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Static and dynamic properties of noncollinear magnetized ferromagnetic films
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The dynamic matrix method was employed to perform theoretical calculations for investigating both static and
dynamic characteristics of thick ferromagnetic films. This approach considers situations where a noncollinear
equilibrium magnetization exists along the thickness due to a thickness-dependent uniaxial anisotropy and inter-
facial interactions in a synthetic antiferromagnet. In the former scenario, the study exposes a correlation between
noncollinear static magnetization and a nonmonotonic dependence of ferromagnetic resonance frequency, where
a frequency decrease is observed at low fields in the unsaturated regime. Regarding the synthetic antiferromagnet
structure, the research demonstrates noncoherent magnetization rotation in the spin-flop regime, with twisted
magnetization states influencing the critical and nucleation fields that define the spin-flop region. The results of
the investigation were compared to the macrospin approach, where the magnetization is assumed to be uniform
along the thickness. The study suggests that the contribution of noncollinear magnetic moments may mimic the
role of the biquadratic interaction in the macrospin model, implying that such a biquadratic term may be over-
estimated in coupled ferromagnetic films with thicknesses exceeding the material’s intrinsic exchange length.
Finally, the model was compared with experimental data obtained from a Py/Ir/Py synthetic antiferromagnet,
demonstrating that the theoretical consideration of a twisting equilibrium state of the magnetization precisely
reproduces the observed dynamic and static properties of the nanostructure.
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I. INTRODUCTION

The static and dynamic properties of nanostructured
magnetic systems have been widely studied due to their fun-
damental physics and technological application perspectives
[1–4]. These structures can be classified into categories based
mainly on their shape, composition, and magnetic proper-
ties. According to the shape, the magnetic nanostructures
can be classified into magnetic nanoparticles [5–7], magnetic
nanowires and nanotubes [8–12], ultrathin magnetic films
[13,14], magnetic quantum dots [15,16], magnonic crystals
[17–22], and magnetic superlattices [23–25], among oth-
ers. Due to the complexity of the magnetization distribution
and geometry of the nanomagnets, their physical properties
have been studied mainly using computational tools [26–29].
Nonetheless, analytical or semianalytical theories are feasi-
ble in cases where the geometry of the nanostructure has
some symmetries. For instance, magnetic nanotubes, mag-
netic stripes, and multilayers can be analytically modeled
[9,30–36]. Similarly, spin textures such as domain walls and
magnetic skyrmions can also be comprehensively investigated
using analytical methods [37–41], enabling a better under-
standing of the underlying physics governing these magnetic
systems.

The physical properties of small nanomagnets have been
theoretically addressed utilizing the macrospin model [42].
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In this model, the magnetic moments of the structure are
considered as a single macroscopic entity with a fixed mag-
nitude and orientation, which is only affected by an effective
field, which includes contributions from the external magnetic
field, exchange interactions, dipole-dipole interactions, and
anisotropies. Nevertheless, such a model has some limitations.
For instance, it does not account for the impact of thermal
fluctuations on the particle’s magnetic moment, which can
alter its magnetic characteristics [43]. Moreover, the model
does not consider the effects of surface interactions, which
can be significant in certain types of nanostructures [44,45].
As the thickness of the nanostructure increases, for instance,
there is a notable difference in the magnetic behavior of the
moments at the interfaces compared to that of the bulk region
due to variations in exchange coupling. Additionally, the sys-
tem tries to avoid the formation of surface magnetic charges.
As a result, a change in the equilibrium magnetization across
the thickness is anticipated, rendering the macrospin model
invalid. The variation in the equilibrium magnetization can be
even further enlarged when nonuniform magnetic properties
across the thickness are taken into account [46,47] or when the
magnetic nanostructure exhibits significant interfacial inter-
actions, such as surface anisotropies, Dzyaloshinskii-Moriya
coupling, or the interlayer exchange interaction that is com-
monly observed in magnetic multilayers [48,49].

In films exhibiting a magnetic gradient across their thick-
ness, the internal moments experience varying local fields,
resulting in a change in the resonance frequency [46,50].
Moreover, when an external field is applied along the hard
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axis, a twisting of the equilibrium magnetization is antici-
pated, which would be more prominent in thick films. Even a
minor deviation from the equilibrium magnetization could re-
sult in a nonuniform equilibrium state that alters the frequency
of magnetization excitations. Therefore, such nonuniform
conditions must be taken into account to characterize the
magnetic system accurately. Surface effects are a particular
case of the magnetization graduation, where the properties of
the systems suddenly change at the interfaces. In magnetic
multilayers, an interfacial bilinear exchange interaction has
been considered where, depending on the thickness of the
nonmagnetic spacer that separates the ferromagnetic (FM)
layers, oscillations between antiferromagnetic and ferromag-
netic states have been observed [51–54]. Despite the bilinear
interlayer exchange interaction, a biquadratic exchange has
been phenomenologically introduced to explain the hystere-
sis curves in Fe/Cr/Fe trilayers [55,56]. Such a biquadratic
term leads to a perpendicular orientation between neighboring
magnetizations, resulting in an energetically favorable align-
ment at angles other than 0 or 180 degrees relative to each
other [57,58]. Biquadratic interlayer exchange can play an
essential role in a variety of magnetic systems, such as mul-
tilayered magnetic materials and two-dimensional magnets
[59]. Although the influence of interfacial exchange interac-
tions on thick magnetic layers is small, the pinning conditions
caused by these interactions at the interfaces can result in
variations of the equilibrium magnetization across the single-
layer thickness, as previously mentioned. Therefore, it is
essential to consider the equilibrium magnetization that varies
along the thickness to provide an accurate theoretical descrip-
tion of the multilayer system. This factor can have an impact
on both static and dynamic characteristics.

This paper studies the static and dynamic properties of fer-
romagnetic films with noncollinear equilibrium magnetization
across the thickness. The theory that is employed is based
on the dynamic matrix method, which subdivides the film
system into multiple sublayers to account for variations in the
magnetization across the thickness. The study investigates the
equilibrium magnetization states and the ferromagnetic reso-
nance response in a film with a nonuniform anisotropy profile
across the thickness and a synthetic antiferromagnet. In the
latter system, the interfacial interlayer exchange interaction
results in a noncollinear magnetization rotation at low fields,
creating a twisted magnetization state that plays a role similar
to the well-known biquadratic exchange interaction.

II. THEORY

The system under study is shown in Fig. 1. Here, a fer-
romagnetic film with a noncollinear in-plane magnetization
along the film’s normal is considered, where such a rotated
magnetization state can be induced by gradients of some mag-
netic parameter or interfacial effects that break the symmetry
along the film thickness. The dynamic matrix method (DMM)
is used to consider the variation of the magnetization along the
thickness, where the idea is to divide the film into different
sublayers or slabs connected through dipolar and exchange
interactions [46,60]. This theoretical treatment is analogous
to the Hamiltonian-based approach used in Refs. [61,62].
Nevertheless, the results presented here are generalized to

FIG. 1. Magnetic configuration of the ferromagnetic film, where
the in-plane magnetization varies along the normal coordinate, as
shown in the figure. (a) The reference frame (Xn,Yn, Zn) is a local
coordinate system, where Zn points along the equilibrium magnetiza-
tion of the nth sublayer, Xn lies in the film’s plane, and Yn is normal to
the plane. (b) The equilibrium magnetization makes an angle ϕn with
respect to the z axis, which is associated with the reference frame
(x, y, z). In this coordinate system, x is an easy axis and y is normal
to the film’s plane (y = Yn).

consider magnetic graduation, and by using a convergence
test, a continuous film is perfectly reproduced.

The magnetization dynamic of the system is described by
the Landau-Lifshitz (LL) equation of motion [63], which for
the nth sublayer reads

∂t Mn(r, t ) = −γμ0Mn(r, t ) × He
n(r, t ), (1)

where Mn(r, t ) is the magnetization of sublayer n, γ is the
magnitude of the gyromagnetic ratio, and He

n(r, t ) is the ef-
fective field acting on sublayer n. Assuming small deviations
of the magnetization around the equilibrium, both the magne-
tization and the effective field can be written as Mn(r, t ) =
Msn Ẑn + mn(r, t ) and He

n(r, t ) = H e0
Zn

Ẑn + he
n(r, t ), respec-

tively. Here, Msn is the saturation magnetization of the nth
sublayer and H e0

Zn
corresponds to the static Zn component

of the effective field. Vectors mn(r, t ) and he
n(r, t ) are the

dynamic parts of the magnetization and effective field, respec-
tively. By assuming a harmonic time dependence, dynamic
magnetization can be written as mn(r, t ) = mn(r)eiωt (with
ω = 2π f ). Thus, the LL equation becomes

i(ω/γμ0)mXn (y) = −mYn (y)H e0
Zn

+ Msn he
Yn

(y), (2)

i(ω/γμ0)mYn (y) = mXn (y)H e0
Zn

− Msn he
Xn

(y). (3)

In this study, the magnetization’s spatial variation has only
been considered along the normal coordinate y. This consid-
eration is due to the equilibrium texture being examined (refer
to Fig. 1) and the fact that modes with zero wave vector will
be analyzed, such as ferromagnetic resonance modes, where
there is no lateral variation of the magnetization. Equations (2)
and (3) can be written as iωmn(y) = γμ0Ãmn(y), where once
the matrix elements are obtained (see the Appendix), the sys-
tem can be solved as an eigenvalue problem.

Equations (2) and (3) also contain the equilibrium con-
dition H e0

Yn
= H e0

Xn
= 0. The case H e0

Yn
= 0 implicates that the

equilibrium magnetization is in the plane. On the other side,
the in-plane static component of the effective field H e0

Xn
con-

tains the angle ϕn that needs to be found for every sublayer.
Such a component is given by

H e0
Xn

= H sin(ϕH − ϕn) + Hun

2
sin(2ϕn) +

∑
η

HC
n,η, (4)
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where H is the magnitude of the external field, ϕH is the angle
that H makes with the z axis, and Hun is the uniaxial anisotropy
of sublayer n, with x being the easy axis. The connection
between sublayers n and η is established by a coupling field,
denoted as HC

n,η. This coupling field arises from exchange
interactions between the sublayers for a thick ferromagnetic
film partitioned into numerous sublayers. Thus, HC

n,η is

HC
n,η = − JI

dnμ0Msn

sin(ϕn − ϕη )
(
δn+1
η + δn−1

η

)
, (5)

where δ
j
i is the Kronecker delta function (δ j

i = 0 for i �= j
and δ

j
i = 1 for i = j), JI is the intralayer exchange constant,

and dn is the thickness of the nth sublayer, with d = Ndn

the total thickness and N the total number of sublayers. Be-
cause several divisions are required to reach the continuous
variation of the magnetization along the thickness, the results
are analyzed regarding a convergence criterium. Thereby, the
number of divisions is truncated once the convergence of the
result is reached. In addition, as the number of divisions is
significant, it is possible to show that JI = 2Aex/dn [3,46],
where Aex is the exchange constant defined in the continuum
model. It is worth mentioning that the equilibrium magnetiza-
tion can be alternatively determined by solving a differential
equation for the angle ϕn, as demonstrated in previous works
[64,65]. However, such an approach is not suitable for systems
characterized by a gradient in the magnetic properties. In
such cases, the dynamic matrix method proves to be a more
practical and appropriate choice.

The present investigation also focuses on a synthetic an-
tiferromagnet consisting of two ferromagnetic layers with
antiferromagnetically coupled magnetizations. Hence, bi-
linear and biquadratic interlayer exchange interactions are
considered in addition to the intralayer exchange interac-
tion. Thus, the coupling field for a synthetic antiferromagnet
(HCSA

n,η ) is given by

HCSA
n,η = − Jbl

dnμ0Msn

sin(ϕn − ϕη )
(
δα

n δα+1
η + δα+1

n δα
η

)
− Jbq

dnμ0Msn

sin[2(ϕn − ϕη )]
(
δα

n δα+1
η + δα+1

n δα
η

)
+HC

n,η

(
1 − δα

n δα+1
η − δα+1

n δα
η

)
. (6)

Here, Jbl is the bilinear exchange constant, while Jbq is
the biquadratic strength. Moreover, sublayers α and α + 1 are
located at the interface that separates the FM layers. Thus,
the bilinear and biquadratic interactions only exist at such an
interface. Note that in the last term of Eq. (6), the δ functions
are included to delete the term HC

n,η when the coupling is given
between sublayers α and α + 1.

III. RESULTS AND DISCUSSION

In the following discussion, the parameters of the cobalt
material are used as a reference. Namely, the saturation mag-
netization is Ms = 1200 kA/m and the exchange constant is
Aex = 18 pJ/m (exchange length 
ex = 4.46 nm). Regarding
the application of the DMM, a total of N = 40 divisions is
used to guarantee the convergence of the results. Two ex-
emplary systems will be studied. The first corresponds to a

single layer with nonhomogeneous uniaxial anisotropy, where
different anisotropy profiles are considered. The second sys-
tem is a typical synthetic antiferromagnet structure, where the
antiparallel alignment of the magnetizations is promoted by an
interlayer exchange interaction with Jbl < 0. Both systems are
consistent with a noncollinear magnetization rotation when an
external field is applied along the film plane. In Fig. 2, dif-
ferent anisotropy profiles are considered for an FM film with
d = 40 nm. For comparison, the same average anisotropy
has been considered in all cases (〈μ0Hu〉 = 100 mT). The
easy axis is given by x, while the external field is applied
along z (ϕH = 0). Figures 2(a)–2(c) depict the case of a uni-
form anisotropy profile (case 1). Figure 2(b) shows a uniform
(across the thickness) magnetization reorientation as an exter-
nal field along the hard axis is increased. Figure 2(c) illustrates
the two ferromagnetic low-frequency resonance modes within
the frequency range of 0–30 GHz, with higher-order modes
being excited at frequencies beyond this range, although they
are not presented in the figure. The solid line represents the
uniform in-phase mode, while the dashed line corresponds to
the first excited out-of-phase mode. Here, it is observed that
the frequency becomes zero at the nucleation field (μ0HN), de-
fined as the field in which the first deviation from a uniformly
magnetized state appears. Case 2 shows an example of a
nonuniform anisotropy, as illustrated in Figs. 2(d)–2(f), where
the anisotropy parameter has a gradual variation across the
film thickness. The magnetization equilibrium angle is shown
in Fig. 2(e), where a clear twisted state of the magnetization is
observed before the saturation at μ0HN ≈ 122 mT, as shown
in Fig. 2(f)]. The magnetic moments with low-local anisotropy
[darker points in Fig. 2(e)] follow the external field first and
then follow the rest of the magnetization. The frequency-
field dependence of the modes does not notably change [see
Figs. 2(c) and 2(f)], but the nucleation field increases due
to the zones with high anisotropy. Finally, an interfacial-like
anisotropy profile is considered in case 3, where the effective
anisotropy field is localized at the surface of the FM layer,
as shown in Fig. 2(g). Here, the noncollinear magnetization
state is enhanced due to the strong nonhomogeneity of the
anisotropy, as shown in Fig. 2(h). The magnitude of the nu-
cleation field significantly exceeds that of the previous cases,
being more than three times larger than in the uniform sce-
nario. As the thickness decreases, the difference between the
nucleation fields for uniform and nonuniform anisotropies is
reduced because the exchange interaction dominates, forcing
the magnetic moments to rotate coherently. This behavior is
evidenced in the inset of Fig. 2(g), where the nucleation field
(calculated for an anisotropy profile of case 3) is shown as
a function of the thickness. On the other side, the frequency
of the low-frequency mode is reduced at small fields [see
solid line in Fig. 2(i)], reaching a maximum at around μ0H =
200 mT. This dynamic behavior can be explained through the
calculations of the magnetization profiles that are represented
by the in-plane dynamic magnetization component mXn , as
shown in the insets of Fig. 2(i). At small fields, the magne-
tization oscillates with a large amplitude on the zones with
reduced anisotropy; therefore, it implies that the frequency of
such modes is low due to the reduction of the local internal
field. As the external field increases, the oscillation ampli-
tude gradually increases in the high anisotropy region [lighter
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FIG. 2. Static and dynamic properties of a ferromagnetic film with a nonhomogeneous anisotropy profile evaluated for d = 40 nm. In
(a)–(c), a constant anisotropy is considered, while in (d)–(f), a modulation in the whole bulk is assumed. An interfacial-like anisotropy profile
is used in (g)–(i). The top panels show the anisotropy profile, the central panels depict the magnetization’s in-plane equilibrium angle, and
the lower panels show the ferromagnetic resonance frequency f as a function of the external field. The darker (lighter) points in (e) and (h)
correspond to the magnetization located at the zones with low (high) anisotropy. The inset in (g) illustrates the nucleation field μ0HN as a
function of the film thickness. The insets in (i) correspond to the in-plane dynamic magnetization components evaluated at μ0H = 10, 140,
and 250 mT. In plots (c), (f), and (i), the solid line represents the in-phase uniform mode, while the dashed line corresponds to the first excited
out-of-phase mode.

lines in the insets of Fig. 2(i)], thus increasing the frequency.
However, as the external field increases further, the frequency
reduces again because the amplitude of the oscillations be-
comes significant in the zones with high anisotropy, where, in
turn, the magnetic moments are not fully oriented along the
external field direction [66].

Now, the case of a synthetic antiferromagnet is addressed.
Here, the interfacial nature of the interlayer exchange in-
teraction is responsible for the noncoherent rotation of the
magnetization under the application of an external field.
Figure 3 shows three cases where the thicknesses of the
individual layers have been varied for a symmetric antifer-
romagnet (d1 = d2), while an interlayer interaction strength
(bilinear exchange term) of Jbl = −1 mJ/m2 is used to re-
main the antiferromagnetic state stable at a zero applied field,
μ0H = 0. An in-plane uniaxial anisotropy of μ0Hu = 100 mT
is implemented to the bottom layer, resulting in the magne-
tization of this layer remaining parallel to the external field
at small fields [see inset in Fig. 3(a)]. As expected, three

distinctive regions are obtained by applying an external field
along the easy axis (ϕH = 90◦). In small fields, the magne-
tizations remain antiparallel. Then, at a critical field μ0Hc,
the antiferromagnetic state becomes unstable and the mag-
netizations begin to rotate. This intermediate state is called
a spin-flop regime [67,68], which is an equilibrium configu-
ration where the magnetizations are neither antiparallel nor
parallel [see Fig. 3(e)]. As the external field increases further,
the saturated state is reached at μ0H = μ0HN, where μ0HN

is the nucleation field defined above. According to the model
presented in this paper, the magnetic moments do not evolve
coherently during the rotation in the spin-flop zone; instead,
they describe a noncoherent rotation caused by the interfacial
interlayer exchange interaction that couples the magnetization
more strongly in the nonmagnetic/ferromagnetic interfaces.
The magnetization angles at the bottom and top of the film
(y = 0 and y = 40 nm, respectively) are closer to the external-
field angle ϕH = 90◦. This behavior is observed in the inset of
Fig. 3(b) for the case d1 = d2 = 20 nm, where the equilibrium
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FIG. 3. Hysteresis loop, equilibrium angles, and ferromagnetic resonance frequency of synthetic antiferromagnetic nanostructures. In all
cases, the external field is applied along the easy axis x (ϕH = 90◦). (a)–(c), (d)–(f), and (g)–(i) correspond to the cases d1 = d2 = 20 nm,
d1 = d2 = 10 nm, and d1 = d2 = 2 nm, respectively. In (b), (e), and (h), the lighter color in the curves represents the magnetic moments at
the nonmagnetic/ferromagnetic interfaces, while the darker points correspond to the magnetization at the top/bottom of the films. The inset in
(b) shows the twisting equilibrium angles of both layers as a function of the normal coordinate y evaluated at μ0H = 60 mT. Circles correspond
to the bottom layer, while squares represent the equilibrium angle of the top layer. The spin-flop regime is highlighted in (e). In plots (c), (f),
and (i), the two low-frequency modes, also referred to as optic and acoustic modes, are illustrated as a function of the external field.

angles are evaluated at μ0H = 60 mT. The equilibrium angles
of the magnetic moments at the interfaces are described by the
lighter curves in Fig. 3(b), while the darker points correspond
to the magnetization angles at the top and bottom of the
film. As the thicknesses of the ferromagnetic layers decrease,
the magnetization rotation becomes more coherent, which is
caused by the intralayer exchange energy, as mentioned above
[see Figs. 3(e) and 3(h)]. In Figs. 3(c), 3(f), and 3(i), two
low-frequency modes, known as the optic and acoustic modes,
are depicted as a function of the external magnetic field. The
assignment of optic and acoustic characteristics is based on
the phase of magnetization oscillations, which undergoes a
change within the spin-flop zone, as detailed in Ref. [68].

Now, the model based on the dynamic matrix method
(DMM) is compared with the macrospin (MCS) model, which
assumes that the magnetization is uniform in the whole thick-
ness of the magnetic material. The case d1 = d2 = 20 nm
is taken as an example to analyze both models in Fig. 4.
The first quadrant of the hysteresis loop at positive fields is
shown in Fig. 4(a), where the DMM model that considers
noncoherent magnetization (solid orange circles) is compared

with the macrospin approach (blue dashed lines). As ob-
served, both models do not match perfectly, which is seen
by the mismatch between the fields μ0Hc and μ0HN. Never-
theless, including the well-known biquadratic exchange term,
described by the constant Jbq, into the MCS model (see the
Appendix), it is possible to reach the results based on the
noncoherent approach described in this paper. The compar-
ison between MCS + Jbq (solid black line) and DMM is
depicted in Fig. 4(a), where the inset of this figure shows
that the dynamic response (frequency vs external field) also
matches under the inclusion of Jbq. Of course, the requirement
of a good agreement between the different models implicates
that in the MCS + Jbq approach, the bilinear exchange con-
stant Jbl must be modified, while in the DMM, it is fixed
to be Jbl = −1 mJ/m2. Figure 4(b) shows the critical and
nucleation fields (μ0Hc and μ0HN, respectively) as a func-
tion of the layer thickness di, where di = d1 = d2. Here, the
discrepancies between the MCS and DMM models are ob-
served for the different thicknesses, while the case MCS +
Jbq matches perfectly under a modification of the interlayer
exchange constant and the inclusion of Jbq, as shown in the
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FIG. 4. (a) The first quadrant of the hysteresis loop for the case
d1 = d2 = 10 nm. Orange markers show the dynamic matrix method
(DMM) results, while the dashed (solid) line corresponds to the
macrospin (macrospin plus Jbq) model. The inset in (a) depicts the
ferromagnetic resonance frequency as a function of the external field.
(b) Critical and nucleation fields as a function of the external field,
where the DMM, MCS, and MCS + Jbq models are compared. The
matching between DMM and MCS + Jbq is reached by modifying
the interlayer exchange constant Jbl and including Jbq, as shown in
the inset in (b). For the DMM case, the interlayer exchange constant
is fixed as Jbl = −1 mJ/m2.

inset of Fig. 4(b). An essential remark regarding these re-
sults is that the effects induced by the noncoherent rotation
of the magnetization can be captured into the MCS model
by including a biquadratic interaction. This implies that the
contribution of the biquadratic term, typically associated with
interface morphology characteristics, might be overestimated
in the case of thick ferromagnetic films, where magnetization
twisted states are feasible. In the context of thin or ultra-
thin film bilayers, the emergence of distinctive twisted states
within the equilibrium magnetization is precluded by the
intralayer exchange coupling. Consequently, the macrospin
model effectively captures both the static and dynamic prop-
erties of these synthetic antiferromagnets [55,56,69–73]. In
addition, a rotated state is also dependent on the strength of
the interlayer exchange constant Jbl—a parameter intricately
linked to spacer thickness. Namely, if Jbl is small, the rotated
states are absent even for thick films, making the macrospin
model again appropriate for describing the system’s
behavior.

FIG. 5. (a) Frequency as a function of the external field. Color
code represents the ferromagnetic resonance (FMR) signal in arbi-
trary units. The hysteresis loop is shown in the inset, where dots
represent the measurements, and the lines are obtained from the
DMM model. (b) Markers (dots and squares) and lines correspond
to the calculated results using the MCS and DMM models, respec-
tively. The inset in (b) illustrates the frequency range close to the
avoided-crossing gap, which appears due to the thickness asymmetry
of the stack. The parameters that are utilized for the calculations are
described in the text.

Finally, a comparison is realized between the theoretical
approach and the static and dynamic measurements conducted
on a synthetic antiferromagnet consisting of two ferromag-
netic layers made of permalloy (Py) separated by an iridium
(Ir) spacer. The thicknesses of the Py films are 40 and 30 nm,
while the Ir thickness is 0.4 nm [Py(40)/Ir(0.4)/Py(30)],
respectively. Due to the nature of the Ir spacer, an antifer-
romagnetic state is induced between the FM layers (Jbl < 0)
[74]. The gray color code in Fig. 5(a) illustrates the ex-
perimental results for the frequency as a function of the
external field, f (H ), while the inset depicts the hysteresis
loop. Both measurements [ f (H ) and the hysteresis loop] are
compared with the model presented in this paper [lines in
Fig. 5(b)], where one can observe that the model reproduces
the data perfectly using the following parameters: MPy

s =
791 kA/m, APy

ex = 9 pJ/m, Jbl = −0.6 mJ/m2, and Jbq =
−0.06 mJ/m2. In contrast, the macrospin model (MCS) is
not able to reproduce the data quantitatively in the range of
small fields (H < HN). Indeed, the frequency of the high-
frequency mode is inconsistent with the experiments (see
squares at μ0H < 80 mT). Only a qualitative agreement is
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reached in this case, where the fitted parameters are Jbl =
−0.7 mJ/m2 and Jbq = −0.5 mJ/m2 (MPy

s and APy
ex are the

same as previously used). The inset in Fig. 5(a) illustrates
the frequency gap resulting from avoided crossing, an effect
attributed to the thickness asymmetry of the synthetic anti-
ferromagnet [72,73,75]. While both models exhibit this mode
coupling, the observation occurs at distinct frequency and
wave-vector ranges for each. Comparing the two theoretical
models makes it apparent that the MCS model necessitates
a substantial value of the biquadratic exchange to replicate
the data qualitatively. Indeed, the MCS approach employs
a value of Jbq that is approximately nine times greater than
that used in the DMM. Therefore, the correct calculations of
the rotated ground state significantly change the magnitude
of the biquadratic exchange constant. This observation car-
ries significant implications, suggesting that the biquadratic
term could have been inaccurately treated and derived in
prior studies of thick films where the equilibrium magneti-
zation configuration displays a degree of torsion along the
thickness. Incorporating the rotated magnetization configu-
ration into the model substantially reduces the biquadratic
interaction’s strength, aligning with its interfacial nature. A
considerable magnitude of the biquadratic exchange constant
is found in the literature when the coupled layers have a
thickness exceeding the material’s intrinsic exchange length
(
ex = √

2Aex/μ0M2
s ) [76–81], where the macrospin model

has been used to reproduce the measurements. In Ref. [78],
for instance, the f (H ) curve is similar to the one illus-
trated in Fig. 5 for a sample [Py(30)/Ru(0.49)/Py(30)] (see
Fig. 1(a) of Ref. [78]), where the MCS model requires a
biquadratic constant of Jbq = −0.514 mJ/m2.

A further noteworthy observation depicted in Fig. 5 is that
both models (MCS and DMM) exhibit exceptional agree-
ment with the measurements in the saturated region (μ0H >

μ0HN ≈ 122 mT), despite employing highly distinct param-
eters for the interfacial exchange interactions. Hence, based
on the findings of this study, for accurate magnetic charac-
terization of the nanostructure, it is necessary to examine the
regions preceding (μ0H < μ0HN) and succeeding (μ0H >

μ0HN) the point of saturation. This analysis may not be crucial
in thin films with minimal magnetic texture throughout their
thickness. However, the analysis of the rotated states is funda-
mental for thick ferromagnetic films that exhibit interfacial or
even graded magnetic properties.

IV. CONCLUSIONS

The study investigated the static and dynamic properties
of noncollinear magnetization states in two nanostructures:
a ferromagnetic film with nonuniform anisotropy along its
thickness and a synthetic antiferromagnet. In both cases, it is
found that the equilibrium magnetization develops a twisted
state along the thickness under the application of an external
field. This twisted configuration affects the resonance fre-
quency of the system and the nucleation field. In the case
of the synthetic antiferromagnet composed of thick ferro-
magnetic films, a rotated equilibrium magnetization state is
observed that mimics the role of the biquadratic interaction.
The findings suggest that the biquadratic exchange interac-
tion in thick coupled films can be easily overestimated if

the magnetization texture formed along the thickness is not
considered. These results have significant implications from
both a fundamental and practical perspective and provide a
better understanding of the static and dynamic properties of
thick ferromagnetic films.
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APPENDIX: MATRIX ELEMENTS

The components of Ã are determined by the energetic
interactions present in the magnetic nanostructure. The ener-
getic terms include Zeeman, demagnetizing, in-plane uniaxial
anisotropy, and interlayer exchange terms. In this work, the
interlayer terms arise only in the case of a synthetic an-
tiferromagnet, where the bilinear and biquadratic exchange
interactions are accounted for. The energy density associated
with the bilinear and biquadratic terms is expressed as

εi j = −Jbl
Mi · M j

Msi Ms j

− Jbq

(
Mi · M j

Msi Ms j

)2

.

Here, i and j represent the sublayers at the interface of
the two FM films (denoted as α and α + 1). When Jbl is the
dominant term and its value is negative, the magnetization of
the films will be antiparallel at zero external field. Conversely,
if Jbq is the dominant term and also negative, the magneti-
zations of the layers will tend to be perpendicular to each
other. The effective interlayer exchange fields acting on the
ith layer can be obtained from Hex

i = −(μ0di )−1∂Miεi j . In the
same way, the effective fields associated with the Zeeman,
demagnetizing, and uniaxial anisotropy can be obtained (see
details in Ref. [34]).

By considering the dynamic effective field components as

he
ξn

(r) =
∑
ξ ′

∑
η

ξn,ξ ′
η
mξ ′

η
,

with ξn = Xn,Yn, the matrix elements of Ã can be derived as
follows:

AYnYη
=

{
MsnXn,Yη

, n �= η

MsnXn,Yn , n = η,

AXnXη
=

{−MsnYn,Xη
, n �= η

−MsnYn,Xn , n = η,

AYnXη
=

{
MsnXn,Xη

, n �= η

MsnXn,Xn − H e0
Zn

, n = η,

and

AXnYη
=

{
−MsnYn,Yη

, n �= η

−MsnYn,Yn + H e0
Zn

, n = η.
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The ξn,ξ ′
η

terms are Xn,Yn = Yn,Xn = Xn,Yη
= Yn,Xη

= 0,
Yn,Yn = −1, and

Xn,Xn =
∑

η

2Jbq

dnμ0Msn

sin2(ϕn − ϕη )
(
δα

n δα+1
η + δα+1

n δα
η

)

+ Hun

Msn

cos(ϕn)2,

Xn,Xη
= JI cos(ϕn − ϕη )

dnμ0Msn Msη

(
δn+1
η + δn−1

η

)

+Jbl cos(ϕn − ϕη )

dnμ0Msn Msη

(
δα

n δα+1
η + δα+1

n δα
η

)

+Jbq cos[2(ϕn − ϕη )]

dnμ0Msn Msη

(
δα

n δα+1
η + δα+1

n δα
η

)
,

and

Yn,Yη
= JI

dnμ0Msn Msη

(
δn+1
η + δn−1

η

)

+ Jbl

dnμ0Msn Msη

(
δα

n δα+1
η + δα+1

n δα
η

)

+2Jbq cos(ϕn − ϕη )

dnμ0Msn Msη

(
δα

n δα+1
η + δα+1

n δα
η

)
.

In the previous equations, Hun is the uniaxial anisotropy
field, where the easy axis corresponds to x. In addition, it
should be noted that JI is null at the layers α and α + 1, where
the interlayer terms (bilinear and biquadratic) are present.
Note that AXnYn = Msn + H e0

Zn
, where Msn accounts for the

contribution of the demagnetizing field resulting from surface
charges at the top and bottom of the sublayers, while the term

H e0
Zn

corresponds to the Zn component of the effective static
field and is defined as follows:

H e0
Zn

= H cos(ϕH − ϕn) + Hun sin2 ϕn

+
∑

η

JI cos(ϕn − ϕη )

dnμ0Msn

(
δn+1
η + δn−1

η

)

+
∑

η

Jbl cos(ϕn − ϕη )

dnμ0Msn

(
δα

n δα+1
η + δα+1

n δα
η

)

+
∑

η

2Jbq cos2(ϕn − ϕη )

dnμ0Msn

(
δα

n δα+1
η + δα+1

n δα
η

)
.

It is important to note that the interactions between sublay-
ers are exclusively of an exchange nature. When examining
the system from a static point of view, and assuming a ho-
mogenous magnetization in the x and z directions, the dipolar
interaction between sublayers becomes negligible due to the
in-plane configuration of the twisted equilibrium magneti-
zation. This implies that Mi · n̂ = 0 and ∇ · Mi = ∂yMy = 0
(since My = 0) for the surface and volumetric charges, re-
spectively. Here, n̂ represents the normal direction and My

corresponds to the static normal component of the equilib-
rium magnetization. From a dynamic perspective, similar
considerations apply. Within each ferromagnetic sublayer,
magnetization is uniform, primarily because the FMR mode
with a zero wave vector is analyzed. Consequently, there are
no volumetric charges capable of inducing dipolar interactions
between sublayers. In terms of dynamic surface charges, the
uniformity of magnetization within each sublayer results in
identical magnetic surface charges at both the top and bottom
of the sublayer. As a result, beyond the sublayer boundaries,
there are no dynamic stray fields induced by these surface
magnetic charges, yielding a zero field.
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