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Locality bounds for quantum dynamics at low energy

Andrew Osborne ,* Chao Yin ,† and Andrew Lucas‡

Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder CO 80309, USA

(Received 17 November 2023; revised 12 February 2024; accepted 5 March 2024; published 26 March 2024)

We discuss the generic slowing down of quantum dynamics in low energy density states of spatially local
Hamiltonians. Beginning with quantum walks of a single particle, we prove that for certain classes of Hamiltoni-
ans (deformations of lattice-regularized H ∝ p2k), the “butterfly velocity” of particle motion at low energies has
an upper bound that must scale as E (2k−1)/2k , as expected from dimensional analysis. We generalize these results
to obtain bounds on the typical velocities of particles in many-body systems with repulsive interactions, where
for certain families of Hubbard-like models we obtain similar scaling.
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I. INTRODUCTION

In classical statistical mechanics, the slowdown of the
dynamics of particles at any finite temperature is well under-
stood. The Maxwell-Boltzmann distribution tells us that the
probability that any one particle moves very fast gets larger as
temperature increases. As an explicit example, consider

H =
N∑

i=1

p2
i

2m
+

∑
i< j

V (xi − x j ) (1.1)

with some repulsive interactions V � 0. Let us ask about
the behavior of this system in a state drawn from the Gibbs
ensemble, where the probability density of seeing the system
in configuration (xi, pi ) is given by ρ = Z−1e−βH (x,p), where
Z (the partition function) is an overall normalization constant.
If V = 0, the typical momentum squared 〈p2〉 ∼ T vrms ∼√

T . Even in the presence of V > 0, however, the dynamics
necessarily slows down at sufficiently low temperature: the
probability measure on phase space becomes more and more
concentrated at low T , and on the momenta phase space coor-
dinates pi, we are more and more likely to be found close to
pi = 0. This is despite the fact that, in principle, with energy
conserving dynamics, a finite fraction of the total energy could
be pushed into the kinetic energy of particle one. Such a
configuration is allowed in phase space, yet the probability
of finding this is exponentially small with N . In quantum
mechanics, we could similarly argue that the probability at
any one fixed time, the probability for one particle to have
very large kinetic energy, is small.

However, it is more challenging to prove that information
cannot propagate with faster velocities, because information
may spread through correlations, which in turn are “propa-
gated” due to the rare fast particles in the system. It has been a
mathematical challenge for a long time to confirm the classical

*andrew.osborne-1@colorado.edu
†chao.yin@colorado.edu
‡andrew.j.lucas@colorado.edu

intuition that physics in low energy states is “slower” than
high energy states in typical systems. We intuitively expect
this to be true for most systems, except those with (emergent)
Lorentz invariance, and those with a Fermi surface. Yet as
far as we can tell, the only known rigorous results along
these lines, capable of proving that velocities vanish as energy
vanishes, are for single particle problems, perhaps obeying
nonlinear Schrödinger equations [1–7]. And even for a single
particle, most results are in the context of the textbook nonrel-
ativistic Schrödinger equation, and do not consider dynamics
on lattices or with more nontrivial kinetic energies.

One mathematically rigorous result on the slowdown of
dynamics at low energies is obtained in [8]; however, their
results do not in general guarantee that velocities must vanish
at low temperature, even in models where on physical grounds
this is anticipated. Indeed, there are nonrigorous calculations
[9,10], using gauge-gravity duality and/or quantum field the-
ory, which show that in a many-particle theory with dynamical
critical exponent z (i.e., the relative scalings of time t and
space x is t ∼ xz), the emergent velocity scale for low tem-
perature dynamics is

vB ∼ T 1−1/z. (1.2)

Here vB is called the butterfly velocity, and is usually mea-
sured using out-of-time-ordered correlation functions. From
our perspective, these correlators intuitively bound the growth
of operators and the spreading of quantum information within
the low energy subspace. (1.6) can be intuitively understood
as follows. Consider a single-particle theory with energy-
momentum dispersion relation

E ∼ pz. (1.3)

A particle in a system at temperature T has energy E ∼ T , but
it spreads out on a scale of length ξ ∼ p−1. By dimensional
analysis, if pz ∼ T , then p ∼ T

1
z , so we expect

vB � T ξ ∼ T 1− 1
z . (1.4)

This intuition and conjecture were originally provided by
[9,10]. Yet another intuitive argument is that information

2469-9950/2024/109(9)/094310(8) 094310-1 ©2024 American Physical Society

https://orcid.org/0000-0003-4386-5947
https://orcid.org/0000-0003-3379-310X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.094310&domain=pdf&date_stamp=2024-03-26
https://doi.org/10.1103/PhysRevB.109.094310


ANDREW OSBORNE, CHAO YIN, AND ANDREW LUCAS PHYSICAL REVIEW B 109, 094310 (2024)

should travel at the group velocity

vg ∼ pz−1 ∼ T 1− 1
z . (1.5)

Most rigorous results about the spreading of quantum
information in many-body systems take the form of Lieb-
Robinson bounds [11–13]. These bounds apply to all quantum
states, and therefore cannot capture the slowdown of dynam-
ics at low energies; see [14] for a recent review. Despite
much progress in generalizing Lieb-Robinson bounds in re-
cent years, few of the techniques explain how dynamics can
slow down in low energy or finite density states.

In this paper, we study the dynamics of a single particle
in the low energy subspace of single-particle—and certain
multiparticle—problems. This simplified setting is meant to
capture the essence of the low temperature Gibbs ensemble,
but it is not equivalent to a mathematical proof of slowdown
at low temperature. Still, in this drastically simplified setting,
we prove that the (typical) particle cannot move faster than an
effective velocity which scales as

vB ∼ E1−1/z, (1.6)

where E denotes the energy in the single-particle problem,
or the average energy per particle in the restricted class of
many-body problems that we study. Intuitively, E plays the
same role as temperature T in the conjectured bounds de-
scribed previously. Our main goal is to emphasize that, at least
in certain settings, the techniques developed originally in the
mathematics literature to study single-particle dynamics [1–4]
may be relevant for many-body problems [5] in low-energy
ensembles. Recent work has also made this connection in the
specialized setting of number-conserving bosonic dynamics
[15,16]; see [17–19] for an alternative perspective on slow
physics in number-conserving models at low density.

In what follows, we define a generalization of the
translation-invariant models described above—both in the
continuum and in lattice regularizations—where there is a
reasonable definition of z, and where we demonstrate that such
models obey (1.6). Most of the paper will focus on the single-
particle problem, since, as we will show, these bounds allow
us to immediately constrain certain many-body problems at
the end of the paper.

II. ONE PARTICLE IN THE CONTINUUM

We begin by studying the dynamics of a single particle in
the continuum. The study of Lieb-Robinson-like bounds is
well established here for the ordinary Schrödinger equation;
see, e.g., [1–4]. This section contains a mild generaliza-
tion of these results to a more general family of continuum
Hamiltonians.

A. One dimension

We start with one spatial dimension. Take the operators p
and x to be canonical conjugates: [x, p] = i and

p = −i
∂

∂x
. (2.1)

We consider the Hermitian Hamiltonian operator

H = pα f (x)pα + V (x), (2.2)

with the requirements that

0 < a � f (x) � b < ∞ (2.3)

and

V (x) � 0. (2.4)

Further, we demand that α be a positive integer. This assump-
tion will be made whenever hereafter α appears. Such models
are a reasonable generalization of translation invariant models
with critical dynamical exponent z = 2α. After all, if f and
V are constant functions, H has plane wave eigenfunctions
eikx of eigenvalue f × k2α , which is precisely the dispersion
relation (1.3).

Models of the form (2.2) are a coarse-grained analog
of “random-bond models” [20], which have hopping terms
which fluctuate from edge to edge. If these fluctuations are
strongly correlated on short distances, then we may expect
that the continuum limit of such a model takes the form of
(2.2). Later, we will also consider lattice models of a similar
form that are more closely analogous to such random-bond
models.

Let the exact (possibly nonnormalizable) eigenstates of
(2.2) be denoted as |E〉 so that

H |E〉 = E |E〉. (2.5)

We choose some ε > 0 and define the projection onto low-
energy states:

Pε |E〉 = I(E � ε)|E〉. (2.6)

Pε given in (2.6) is a kind of hybrid between a canonical
and microcanonical (unnormalized) density matrix. In what
follows, we will rigorously bound correlation functions which
are projected into the low-energy subspace by Pε .

Since V (x) � 0 by assumption, we find that

〈ϕ|Pε pα f (x)pαPε |ϕ〉 � ε (2.7)

if

|ϕ〉 = Pε |ϕ〉. (2.8)

Further, because we have assumed f (x) to take on values only
in some positive, finite range, we have that

a〈ϕ|Pε p2αPε |ϕ〉 � 〈ϕ|Pε pα f (x)pαPε |ϕ〉. (2.9)

Jensen’s inequality says that, for a positive semidefinite oper-
ator M and any k � 1,

〈M〉k � 〈Mk〉. (2.10)

Choosing M = p2(α−n) and k = α
α−n , it follows that

if 〈ϕ|ϕ〉 = 1,

〈ϕ|p2(α−n)|ϕ〉 � 〈ϕ|p2α|ϕ〉1− n
α �

(
ε

a

)1− n
α

(2.11)

for any integer n that does not exceed α. By the idempotence
of Pε ,

|〈ψ |Pε p2(α−n)Pε |ψ〉| �
(

ε

a

)1− n
α

〈ψ |Pε |ψ〉 (2.12)

for any state |ψ〉.
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Now we use these inequalities to constrain the spreading of
information. As a simple application of Ehrenfest’s theorem,
we may write

d

dt
〈x〉 = −i〈[x, H]〉, (2.13)

where the 〈·〉 is taken with a particular but arbitrarily chosen
state. If we define

x(t ) = eiHt xe−iHt (2.14)

and

v = dx

dt
, (2.15)

our goal is to bound 〈v〉 where the expectation value is taken
with respect to a state obeying (2.8). With the Hamiltonian
given in (2.2),

v = −i[x, H] = αpα−1{ f (x), p}pα−1. (2.16)

We now wish to bound 〈ϕ|v|ϕ〉. Notice that

|〈ϕ|Pε pα f (x)pα−1Pε |ϕ〉|
� |〈ϕ|Pε pα f (x)pαPε |ϕ〉〈ϕ|Pε pα−1 f (x)pα−1Pε |ϕ〉| 1

2

(2.17)

by Cauchy-Schwarz. Further,

|〈ϕ|Pε pα f (x)pαPε |ϕ〉| � ε|〈ϕ|Pε |ϕ〉| (2.18)

and

|〈ϕ|Pε pα−1 f (x)pα−1Pε |ϕ〉|

� b|〈ϕ|Pε p2α−2Pε |ϕ〉| � b

(
1

a
ε

)1− 1
α

〈ϕ|Pε |ϕ〉 (2.19)

by (2.3) and (2.12). Combining (2.18) and (2.19),

|〈ϕ|Pε pα f (x)pα−1Pε |ϕ〉| �
√

ba

(
1

a
ε

)1− 1
2α

|〈ϕ|Pε |ϕ〉|.
(2.20)

Therefore,

|〈ϕ|Pεv(t )Pε |ϕ〉| � 2α
√

ba
1−α
2α ε1− 1

2α 〈ϕ|Pε |ϕ〉 (2.21)

for any choice of |ϕ〉. Since ε ∼ T , this reproduces the scaling
of (1.6).

The careful reader may notice the factor of a
1−α
2α in the

bound on vB when α > 1. This factor is necessary due to the
following effect. If a is small, there is some spatial region
where f (x) is similarly small, and in said region, particles
incur a small kinetic energy, while having, in principle, a very
large value of 〈p2α〉. In particular, if there is a region where
f (x) vanishes, particles can move arbitrarily quickly in said
region while still having a small energy, as measured by (2.2).
It is for this reason that (2.21) diverges when a → 0.

Using our velocity bounds, it is easy to use Markov’s
inequality to show that the time it takes for a quantum wave
packet to propagate a distance L scales as L/v. What is more
nontrivial is to get sharp tail bounds on what fraction of the
wave function can lie outside of the apparent “light cone,”
and much of the work on studying the propagation of single
particles for the ordinary Schrödinger equation focuses on

such more sophisticated bounds for models with f = 1 [1–4].
We were not able to use the techniques derived above to
obtain strong tail bounds on the evolution of wave packets
obeying (2.8).

B. d > 1 spatial dimensions

Now, we generalize to the case of continuum models in
d spatial dimensions. Let [xi, p j] = iδi j ; we write p with no
subscript to mean total momentum, so that p2 = ∑d

i=1 p2
i . We

will study models of the form

H = pα f (x1, x2, . . . , xd )pα + V (x1, x2, . . . , xd ). (2.22)

Such models are only spatially local if α is an even integer,
and so we first focus on this case; models with “odd” α will
be described subsequently. We require again (2.3). We will
suppress the explicit dependence of f and V on xi in what
follows. From the argument in Sec. II A, we see

〈ϕ|Pε p2(α−n)Pε |ϕ〉 �
(

ε

a

)1− n
α

〈ϕ|Pε |ϕ〉 (2.23)

because of Jensen’s inequality. It follows from (2.23) that

〈ϕ|Pε p2(α−n)−2 p2
i Pε |ϕ〉 �

(
ε

a

)1− n
α

〈ϕ|Pε |ϕ〉 (2.24)

since p2 − p2
i is positive semidefinite. From direct calculation,

vi = −i[xi, H] = αpα−2(pi f p2 + p2 f 2 pi )pα−2. (2.25)

Proceeding as before,

|〈ϕ|Pε pα−2 pi f pαPε |ϕ〉|
�

(
b〈ϕ|Pε p2(α−2) p2

i Pε |ϕ〉〈ϕ|Pε pα f pαPε |ϕ〉) 1
2 (2.26)

by Cauchy-Schwarz. First using the triangle inequality and
(2.26), and then squaring, we acquire

|〈ϕ|PεviPε |ϕ〉|2 � 4α2b〈ϕ|Pε pα f pαPε |ϕ〉
× 〈ϕ|Pε p2(α−2) p2

i Pε |ϕ〉. (2.27)

Summing (2.27) and using (2.23), we immediately find(
d∑

i=1

|〈ϕ|Pεvi(t )Pε |ϕ〉|2
) 1

2

� 2α
√

b a
1−α
2α ε1− 1

2α 〈ϕ|Pε |ϕ〉.

(2.28)

In the preceding paragraph, we considered models only
with α even. It should be no surprise that an analogous result
would hold with α odd, and we repeat the demonstration with
the appropriate redefinitions here. For simplicity, we again
consider an isotropic model, although our technique could
generalize to anisotropic models as well. Suppose

H =
d∑

j=1

pα−1 p j f p j pα−1 + V (2.29)

with α odd. For brevity, write

f̃ =
d∑

j=1

p j f p j . (2.30)
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For a particular i,

〈ϕ|Pε pα−3 pi f̃ pi p
α−3Pε |ϕ〉

� b
d∑

j=1

〈ϕ|Pε pα−3 p2
i p2

j pα−3Pε |ϕ〉

= b〈ϕ|Pε p2α−4 p2
i Pε |ϕ〉 (2.31)

since every term is positive semidefinite. In order to produce
a workable bound, we may then apply (2.24) directly. It is
now necessary to compute the time derivative of xi, and it is
no greater challenge to evaluate the commutator than it was
before:

vi(t ) = (α − 1)pα−3 pi f̃ pα−1 + (α − 1)pα−1 f̃ pi p
α−3

+ pα−1{ f , pi}pα−1. (2.32)

We proceed by bounding every term in (2.32) individually by
using Cauchy-Schwarz and Jensen’s inequality in turn. Using
(2.24) and (2.31), we find that the first and second term in
(2.32) give

|〈ϕ|Pε pα−3 pi f̃ pα−1Pε |ϕ〉|
� (|〈ϕ|Pε pα−3 pi f̃ pi p

α−3Pε |ϕ〉||〈ϕ|Pε pα−1 f̃ pα−1Pε |ϕ〉|) 1
2

�
√

ba
1−α
2α ε1− 1

2α 〈ϕ|Pε |ϕ〉, (2.33)

while the last term in (2.32) gives

|〈ϕ|Pε pα−1 pi f pα−1Pε |ϕ〉|
� b

(|〈ϕ|Pε p2α−2Pε |ϕ〉||〈ϕ|Pε p2α−2 p2
i Pε |ϕ〉|) 1

2

� b

(
ε

a

)1− 1
2α

〈ϕ|Pε |ϕ〉. (2.34)

Combining (2.33) and (2.34) with (2.32), we ascertain

|〈ϕ|Pεvi(t )Pε |ϕ〉|
� (2(α − 1)

√
ba

1−α
2α + 2ba

1−2α
2α )ε1− 1

2α 〈ϕ|Pε |ϕ〉. (2.35)

Though this result is superficially different from (2.28), it
shares the same scaling in a and ε.

III. LATTICE CALCULATION

We turn our attention to lattice models. For simplicity, we
focus on one dimensional models here, but a generalization to
higher dimensions is possible. The first issue to address is to
define a momentum analog to p, in order to generalize pα f pα

to the lattice. We define the discrete derivative

∇ = −i
∞∑

n=−∞
[−|n〉〈n| + |n〉〈n + 1|] (3.1)

and

x =
∞∑

n=−∞
n|n〉〈n|. (3.2)

We take x and ∇ to be positon and momentum analogs. Notice
that

[x,∇] = iI − ∇ (3.3)

with I the identity matrix. We regard (3.3) as a natural analog
of the canonical commutation relations, i.e., this is the closest
that we can find to a useful notion of x and p. On a countable
Hilbert space, it is impossible to write a matrix

� =
∑
n,m

cnm|n〉〈m| (3.4)

so that

[�, x] = iI (3.5)

since the diagonal elements of [�, x] must vanish.
Hence, we write

H = ∇†α f (x)∇α + V (x), (3.6)

where again we require that f is bounded below by a and
bounded above by b. and we also require that V commutes
with x and is positive semidefinite. We retain the previous
definition of Pε with (3.6) in place of (2.2), and focus on
correlators in states where (2.8) holds. Since

a〈ϕ|∇†α∇α|ϕ〉 � ε (3.7)

and

∇†∇ = ∇∇†, (3.8)

we see that (3.7) gives

a〈ϕ|(∇†∇ )α|ϕ〉 � ε. (3.9)

Reapplying Jensen’s inequality, we find that

〈ϕ|(∇†∇ )α−n|ϕ〉 �
(

ε

a

)1− n
α

. (3.10)

Once again, we may proceed by calculating

i[x, H] = α(∇†)α−1(∇† f + f ∇ )∇α−1. (3.11)

The form of (3.11) is different superficially than what one
might expect from considering the form of (2.16). This comes
from the fact that the canonical commutation relations are not
achievable with any choice of ∇. Nonetheless, it is still possi-
ble to apply the Cauchy-Schwarz and triangle inequalities in
exactly the same manner as before. Explicitly,

|〈ϕ|Pε[x, H]Pε |ϕ〉| � α|〈ϕ|Pε (∇†)α f ∇α−1Pε |ϕ〉|
+ α|〈ϕ|Pε (∇†)α−1 f ∇αPε |ϕ〉|, (3.12)

and the Cauchy-Schwarz inequality gives

|〈ϕ|Pε (∇†)α f ∇α−1Pε |ϕ〉|
� (〈ϕ|Pε (∇†)α f ∇αPε |ϕ〉〈ϕ|Pε (∇†)α−1 f ∇α−1Pε |ϕ〉)

1
2 ,

(3.13)

where one factor is bounded above by ε
1
2 by the definition of

Pε and the other factor is bounded above by
√

b( ε
a )

1
2 − 1

2α due
to (3.10). Continuing as before produces∣∣∣∣ d

dt
〈ϕ|PεxPε |ϕ〉

∣∣∣∣ � 2α
√

ba
1−α
2α ε1− 1

2α 〈ϕ|Pε |ϕ〉 (3.14)

for any state |ϕ〉. Since ε ∼ T , this reproduces the scaling
of (1.6).
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We remark that the bound (3.14) applies to a surprisingly
general class of lattice models. The simplest such example
consists of models of the form

H =
∞∑

n=−∞
cn|n〉〈n| − |n + 1〉〈n| − |n〉〈n + 1|, (3.15)

which satisfy (3.14) so long as cn � 2 for all n in Z. The
model (3.15) appears in the classic single band hopping prob-
lem and the bound (3.14) for this model can be interpreted
as a requirement that all dynamics slow down at low energy.
If cn = 2 for all n, H is diagonalized by plane waves and has
dispersion E (k) = 2(1 − cos(k)). Dynamics at low energy are
slow because the group velocity vG = 2 sin(k), so the result
still holds in the presence of a repulsive potential. The bound
(3.14) generalizes this result.

IV. MANY-BODY GENERALIZATION

The results of Secs. II and III can be cleanly generalized
to the case of N particles in d spatial dimensions, when the
Hamiltonian takes a certain form (described shortly). While in
this section, we only explicitly treat lattice models in 1D for
brevity, the problem in other settings can be handled similarly.

Fix some integer N > 0, and for each 1 � i � N we define

∇i = I⊗(i−1) ⊗ ∇ ⊗ I⊗(N−i) (4.1)

and

xi = I⊗(i−1) ⊗ x ⊗ I⊗(N−i). (4.2)

We may also choose N matrices

Fi =
∞∑

n=−∞
fn,iI

⊗(i−1) ⊗ |n〉〈n| ⊗ I⊗(N−i) (4.3)

with

0 < a � inf
n,i

fn,i � sup
n,i

fn,i � b < ∞. (4.4)

Naturally, we write

H =
N∑

i=1

(∇†
i )αFi∇α

i + V, (4.5)

where we demand that for any i,

[V, xi] = 0 (4.6)

and that V � 0.
We emphasize this positivity condition on V as crucial.

Intuitively, as in our previous derivation, our derivation of a
bound will rely on the inability of the system to gain kinetic
energy from attractively interacting particles getting closer
together.

Here, we seek not to bound the velocity of a particular
particle on the lattice; instead, we wish to constrain the av-
erage particle velocity in the worst case at a fixed energy.

This is because, as stated in the introduction, there may be
rare states in which energy is highly concentrated in a small
number of particles, and any rigorous bound must incorporate
that possibility. As before, we fix some threshold energy and
we restrict to energies only beneath said threshold. However,
we wish to consider explicitly extensive energies. We define

E = Nε (4.7)

for ε ∼ N0. In all of what follows, we write 〈·〉 to indicate
an expectation value with regard to a particular state, obeying
(2.8) with ε replaced by total energy E .

Directly following earlier statements, we notice that if

a〈(∇†
i ∇i )

α〉 = εi, (4.8)

then
N∑

i=1

εi � 〈H〉 � E . (4.9)

We proceed to calculate time derivatives,

[xi, H] = [
xi, (∇†

i )αFi∇α
i

] = α(∇†
i )α−1(∇†

i Fi + Fi∇i )∇α−1
i

(4.10)

and therefore∣∣∣∣ d

dt
〈xi〉

∣∣∣∣ � 2(b2〈(∇†
i ∇i )

α〉〈(∇†
i ∇i )

α−1〉)
1
2 , (4.11)

while Jensen’s inequality gives∣∣∣∣ d

dt
〈xi〉

∣∣∣∣ � 2ba
1−α
2α 〈(∇†

i ∇i )
α〉1− 1

2α = 2ba
1−α
2α

(
εi

a

)1− 1
2α

.

(4.12)
Now, we seek to maximize the typical velocity

vtyp = 1

N

N∑
i=1

|〈vi〉| � 1

N

N∑
i=1

2ba
1−α
2α

(εi

a

)1− 1
2α

(4.13)

over low energy states in which (4.9) holds. This is readily
achieved via Lagrange multipliers, and since the exponent 1 −
1

2α
< 1, we find that the maximal value of the bound on vtyp

(4.13) arises when all εi = E/N in (4.13), leading to

vtyp � ba
1
α
− 3

2

( E
N

)1− 1
2α

. (4.14)

Hence, the maximal average particle velocity in a many body
state with total energy E scales with average energy per
particle in the same manner as a single particle’s velocity
scales with its energy. Note that it is important in this result
to ask about typical velocity, and not, e.g., root-mean-square
velocity1. Following [15,16], we deduce that the time it takes
to move a macroscopic number of particles, a mean displace-
ment of L cannot be parametrically smaller than L/vtyp.

1For any random variable X , 〈X 2〉 � 〈X 〉2. The typical velocity,
|〈v〉| has a finite upper bound in this case, but the same may not be
true of the root-mean-squared velocity,

√
〈v2〉. In fact, it may be the

case that the root-mean-squared velocity is not even finite.
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This result is largely agnostic to the form of potential
chosen, so long as [V, xi] = 0, and so long as V � 0 (i.e., the
interactions are repulsive). In particular, one might choose

V =
∞∑

n,m=−∞

N∑
i=1

N∑
j=i

cnm,i jI
⊗(i−1)

⊗ |n〉〈n| ⊗ I⊗( j−i−i) ⊗ |m〉〈m| ⊗ I⊗(N− j) (4.15)

or arbitrary nonlinear combinations of such potentials. If we
make the further choice

cnm,i j = U∇nm, (4.16)

then the interaction term V becomes the classic Hubbard
model [21,22], albeit so far with distinguishable particles.

However, notice that particle indistinguishability is actu-
ally very straightforward to add in this formalism, so long
as Fi is independent of i, and the potential V is also per-
mutation symmetric: for example, cnm,i j = cnm in (4.15). In
this setting, one simply restricts to the Bose-Hubbard model
or Fermi-Hubbard model by restricting the first-quantized
Hilbert space to the fully symmetric or fully antisymmetric
irreducible representations of the permutation group. There-
fore we conclude that (4.14) applies to both the Bose-Hubbard
and Fermi-Hubbard models, with either attractive or repulsive
interactions.

In the physically relevant case of a Fermi-Hubbard model
with attractive interactions, one expects a Fermi surface to
form at low temperature, meaning that the average energy
density is finite even at arbitrarily low temperature:

ε = ε0 + cT + · · · . (4.17)

In this case, the typical velocity stays finite even close to the
ground state. This is not surprising—as noted in the introduc-
tion, a theory with a Fermi surface is not necessarily expected
to have a vanishing notion of butterfly or typical velocity
at low temperatures—e.g., this does not happen in ordinary
Fermi liquid theory.

Lastly, we remark that a similar bound to (4.15), albeit
with a larger prefactor, will hold if we restrict our attention
to arbitrary subsets of the N particles as well. Of course,
the prefactor will become exceedingly lousy, as if we only
consider a single particle, (4.9) does not forbid that single
particle from carrying all of the energy in the system.

V. OUTLOOK

In this paper, we described rigorous results on typical par-
ticle velocities “vB” in low energy states of lattice and/or
continuum models. Our results generalized to many-particle
dynamics in which the kinetic energy takes a single-particle
form, and the key result followed from understanding the be-
havior of low-temperature dynamics in single-particle models.
This is qualitatively similar to the way that the dynamics of
bosons has been bounded in [15,16].

While our bounds hold for all low energy states, in the
many-body case, we were forced to study only typical particle
velocities. We conjecture that our bounds hold for single par-
ticle velocities if one instead averages over low energy states.
More generally, we did not find Lieb-Robinson-like bounds
on many-body dynamics. One reason this is likely to be chal-
lenging is that in interacting boson problems (with conserved
charge), it is known that signaling and information can propa-
gate parametrically faster than a typical particle [15,16,19].
Proving a more Lieb-Robinson-like bound on commutator
norms may well require qualitatively new technical methods.
Discovering such methods may be the key to generalize the
vast literature on Lieb-Robinson bounds [14] to derive bounds
on low temperature physics.

Lastly, let us remark briefly on our first attempt to
tackle the problem of deriving bounds on dynamics at low
energies/temperature. Intuitively, one might expect that the
correct way to bound vB � T ξ is to argue that low-energy
dynamics is efficiently generated by some Hamiltonian in
which terms have bounded magnitude T , at the price of spatial
nonlocality on the length scale ξ . This would lead to an ele-
gant picture in which ξ ∼ T −1/z and vB ∼ T ξ . Unfortunately
we were not able to find a way to realize this intuition rig-
orously, even in the single-particle setting. Along these lines,
the Appendix presents a more physically intuitive derivation
of known results on the locality of the density matrix for
single-particle Hamiltonians. It would be interesting if future
work can present an alternative derivation of the bounds of
this paper from this perspective.
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APPENDIX: LOCALITY OF THE CANONICAL DENSITY
MATRIX FOR A SINGLE PARTICLE

In this Appendix, we use mathematical techniques inspired
by our recent “quantum walk bound” method [14,23] to derive
bounds on the locality of the (unnormalized) matrix elements
of the density matrix e−βH , for single-particle problems at
large β. We emphasize to the reader that these bounds do not
directly bound the elements of the thermal density matrix,
which must be normalized by the single-particle partition
function.

First, we will consider only single particle models of the
form

H = ∇†α∇α + V (A1)

with V positive semidefinite. We wish to show, for a positive
number β,

|〈n|e−βH |m〉| � ce− |n−m|
ξ (A2)

for a particular β-dependent correlation length ξ and constant
c. Notice that if we divide this matrix element by the partition
function, this inequality tells us that thermal single-particle
correlation functions decay exponentially with distance.
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We define

F =
∞∑

n=−∞
eμn|n〉〈n|. (A3)

We require

[F,V ] = 0 (A4)

which would also be guaranteed by V = V (x). Explicitly, we
seek to show

d

dβ
〈ϕ|e−βH Fe−βH |ϕ〉 � h(μ)〈ϕ|e−βH Fe−βH |ϕ〉 (A5)

in order to bound the evolution in β of a particular element of
e−βH by solving the differential equation (A5).

We define

|φ〉 = F
1
2 e−βH |ϕ〉 (A6)

and observe that

d

dβ
〈φ|φ〉 = −〈φ|F− 1

2 {F, H}F− 1
2 |φ〉

= −〈φ|F− 1
2 {F, H − V }F− 1

2 |φ〉 − 〈φ|V |φ〉. (A7)

V is taken to be positive definite, so we find that

d

dβ
〈φ|φ〉 � − inf

|λ〉
〈λ|F− 1

2 {F, H − V }F− 1
2 |λ〉〈φ|φ〉. (A8)

Since F− 1
2 {H − V, F }F− 1

2 is translation invariant, it is exactly
diagonalized by plane waves. We find

d

dβ
〈φ|φ〉 � 4α sinh2α

(
μ

2

)
〈φ|φ〉. (A9)

Now, we simply choose |ϕ〉 = |n〉, and we find

|〈n|e−βH |m〉|2 � e4α sinh2α (μ/2)β−μ|n−m|. (A10)

If we then choose μ = 1

β
1

2α

, and use sinh(μ/2) � 21/(2α)μ/2

at sufficiently small μ (which corresponds to large β, i.e.,
small T ), we see that

|〈n|e−βH |m〉| � e2− |n−m|
ξ (A11)

with

ξ = β
1

2α . (A12)

This “quantum walk bound” also shows that a generic
positive semidefinite, d-local, bounded Hamiltonian H has a
bounded correlation length. We need only recognize

− d

dβ
〈φ|φ〉 = 〈φ|F− 1

2 HF
1
2 + F

1
2 HF− 1

2 |φ〉

= 2〈φ|H |φ〉 +
∑
n,m

2

(
cosh

(
μ(n − m)

2

)
− 1

)

× 〈φ|n〉〈n|H |m〉〈m|φ〉. (A13)

As before, we seek to bound d
dβ

〈φ|φ〉 from above. By assump-
tion 〈φ|H |φ〉 is nonnegative so

d

dβ
〈φ|φ〉 � −2

∑
n,m

2

(
cosh

(
μ(n − m)

2

)
− 1

)
× 〈φ|n〉〈n|H |m〉〈m|φ〉

�
∑

n

|〈φ|n〉|2
∑

m

∣∣∣∣cosh

(
μ(n − m)

2

)
− 1

∣∣∣∣
× |〈n|H |m〉|. (A14)

Since H has bounded-range interactions, there must exist
some J > 0 so that

sup
n

∑
m

∣∣∣∣ cosh

(
μ

2
(n − m)

)
− 1

∣∣∣∣|〈n|H |m〉| � μ2J (A15)

for sufficiently small μ. In particular,

sup
n

∑
m

|n − m|2|〈n|H |m〉| � 2d sup
n,m

|〈n|H |m〉|. (A16)

The reasoning of (A9)–(A12) can be repeated to show that
there exists some c > 0, so

ξ � c
√

β (A17)

in general. The exponential decay of correlations in a thermal
state is a well-known result achieved previously through, e.g.,
the use of Chebyshev polynomial asymptotics [24,25]; see
Theorem 18 in the recent [26], where to approximate the
exponential function with small error in the so called regime 2,
it is sufficient to truncate the Chebyshev series at order (A17).
This technical method may be employed even in many-body
systems. The above derivation focuses on the single-particle
problem, but is perhaps more physically transparent.
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