x̂ = −T y ∓ iT z = i

(
T + − T −

2
± T 0

)
.

The expression (A1) for XMCD then takes the form

�F (ϕ, α) =
∑

f

〈 fϕ,α|T̂ + − T̂ −|iϕ,α〉〈iϕ,α|T̂ 0| fϕ,α〉

× δ(ω − E f i ) + c.c.

≡ (T + − T −)T 0 + c.c. (A3)

Here, the polarization of the dipole operators is taken with
respect to the z axis. We will use the shorthand notation for
the matrix elements of the dipole operators shown on the third
line from now on. In the absence of the valence SOC and
core-valence multipole interaction, the excitation energy does
not depend on the orientation of L, i.e., on the angle α. The
eigenstates for arbitrary angles ϕ and α can be obtained from
those for ϕ = 0 and α = 0 by a joint z-axis rotation C(ϕ, α)
of the core spin, core orbitals, and valence orbitals by angle ϕ,
and rotation of the valence spin by angle α, which transform
the operators

C(ϕ, α) : dms → eimϕeiσαdmσ , pmσ → ei(m+σ )ϕ pmσ ,

where m is the orbital and σ = ± 1
2 the spin projection along

the z axis. Next, we use

〈C(ϕ, α) f |T̂ |C(ϕ, α)i〉 = 〈 f |C−1(ϕ, α)T̂C(ϕ, α)|i〉
to transform the dipole operators instead of wave functions in
(A3). Using the definition of the dipole operators

T̂ ± ≡ T̂ ±
↑ + T̂ ±

↓ =
∑
m,σ

	±md̂†
m±1σ p̂mσ ,

T̂ 0 ≡ T̂ 0
↑ + T̂ 0

↓ =
∑
m,σ

	(0)
m d̂†

mσ p̂mσ ,

we arrive at their transformation properties

C−1(ϕ, α)T̂ +
σ C(ϕ, α) = eiϕe−iσ (ϕ−α)T̂ +

σ ,

C−1(ϕ, α)T̂ −
σ C(ϕ, α) = e−iϕe−iσ (ϕ−α)T̂ −

σ ,

C−1(ϕ, α)T̂ 0
σ C(ϕ, α) = e−iσ (ϕ−α)T̂ 0

σ . (A4)

Substituting these into (A3) we get the formula for the XMCD
spectra for general angles ϕ and α,

�F (ϕ, α) = (eiϕT +
↑ − e−iϕT −

↑ )T 0
↑

+ (eiϕT +
↓ − e−iϕT −

↓ )T 0
↓

+ (eiαT +
↑ − e−i(2ϕ−α)T −

↑ )T 0
↓

+ (ei(2ϕ−α)T +
↓ − e−iαT −

↓ )T 0
↑ + c.c.

= (eiαT +
↑ − e−i(2ϕ−α)T −

↑ )T 0
↓

+ (ei(2ϕ−α)T +
↓ − e−iαT −

↓ )T 0
↑ + c.c. (A5)

The ↑↑ and ↓↓ terms do not change sign under the magnetic
moment reversal α → α + π and thus must vanish the expres-
sion for XMCD.

Now we can evaluate the XMCD spectra for the orienta-
tions in (A2):

�F (0, 0) = (T +
↑ − T −

↑ )T 0
↓ + (T +

↓ − T −
↓ )T 0

↑ + c.c.,

�F
(π

2
, π

)
= (−T +

↑ − T −
↑ )T 0

↓ + (T +
↓ + T −

↓ )T 0
↑ + c.c.,

�F
(π

4
,
π

2

)
= (iT +

↑ − T −
↑ )T 0

↓ + (T +
↓ + iT −

↓ )T 0
↑ + c.c.

(A6)

Note that this is not enough to guarantee �F (a) = �F (b). We
use the fact that in the rutile structure there are twofold rota-
tion axes parallel to [110] and [11̄0], i.e., ϕ = 0 and ϕ = π

2 . In
Ref. [28] we have shown that such rotation symmetry implies
a vanishing of XMCD for the magnetic moment perpendicular
to the x-ray propagation vector, i.e.,

�F
(

0,
π

2

)
= (iT +

↑ − iT −
↑ )T 0

↓ + (−iT +
↓ + iT −

↓ )T 0
↑

+ c.c. = 0,

�F
(π

2
,
π

2

)
= (iT +

↑ + iT −
↑ )T 0

↓ + (iT +
↓ + iT −

↓ )T 0
↑ + c.c.=0.

Adding the two lines we get

iT +
↑ T 0

↓ + iT −
↓ T 0

↑ + c.c. = 0, (A7)

and substituting (A7) into the third line of (A6) concludes the
proof:

1

2

[
�F (0, 0) + �F

(π

2
, π

)]
= −T −

↑ T 0
↓ + T +

↓ T 0
↑ + c.c.

= �F
(π

4
,
π

2

)
.
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