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Skin modes in a nonlinear Hatano-Nelson model
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Non-Hermitian lattices with nonreciprocal couplings under open boundary conditions are known to possess
linear modes exponentially localized on one edge of the chain. This phenomenon, dubbed non-Hermitian skin
effect, induces all input waves in the linearized limit of the system to unidirectionally propagate toward the
system’s preferred boundary. Here we investigate the fate of the non-Hermitian skin effect in the presence of
Kerr-type nonlinearity within the well-established Hatano-Nelson lattice model. Our method is to probe the
presence of nonlinear stationary modes which are localized at the favored edge, when the Hatano-Nelson model
deviates from the linear regime. Based on perturbation theory, we show that families of nonlinear skin modes
emerge from the linear ones at any nonreciprocal strength. Our findings reveal that, in the case of focusing
nonlinearity, these families of nonlinear skin modes tend to exhibit enhanced localization, bridging the gap
between weakly nonlinear modes and the highly nonlinear states (discrete solitons) when approaching the anti-
continuum limit with vanishing coupling. Conversely, for defocusing nonlinearity, these nonlinear skin modes
tend to become more extended than their linear counterpart. To assess the stability of these solutions, we conduct
a linear stability analysis across the entire spectrum of obtained nonlinear modes and also explore representative
examples of their evolution dynamics.
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I. INTRODUCTION

Advances in the studies of nonconservative systems us-
ing non-Hermitian operators have led to the discovery of
various interesting phenomena. At the origin of these re-
search activities lies the seminal work on PT -symmetry [1,2]
describing systems featuring the simultaneous balance of en-
ergy dissipation and gain. PT -symmetry provides the means
to construct non-Hermitian operators, which under certain
conditions may support modes with real eigenvalues [3,4].
These results were confirmed and validated in many different
physical domains including optics, acoustics, mechanical, and
electrical systems; for a recent review, see e.g., the book
[5]. More recently, PT -symmetry, was also employed in the
context of topology and now plays a significant role in the
studies of non-Hermitian topology [6,7]. It is now understood
that non-Hermitian topology may substantially differ from its
Hermitian counterpart.

Within the context of non-Hermiticity and topology, a new
class of models featuring asymmetric (often nonreciprocal)
couplings between their constituents have been introduced.
Unlike Hermitian or PT -symmetry systems, it is found
that the spectral characteristics of systems with asymmetric
(nonreciprocal) couplings greatly vary depending on their
boundaries [8–14]. In general, these type of non-Hermitian
systems under periodic boundaries possess complex spectra
with Bloch-type linear modes. Nevertheless, the same system
with open boundary conditions (OBC) may display a real
spectrum. More importantly, the eigenmodes under OBC are

found to be exponentially localized on one side of the system.
This phenomenon is dubbed the non-Hermitian skin effect
(NHSE) and constitutes one of the latest developments in this
area; see, e.g., Refs. [11,13] for a review. In practice, the skin
effect is a manifestation of the asymmetry of the couplings
leading to the emergence of a nontrivial winding number
[15,16], favoring the accumulation of amplitude in one side of
the chain. Note that most of the properties of the NHSE and of
non-Hermitian topology can be understood using the seminal
linear Hatano-Nelson (HN) model [17,18], a non-Hermitian
one-dimensional (1D) lattice with asymmetric nearest neigh-
bor couplings. The intense interest in such structures has led
to several experimental manifestations of the NHSE in optics
[19], acoustics [20,21], mechanics [22–24], electric circuits
[25], and atomic lattices [26].

As is often the case, the phenomena of non-Hermitian and
topological systems have been pursued also in the realm of
nonlinear waves. On one hand, the study of the interplay be-
tween nonlinearity and topology is rapidly expanding, giving
rise to new phenomena such as topological breathers and soli-
tons [27–33] as well as other types of nonlinear edge waves
[34]. In addition, the interaction between non-Hermiticity and
nonlinearity, has been extensively focused mainly on PT -
symmetric systems (see, e.g., the reviews [5,35,36]). Even
more recently experiments exploiting the inteperlay between
topology, PT -symmetry and nonlinearity have been per-
formed [37]. Moreover, gain-saturation effects away from the
PT -symmetry regime of non-Hermitian media also induce
nonlinearity; this is a feature which has been studied, e.g., in
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Refs. [38–40] with important applications in the dynamics of
lasers.

To our knowledge, models featuring asymmetric (nonre-
ciprocal) interactions and the NHSE have been merely studied
under the effect of nonlinearity. In fact only few works
[41–43] recently appeared with Kerr-type nonlinearities. In
particular, Refs. [41,43] focus on a few site lattice, and at
the extreme limit where each lattice site is only connected
to its right (or left) nearest neighbor in a way such that
all linear modes have the same shape (edge single-site) and
eigenvalue. In addition, Ref. [42] studied the dynamics of
single-site wave-packets at the center of the HN chain, demon-
strating that nonlinear NHSEs exist, but may be hindered
by self-trapping processes. Furthermore, the characteristics of
wave-packet delocalization have also been studied for a HN
model with Kerr-nonlinearity which is not onsite (as herein),
but which involves the coupling between nearest neighbors
[44].

Here, we intend to shed more light on the fate of the
NHSE of the HN model in the nonlinear regime. To do so
we study the HN model with Kerr-type nonlinearity ensuing
from a nonreciprocal variant (for arbitrary ratios of left-to-
right coupling) of the discrete nonlinear Schrödinger (DNLS)
equation [45] on a finite, but large, 1D lattice. We thus focus
on finding nonlinear skin modes (NLSMs) stemming from the
corresponding linear ones. By applying perturbation theory
we show that small amplitude NLSMs emerge for all linear
modes both with focusing (positive) or defocusing (negative)
signs of the nonlinearity. We find families of NLSMs which
connect the linear and the strongly nonlinear anticontinuum
(AC) limit where the coupling between each pair of sites
vanishes. We also carry a linear stability analysis and identify
regions where NLSMs can be either stable or unstable. Our
analysis shows that small perturbations that do not have a
skinlike profile will eventually destabilise the NLSMs.

The paper is structured as follows. In Sec. II, we discuss the
existence of such NLSMs. In Sec. III, we tackle their stability
and dynamics. Finally, in Sec. IV, we present our conclusions
and a number of directions for future studies. Finally, in the
appendices, we provide a number of details regarding our
perturbation theory analysis in the different limits.

II. NONLINEAR SKIN MODES

In this work, we are interested in finding nonlinear skin
modes of the following nonlinear version of the HN model

i
dψn

dτ
= C(ψn+1 + tψn−1) + σ |ψn|2ψn, (1)

where n = 1, 2, . . . , N indexes the lattice sites and ψn is a
complex-valued amplitude at site n, as shown in Fig. 1(a).
Here, C is the (real) hopping (coupling) strength and t is
the nonreciprocal parameter: if t = 1 the system is recipro-
cal while for any value t �= 1 there is a preferred direction.
We further assume a general Kerr-type (self-interaction) non-
linearity with strength σ = ±1 relevant to many physical
systems especially in nonlinear optics [46–48] and cold
atomic gases [49,50], or even biomolecules [51,52]. Indeed,
this model in the t = 1 limit constitutes the prototypical non-
linear dispersive dynamical lattice of the DNLS type [45].

FIG. 1. (a) The proposed nonlinear HN model where closed
loops represent the on-site Kerr terms. (b) The linear spectrum of a
HN model with open boundary conditions. (c) An illustration of how
a family of nonlinear skin modes emerges from the corresponding
linear solution.

Here, we explore a hybrid between this well-established set-
ting and the linear HN model, to examine the interplay of
asymmetric dispersion and cubic nonlinearity. Our goal is to
find stationary solutions, with energy E , assuming ψn(τ ) =
uneiEτ which leads to the following set of nonlinear equa-
tions [41,43]

Eun = C(un+1 + tun−1) + σ |un|2un. (2)

The linear HN model (obtained for σ = 0 and C = 1) yields

Eun = un+1 + tun−1. (3)

For a finite HN lattice with OBC u0 = uN+1 = 0, Eq. (3) can
be recast in the form of an eigenvalue problem H �u(0)

q = Eq�u(0)
q

(the expression of H is provided in Appendix A), where the
real eigenenergies are equal to

Eq = 2
√

t cos

(
qπ

N + 1

)
, (4)

with q = 1, . . . , N . An example of such a spectrum is shown
in Fig. 1(b) for N = 24. The corresponding eigenvectors �u(0)

q
have elements which satisfy the following equation

u(0)
q,n =

√
2

N + 1
t n/2 sin

(
nqπ

N + 1

)
. (5)

From Eq. (5), it becomes clear that whenever t < 1 (t > 1)
the modes of the HN are localized to the left- (right-) hand
side of the lattice owing to the t-dependent prefactor. This is
exactly the manifestation of the NHSE which we systemati-
cally generalise here in the nonlinear domain. In fact, since
the eigenvalue problem is non-Hermitian, there exist also
left eigenvectors, �vq, satisfying �vT (0)

q H = �vT (0)
q Eq. These left

eigenvectors are localized at the opposite side of the lattice. It
is worth noting that we normalize these eigenvectors using the
biorthonormalization, i.e., �vT (0)

q′ �u(0)
q = δq′q [53].

Our main goal is to show that families of NLSMs satisfying
Eq. (2) emerge from their linear counterparts for our finite
lattices. In particular, we choose to keep the energy E (i.e.,
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the nonlinear eigenvalue parameter, referred to as propagation
frequency in optics and chemical potential in atomic physics)
fixed to that of the linear modes, and then numerically obtain
solutions by varying the coupling strength, C. A sketch of
this procedure and its outcomes is shown in Fig. 1(c). Let us
first use the regular perturbation theory (RPT) to show that
for any value of t �= 0, small amplitude nonlinear solutions
can emerge from each linear mode. To this end, we assume
solutions of Eq. (2) in the following asymptotic form:

un = εu(0)
n + ε2u(1)

n + ε3u(2)
n + O(ε4), (6)

where u(0)
n are the linear modes [Eq. (3)]. Since the continua-

tion is performed at constant energy, Eq for each of the modes,
C then becomes the continuation parameter that varies in a
way such that for sufficiently small amplitude solutions we
consider

C = 1 + C1ε
2 + O(ε4). (7)

The details of the perturbation theory are found in Ap-
pendix B; here we only present the main results. We find that
finite amplitude solutions of the nonlinear eigenvalue problem
[Eq. (2)] exist starting from terms of O(ε3) with a correction
to C given by

C1 = − σ

Eq

(
2

N + 1

)2 N∑
n=1

t n sin4

(
nqπ

N + 1

)
, (8)

with the value of ε characterizing the amplitude of the non-
linear mode; see also Appendix B. Notice that a way to think
of Eqs. (6)–(8) is that for a given branch of solutions and t ,
starting with the value of C, one can identify ε from Eq. (7)
and then can find the solution that is associated with that C
from Eq. (6). We note also that the expression of C1 [Eq. (8)]
can be resummed, provided that we decompose the sin4 into
Fourier modes and consider the resulting geometric series,
yet given the complexity of the resulting expression, we do
not explore that step herein. In practice, the above result says
that for small amplitudes a family of nonlinear modes emerges
from each respective linear mode followed by a change in the
coupling parameter C. Furthermore the negative sign in front
of Eq. (8) signals the fact that for σ = +1 (focusing case)
the coefficient C decreases as the amplitude grows, while the
opposite happens for the defocusing case. In addition we see
that the correction C1 strongly depends on the value of the
nonreciprocal parameter t .

A. Focusing regime

To verify the above result, we solve Eq. (2) numerically
by fixing E to a linear eigenvalue Eq [Eq. (4)] employing a
pseudo-arclength nonlinear solver [54–56]. The initial guess
seeded to the solver is the corresponding linear mode rescaled
to very small amplitudes. That way the value of C is left as
an unknown parameter to be found by the pseudo-arclength
solver. In Fig. 2, we show results for the case of the first linear
mode (q = 1) for a lattice of N = 24 oscillators. Figure 2(a)
shows the numerically calculated total intensity of the lattice

S =
∑

n

|un|2, (9)

FIG. 2. (a) The total intensity S as a function of the coupling
strength C for the family of nonlinear stationary solutions emerging
from the first linear mode with t = 1 (red curve), 0.95 (cyan curve),
and 0.4 (blue curve). The dashed regions of the curves indicate
linearly unstable solutions. In addition, the yellow stars and vertical
dashed lines guide the eye towards the widths of the unstable regions.
Note that the inset shows the linear spectrum. (b) Representative
nonlinear modes of the family with t = 1 for different C values.
(c) and (d) Same as (b) but for the families of NLSMs with t = 0.95
and 0.4, respectively.

as a function of the coefficient C for two values of t mapping
to the usual DNLS equation with t = 1 and the nonlinear
HN model with t = 0.95 and 0.4. As predicted, a family
of nonlinear modes emerges from the linear limit with de-
creasing values of C. In addition, beyond the validity of the
perturbation series in the neighborhood of the linear regime,
we numerically find that each family terminates at the AC
limit, where the oscillators are uncoupled, i.e., C = 0. In fact,
the existence of this branch bifurcating from the AC limit can
also be demonstrated through regular perturbation theory from
the latter limit. The details of these calculations are given in
Appendix C.

For illustrative purposes, in Fig. 2(b) we show the profile of
some solutions for the family with t = 1 (corresponding to the
DNLS model). Clearly, small amplitude nonlinear solutions
are similar to the well-known sinusoidal form of the linear
mode in the neighborhood of unit coupling strength. As C
decreases away from unity and nonlinearity becomes stronger,
these solutions become more localized yet remain spatially
symmetric (i.e., the location of their centers of mass does
not change) with in-phase amplitudes at adjacent oscillators.
At the AC limit (C = 0), the corresponding family of modes
is connected to a single site solution at the center of the
lattice satisfying E1 = |uN/2|2 [57]. Note that this is a finite
size effect in contrast to the well known results for N → ∞
where single-site solutions in the AC limit are connected to
the continuum soliton, as the coupling is increased [45].

Moving away from the DNLS limit, in Fig. 2(c), we dis-
play instances of NLSMs of the HN model with t = 0.95.
Similarly, in Fig. 2(d), we present results for the case of
t = 0.4. An intriguing finding for both of these cases from
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FIG. 3. (a) Intensity S as a function of C for the family of NLSMs originating from the second linear mode at two different values of t with
t = 0.2 and 0.6. Note that solid vs. dashed reflects the stable vs. unstable branches; also, note that additional branches to the ones originating
from the linear limit are depicted in this panel (see details in the text). (b) Representative profile of the NLSM associated with the family
originating from the second linear mode with t = 0.6, red curve in (a). (c) Same as in (b), but for t = 0.2, blue curve in (a). (d) Same as (a),
but for the families of NLSMs emerging from the fifth linear mode. (e) Same as (b) but for (d). (f) Same as (f) but for (d).

Fig. 2(a) is that for sufficiently strong coupling (close to
C = 1), there exists a coupling interval such that the departure
from the Hermitian limit of t = 1 leads to linear instability.
The relevant results show that this interval becomes wider
as t deviates further from unity (see Sec. III for a detailed
analysis). Furthermore, as expected small amplitude solutions
remain close to the shape of the linear skin mode. However
as the amplitude grows (C decreases) the center of mass
of the obtained modes moves toward the favored direction
[for t < 1, i.e., to the left side of the chain of Fig. 1(a)]. It
follows that focusing nonlinearity not only tends to localize
the modes but also strengthens the skin effect. In fact, even
for a small deviation from the standard DNLS model in this
example (t = 0.95), the resulting family of NLSMs connects
to the single-site solution located far away from the lattice’s
center as seen in Fig. 2(c). More importantly, we numerically
confirmed that this shifting toward the left becomes stronger
as t is further decreased, till the families of NLSMs starting
from the first linear mode, end up at a single-site solution
in the AC limit, located at the left edge of the chain. This
happens for all values of t below the threshold, tc ≈ 0.57.
Interestingly the tc happens to be independent of lattice size,
at least up to the largest chain (N = 50) considered in our
numerical simulations. Examples of such a family of NLSMs
is shown in Fig. 2(d) for t = 0.4. We note in passing the
staggering transformation un → (−1)nu′

n within Eq. (2), leads
to the following:

−Eu′
n = C(u′

n+1 + tu′
n−1) − σ |u′

n|2u′
n. (10)

Consequently, if (E , un, σ ) is a solution of the nonlinear
eigenvalue problem, then (−E , u′

n, −σ ) is also a solution.

As such the families of NLSMs generated through the linear
mode of wave number q′ = N + 1 − q with σ = −1 overlap
(up to a phase factor) with the ones arising from the linear
mode with index q, fixing σ = 1.

Let us now look for families of NLSMs stemming from
linear modes of higher wave number. The S versus C plot
resulting from the numerical continuations is shown in the
panels of Fig. 3 using as initial guess the linear modes of wave
numbers q = 2 [Fig. 3(a)] and q = 5 [Fig. 3(e)], considering
two different values of the strength of nonreciprocity with
t = 0.2 (blue curves) and t = 0.6 (red curves). Similarly to
Fig. 2 these families join the linear regime at C = 1 with the
AC limit of C = 0. Focusing now on the shapes of the result-
ing NLSMs, we find that they inherit the number of nodes
pertaining to the order of the mode in the linear counterpart.
Namely, the second mode results in a two-site state, the fifth
mode to a five-site one, etc. Given their excited nature, the
resulting NLSMs are also “twisted” (i.e., corresponding to
alternating, out-of-phase, field values) [45,58]. These NLSMs
also tend to shift toward the preferred direction of the system
at high intensity, see e.g., Figs. 3(b) and 3(c). As such, the
shape of the high amplitude NLSMs, greatly differs from the
linear one. In particular, for the examples in Figs. 3(b) and
3(c) and Figs. 3(e) and 3(f) the shape of these high amplitude
NLSM becomes closer to the two-site and five-site stationary
solutions of the AC limit, respectively for families emerging
from the second [Figs. 3(b) and 3(c)] and fifth [Figs. 3(e) and
3(f)] linear modes. It is important to emphasize that from our
simulations, we conjecture that the qth linear mode of unit
coupling is connected to a q-site solution in the AC limit, with
out-of-phase excited oscillators. The latter, as was illustrated
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Linear

AC

Nonlinear

Energy

FIG. 4. (a) Total intensity S against C for the full families of stationary states emerging from the linear modes with q = 1, 5, 9, and 12 at
constant E for t = 0.4. Dotted regions represent unstable NLSMs. (b) Five representative NLSMs of the family emerging from the first linear
mode at different coupling strengths. (c) Same as (b), but at fixed value of C with different energies.

for t = 1 in Ref. [58] and as follows from the calculations in
Appendix B for t �= 1, are spectrally stable states near the AC
limit.

Interestingly, the location of the excited oscillators at the
AC limit depends on the strength of the nonreciprocity, t .
Namely, at the t = 1 (DNLS) limit, we expect the positions of
the excited oscillators to be equally spaced inside the bulk of
the chain due to the symmetry of the model. However, when
t �= 1, we have seen in Fig. 2, that the NHSE tends to shift
the positions of these excited oscillators independently toward
the most favorable direction of wave propagation within the
lattice. This can be clearly seen when comparing the families
emerging from the second linear modes at t = 0.6 and 0.2
respectively in Figs. 3(b) and 3(c). The former features excited
oscillators with indices n = 1 and 4 [Fig. 3(b)], while the
latter ones with n = 1 and 2 [Fig. 3(c)] at C = 0. A similar
observation can be drawn from Figs. 3(e) and 3(f), where the
larger t can afford the separation of the excited sites by empty
“holes”, while for the lower t , these holes are suppressed in
favor of the adjacent excitation of all the nonzero nodes at the
AC limit. Furthermore, we computed the critical strength of
nonreciprocity, tc below which families of NLSMs emerging
from the linear modes connect to consecutive excited oscilla-
tors in the AC limit. We obtain that tc is independent on the
lattice size, and has values tc ≈ 0.25 for q > 1, in line with
the results of Fig. 3.

B. Defocusing regime

It is also worth discussing the defocusing case (σ = −1).
According to the regular perturbation theory and especially
Eq. (8), families of NLSMs with increasing C can emerge
from the linear limit with defocusing nonlinearity, i.e., for
σ = −1. This is confirmed by our numerical simulations. In
Fig. 4(a), we depict the total intensity as a function of the
coupling strength for selected numbers of families of NLSMs
arising from the linear modes with index q = 1, 5, 9, and 12
for the case t = 0.4. For these solutions the total intensity S
grows monotonically with respect to C without showing any
sign of saturation, in contrast to what is seen in the focusing
case; see gray curves of Fig. 4(a).

Figure 4(b) depicts representative NLSMs of the family
emerging from the first linear mode with t = 0.4. A direct

comparison of these results can be carried with respect to the
focusing case in Fig. 2(d). It follows that, contrary to what
is seen in the focusing regime, in the defocusing case, the
linear skin mode tends to widen as the total intensity of the
system grows. This is in line with the defocusing nature of
the nonlinearity which apparently dominates the NHSE of
the corresponding linear problem for the q = 1 state. This
increase in width of the NLSMs, leads to almost extended
nonlinear states at high amplitude. Nevertheless, we find that
such extended states are not reached for all linear mode ener-
gies. In fact, the families of NLSMs arising from linear skin
modes of higher wave number display clear localization at the
edge of the chain even for high amplitude states. In fact, by
fixing the value of C and comparing NLSMs of increasing q
we find that their width tends to decay as shown for example in
Fig. 4(c). Additionally, an interesting feature of an oscillatory
tail can be seen to develop for this panel’s case of C = 3. As
this regime is far from the regime accessible to perturbative
analysis, we do not pursue this feature further.

III. STABILITY AND DYNAMICS

For a complete study of the NLSMs we need to study their
stability under the effect of small perturbations. Such a linear
stability analysis is typical for the DNLS model and is usually
performed substituting the ansatz �ψ (τ ) = (�u + ε �w(τ ))eiEτ

into Eq. (1) with �u being the numerically obtained NLSM and
ε �w a small perturbation. By expressing the elements of the
perturbation vector as wn(τ ) = aneiλτ + b∗

ne−iλ	τ , where the
asterisk denotes the complex conjugate, we end up with the
following eigenvalue problem [58]:

JL

(�a
�b
)

= λ

(�a
�b
)

, (11)

where we represent the stability matrix Z ≡ JL as a product
of two matrices: J the symplectic matrix and L a linearization
matrix which depends on the stationary state un and acts on
the spatial part of the perturbation eigenvector wn (further
details are in Appendix A). A NLSM is said to be linearly
stable if the eigenvalues λ of Z are real. The matrix J is
skew symmetric while LT �= L is generally non-Hermitian
for t �= 1. However by using the similarity transforma-
tion L̃ = D−1LD we can show that L̃T = L̃. Here, using
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D = diag(d0, d1, . . . , dN−1, d0, d1, . . . , dN−1) with elements
dn = √

t n, n = 0, . . . , N − 1 allows us to rewrite the stabil-
ity eigenvalue problem [Eq. (11)] as follows:

JL̃

(̃
�a
�̃b

)
= λ

(̃
�a
�̃b

)
, (12)

where �̃a = D−1�a and �̃b = D−1�b. It follows that the matrix
product JL̃ is real and symplectic. Thus the eigenvalues of the
stability problem [Eq. (11)] come in quartets λ, λ∗, −λ and
−λ∗.

In Figs. 2(a), 3(a), and 4(a), the S as a function of C depen-
dence of the representative families of NLSMs also displays
the results of their linear stability analysis. Namely, we mark
stable regions by bold (colored) curves, otherwise unstable.
In the focusing case, we find that the NLSMs are stable in
the vicinity of the linear regime as depicted in Fig. 7 of
Appendix B. The same applies in the neighborhood of the AC
limit, whose stable nature is well shown in Figs. 2(a), 3(a), and
8. These two regions of stability typically sandwich unstable
regions of NLSMs with moderate (and/or high) intensity [see
e.g., Figs. 2(a) and 3(a)]. Further, the sizes of these regions
of instability change with the strength of the nonreciprocity,
t . For instance, looking at the S as a function of C curves of
the first linear mode (q = 1) in Fig. 2(a), we clearly see that
the unstable region is absent for the DNLS model with t = 1
[red curve in Fig. 2(a)], and emerges as soon as t deviates
from unity, e.g., for t = 0.95 depicted by the green curve in
Fig. 2(a). The relevant (instability) effect is considerably more
pronounced for the case of t = 0.4 also shown in the panel.

Regarding the eigenspectrum of the stability matrix, repre-
sentative cases are shown for a stable [Fig. 5(a)] and complex
(oscillatory) unstable [Fig. 5(b)] NLSMs of the family emerg-
ing from the second linear mode with t = 0.6, see the red
curve in Fig. 3(a). The stable mode is taken at C = 0.501
and the unstable one at C = 0.527. In addition, in Fig. 5(c),
we depict the eigenvectors associated with the eigenvalues
of Fig. 5(b) sorted by increasing value of the participa-
tion number (

∑
k |ak|2 + |bk|2)2/

∑
n(|an|2 + |bn|2)2. These

eigenvectors come in pairs and display “skinny”-like profiles
which are a clear manifestation of the features of the HN
model. Furthermore, this can be used to represent the generic
form of a perturbation through which the linear stability of the
NLSMs is defined.

To confirm the stability analysis, we numerically solve the
equations of motion [59–61] of the HN chain [Eq. (1)] using
an initial condition of the form �ψ (τ = 0) = �u + ε �w(τ = 0)
where un is the numerically obtained NLSM and wn(τ = 0) =
an + bn an initial deviation vector with unit norm. Further-
more, we set ε = 3 × 10−3. The time evolution of the stable
NLSM of Fig. 5(a) perturbed along the direction of one of the
eigenvectors of its stability matrix is shown in Fig. 6(a). As
expected the mode preserves its shape throughout the whole
numerical integration. Repeating the same procedure with the
unstable NLSM in Fig. 5(b) of the same family, eventually we
observe that it deforms its shape as shown in Fig. 6(b). In fact,
we see that after the instability sets in, the total intensity of the
field grows substantially, while the state remains localized at
the edge of the lattice at all times. It follows from the above

FIG. 5. Eigenvalues λ of the linear stability problem for the
stationary solutions with (a) C = 0.501 and (b) 0.527 of the family
of NLSMs emerging from the second skin linear mode at constant
energy, red curve in Fig. 3(a). (c) Amplitude, |an|2 + |bn|2, of the
eigenvectors of the eigenvalues in (b) sorted by decreasing partic-
ipation number (see text for details). For clarity, the amplitudes
are rescaled by the maximum at each eigenvector. The dotted and
dashed line indicates the most unstable eigenvectors associated with
eigenvalues with the largest positive and negative imaginary parts
respectively [see (b)].

that the total intensity S [Eq. (9)] is not preserved during the
time evolution. Nevertheless, the transformed quantity SD =∑

n tn|un|2 is an integral of motion, such that these amplitudes
are bounded as long as the lattice is finite.

Similar stability results are also found for the defocusing
case. The exception here consists of the family of NLSMs
arising from the first mode which are always stable as shown
by the blue curve in Fig. 4(a). In fact, these states are known
to act as ground states for the chain, since they minimize the
energy functional of the system [62], as is typically the case in
such self-defocusing settings (both continuum and discrete).

We now finish this section with a dynamical observation
regarding the choice of perturbation in the results of the linear
stability. It is crucial to note that the stability analysis is valid
as long as we perturb the system with skinlike deviations,
�w(τ = 0) as the ones used in Figs. 6(a) and 6(b). Without loss
of generality, a simple counter example is a perturbation of an
otherwise stable NLSM, �u, by a deviation vector �w(τ = 0) =
(0, 0, . . . , eiκN )T , with κn being a random phase uniformly
drawn in the interval [−π, π ]. The time evolution of this
perturbed initial condition �ψ (τ = 0) = �u + ε �w is shown in
Fig. 6(c) for the stable NLSM of Figs. 6(a) and 5(a). Since
this is a stable NLSM, one would expect its dynamics to be
straightforwardly robust, similarly, e.g., to Fig. 6(a). However,
for the choice of perturbation �w, we observe that the shape of
the initial NLSM is greatly modified and after evolving has
moved away from the initial stationary mode.
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FIG. 6. Nonlinear HN lattice dynamics. The initial conditions ψn(τ = 0) = un(τ = 0) + εwn(τ = 0) with ε = 3 × 10−3 and | �w| = 1.
(a) Stable NLSM, un(τ = 0), with C = 0.501 and t = 0.6 from the family of the second (q = 2) linear mode (see Fig. 3) with perturbation
wn(τ = 0) = an + bn constructed with a random sum of eigenvectors of the stability matrix Z = JL [Eq. (11)]. (b) Unstable NLSM, un(τ = 0),
with C = 0.527 and t = 0.6 belonging to the same branch as in panel (a) with perturbation wn(τ = 0) corresponding to the eigenvector of Z
along the most unstable direction. (c) Same as in (a), but for wn(τ = 0) = (0, 0, 0, . . . , 0, eiκN ), with κN = 2.727 being randomly drawn from
[−π, π ]. Note that we have verified that the result of (c) is representative of the dynamics of perturbations with different realizations of the
random phase.

To understand the origin of this outcome, for small ε, we
need to project the perturbation �w = (0, 0, . . . , 1)T into the
linear modes of the HN chain, �w = ∑

q cq�u(0)
q , following the

biorthogonal framework. It follows that the coefficient cq =
�vT (0)

q �w = t−N/2 with q = 1, . . . , N . In the example above, we
find that cq ∼ 450, such that the perturbation strongly excites
all linear modes. Consequently, the amplitude of �w(τ = 0)
exponentially grows in time, while its center of mass shifts
leftward due to the NHSE. As this perturbation moves to the
opposite end of the domain where the NLSM is localized, it
interacts with the latter, driving the system away from the orbit
of the initially stable skin state as seen in Fig. 6(c) as time
evolves. Thus, in this nonlinear HN model, finite perturbations
on the “wrong side” of the domain may have detrimental
effects through their interaction even with stable NLSMs.

IV. CONCLUSIONS AND FUTURE CHALLENGES

We have analytically predicted and numerically obtained
families of nonlinear skin modes (NLSMs) for the nonre-
ciprocal Hatano-Nelson model in the presence of the Kerr
nonlinearity. For the case of focusing nonlinearity, these
modes inherit the property of their linear counterparts and are
localized on the preferred side of the lattice. More particularly,
in this case, nonlinearity is in synergy with nonreciprocity
and it tends to make the modes even more localized than
their linear skin counterparts. Furthermore, we show that the
families of NLSMs emerging from the linear limit, terminate
at the nonlinear extreme of the anticontinuum limit where the
coupling between sites vanishes. The analysis of the stability
of the modes near the two limits enables us to character-
ize their respective stability characteristics and corresponding
eigenvalues. It also allows us to formulate a perturbation
theory framework near these limits. For sufficiently strong
nonreciprocity, we find that the qth family of NLSM will
end up in a configuration of q out-of-phase sites in the anti-
continuum limit. These sites may have holes between them
if t is sufficiently large, while they become consecutive for
values of t that are below a critical threshold. Regarding the
defocusing case, we have found nonlinear solutions which are
still skinny but, however, tend to grow in width as the nonlin-

earity increases. The solution in this regime corresponding to
q = 1 is found to always be stable, and at high amplitudes
it tends to occupy all the (finite) lattice. In addition to the
existence and stability, we have also explored the dynamics of
the corresponding modes and have shown how the instabilities
(e.g., associated with complex eigenvalue quartets) manifest
themselves, as well as the somewhat unusual (for Hermitian
lattices) nature of the impact of a perturbation at the opposite
end to that favored (towards localization) by the value of the
non-Hermitian parameter t .

We believe that our results are relevant to experiments,
offering the possibility to manipulate modes using nonlin-
earity, instead of tuning the nonreciprocal strength (see, e.g.,
Ref. [24]). This will be beneficial for experimental realiza-
tions having limitations on the nonreciprocal coupling. In
addition our results are expected to have an impact in the
already active research of solitons and nonlinear optics [48].
For example the enhanced asymmetry of the NLSMs, which is
tuned by nonlinearity, may be exploited for optical diode func-
tionalities [63]. Here we also note that, a winding number can
be computed from the energy spectrum of the periodic linear
HN lattice. This winding number is nontrivial for t �= 1, with
its sign indicating the location of the skin modes: left/right
edge. Our results clearly suggest that the nonlinear skin modes
inherit the same property and are accumulated at the left/right
of the lattice as their linear counterpart.

While we have provided a systematic analysis of the lin-
ear and the anti-continuum modes of the system, various
questions still remain to be addressed. A detailed analysis of
the nonlinear modes from the anticontinuum limit and their
continuation is worthy of further exploration (cf. Ref. [58]).
Dynamically, the modes that emerge from that limit may
not only feature linear (spectral, exponential) instabilities at
shorter times, but have been also shown to manifest nonlinear
(power-law) instabilities at longer times in the Hermitian case
[64]. It would be worthwhile to explore if such instabilities
are present in the Hatano-Nelson model. In addition, the in-
teractions between nonlinearity and the NHSE are also worth
exploring further in more complex settings, for e.g., including
long range couplings, Kerr nonlinearities involving nearest-
neighbor or gain-saturation induced nonlinearity. Finally, all
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of our analysis has been performed in the one-dimensional
setting, but such models (in their Hermitian form) are well-
known to have intriguing features, such as (discrete) vortical
patterns purely in higher-dimensional settings [45], hence the
impact of the non-Hermitian nature on such features would
also be another important direction to explore. Such directions
are currently under consideration and will be presented in
future publications.
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APPENDIX A: HAMILTONIAN AND STABILITY
MATRICES OF THE HATANO-NELSON MODEL

The explicit expression of the dynamical matrix of the
Hatano-Nelson (HN) lattice model derived from Eq. (3) with
open boundary conditions, i.e., u0 = uN+1 = 0, yields

H =

⎛⎜⎜⎜⎜⎝
0 1 0 0 . . . 0 0
t 0 1 0 . . . 0 0
0 t 0 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . t 0

⎞⎟⎟⎟⎟⎠, (A1)

for unit hopping strength, C = 1, and parameter of nonre-
ciprocity, t ∈ [0, 1), between adjacent sites. When nonlinear-
ity is introduced in the HN model, we find the nonlinear
solutions un at energy E by solving Eq. (2) and investigate
their stability. The dynamics of small perturbation, wn from a
reference nonlinear state, un at energy E , is generated by its
so-called stability matrix,

Z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E − 2g|u1|2 −C 0 . . . 0 0 −g(u1)2 0 . . . 0 0 0
−Ct E − 2g|u2|2 −C . . . 0 0 0 −g(u2)2 . . . 0 0 0

0 −Ct E − 2g|u3|2 . . . 0 0 0 0 . . . 0 0 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...

0 0 0 . . . −Ct E − 2g|uN |2 0 0 . . . 0 0 −g(uN )2

g(u1)2 0 0 . . . 0 0 −E + 2g|u1|2 C . . . 0 0 0
0 g(u2)2 0 . . . 0 0 Ct −E + 2g|u2|2 . . . 0 0 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...

0 0 0 . . . 0 g(uN )2 0 0 . . . 0 Ct −E + 2g|uN |2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(A2)

The Z is a 2N × 2N matrix, with N denoting the total number
of sites of the HN chain. We rewrite this stability matrix in
terms of the product of two operators, Z = JL, where

J =
(

0 IN

−IN 0

)
(A3)

stands for the symplectic matrix, with IN being the N × N
identity matrix and

L = J−1Z, (A4)

which depends on the state un.

APPENDIX B: REGULAR PERTURBATION THEORY:
LINEAR LIMIT

In this section, we perform the RPT in the vicinity of the
linear regime (C = 1) looking at the bifurcation of the linear
modes when the coupling strength C is varied. We expand the
coupling strength as

C = 1 +
∑

n

Cnε
2n = 1 + C1ε

2 + O(ε4), (B1)

in order to retrieve the linear problem at ε = 0. The choice
of this ansatz is based on the fact that by examining the
signs of the coefficients Cn gives the direction followed by the
bifurcation branch. In addition, we also expand the solution

using

un =
∑

k

εku(k−1)
n = εu(0)

n + ε2u(1)
n + ε3u(2)

n + O(ε4). (B2)

Thus, as ε → 0, the amplitude at site n vanishes. Substituting
these expressions into the time-independent HN equations

Eun = C(un+1 + tun−1) + |un|2un, (B3)

leads to

εE (�u(0) + ε�u(1) + ε2�u(2) )

= εH �u(0) + ε2H �u(1) + ε3�u(2) + C1ε
3�u(0)

+ σε3�[�u(0)]�u(0) + O(ε4), (B4)

where H and � are the dynamical matrix of the HN model and
diagonal matrix with nonzero elements � j j = |u(0)

j |2, respec-
tively. Considering E = Eq, i.e., the qth eigenvalue of H and
collecting terms in ε in Eq. (B4), it follows that for the first
two orders:

ε1 : Eq�u(0)
q = H �u(0)

q ,

ε2 : Eq�u(1)
q = H �u(1)

q . (B5)

Equations (B5) are satisfied if, �u(0)
q and �u(1)

q are solutions of
the linear HN model. Consequently, �u(1)

q does not contribute
to the amplitude correction of the nonlinear solutions. This
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FIG. 7. Total intensity against C for families of NLSMs emerg-
ing from the first linear mode for four values of t with t = 0.2, 0.4,
0.6, and 1. Note that in the depicted region (namely, close to the
linear limit) all branches correspond to stable NLSMs. The dashed
curves represent the analytical predictions based on the RPT in the
neighborhood of the linear skin modes. The inset shows the results
of the computation of the rate of growth �S/�C as function of t .

correction in amplitude starts to be observed at order O(ε3),
leading to the nontrivial equations

Eq�u(2)
q = H �u(2)

q + C1H �u(0)
q + σ��u(0)

q . (B6)

Multiplying this equation with the left eigenvector �vq′ leads to

C1 = −σ
�vT (0)�

[
�u(0)

q

]
�u(0)

Eq�vT (0)�u(0)
, (B7)

where we assume the biorthonormalization �vT (0)
q′ �u(0)

q = δq,q′

for this derivation. The full expression of C1 is shown in
Eq. (8). We find that focusing nonlinearity leads to decreasing
values of C, while the opposite holds for the defocusing case.

In addition, the dependence of the intensity S on the hop-
ping C can be obtained from Eq. (B1), assuming that S =
ε2�uT (0)�u(0) and directly compared with the results of the nu-
merical continuation methods. Figure 7 shows, in the focusing
case (σ = +1), the results of the comparison of the families
of NLSMs bifurcating from the first linear modes for various
t values obtained using numerical (bold colored curves) and
RPT (black curves). The plot displays the dependence of
the total intensity as a function of the coupling strengths for
these families and shows a good agreement between the two
results for small amplitude waves. As expected, the deviation
(slowly) increases as we depart from the unit coupling limit,
given the strong dependence of S on C. Furthermore, we also
find that the amplitude of these weakly nonlinear states grows
faster for strongly nonreciprocal chains compared to the ones
with t → 1; see the inset of Fig. 7.

APPENDIX C: REGULAR PERTURBATION THEORY:
ANTICONTINUUM LIMIT

We now apply the RPT to show the existence and stabil-
ity of high amplitude NLSMs when the coupling strength
is varied from the AC (C = 0) limit [45,58,65]. Without
loss of generality, we focus here on the so-called lower or-
der solutions, which arise from initially compact (localized)
states of arbitrary size (width) with M > 2 at the AC limit.
Such NLSMs belong to the families emerging from the linear
modes with t < tc, in line with what was discussed in the main
text. Assuming the ansatz,

C = β + O(β2),

un = ũ(0)
n + βũ(1)

n + O(β2),
(C1)

where β  1, and substituting it into the time-independent
nonlinear HN equations

Eun = C(un+1 + tun−1) + |un|2un, (C2)

we obtain

E
(
ũ(0)

n + βũ(1)
n

) = β
(
ũ(0)

n+1 + t ũ(0)
n−1 + βũ(1)

n+1 + tβũ(1)
n

)
+

[∣∣ũ(0)
n

∣∣2 + 2βũ(0)
n ũ(1)

n

][
ũ(0)

n + βũ(1)
n

]
+ O(β2).

Neglecting the O(β2) and collecting the terms in series of β

leads to

Eũ(0)
n = ∣∣ũ(0)

n

∣∣2
ũ(0)

n , (C3)

at order O(β0). These constitute the discrete equations of the
chain at the AC limit for which oscillators are independent.
As such, the stationary solutions are well known

ũ(0)
n =

√
Eeiθn , (C4)

for the excited (finitely many) sites, while at this leading
order the remaining nodes have ũ(0)

n = 0. Furthermore, since
we focus on real solutions, we impose the phase θn = 0, π ,
which automatically satisfies the corresponding (mass) flux
conditions [58].

For the order O(β1), we have

Eũ(1)
n = (

ũ(0)
n+1 + t ũ(0)

n−1

) + 3
∣∣ũ(0)

n

∣∣2
ũ(1)

n . (C5)

This expression further reduces to

−2Eũ(1)
n = (

ũ(0)
n+1 + t ũ(0)

n−1

)
, (C6)

when considering Eq. (C3). Since we are interested in
NLSMs, we can assume that the initial guess at the AC limit
is located at the left edge of the chain. Consequently, we
write the explicit expression of the first-order correction in
amplitude:

ũ(1)
1 = − e−iθ1

2
√

E
cos (θ2 − θ1),

ũ(1)
n = − e−iθn

2
√

E
[cos (θn+1 − θn) + t cos (θn−1 − θn)],

ũ(1)
M = −e−iθM

2
√

E
t cos (θM−1 − θM ),
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with n = 2, . . . , M − 1. Clearly, the amplitude of the first
order correction is ũ(1)

n and it is inversely proportional to
√

E .
On the other hand, the presence of nonreciprocity through t ,
induces a symmetry breaking at finite coupling.

Having obtained the different high amplitude NLSMs near
the AC limit, we further proceed to characterize their stability.
This is done by calculating the largest eigenvalues λ of the
stability matrix, Z [Eq. (A2)] using as reference states the
nonlinear states of the RPT above. This yields

λ2 = 2Eβγ (1), (C7)

with γ (1) being the first order correction of the largest eigen-
values of M from the AC limit which depends on the number
of excited oscillators, M. Here, we report the results for the
two- (M = 2) and three- (M = 3) site NLSMs. It follows that
for M = 2,

γ (1) = (1 + t )c1, (C8)

while for the case with M = 3,

γ
(1)
± = 1

2

{
(1 + t )(c1 + c2)

±
√

(1 + t )2
[
c2

1 + c2
2

] − 2(1 + t2)c1c2
}
, (C9)

where cn ≡ cos �θn and �θn = θn − θn−1. For the families
arising from the linear modes we have �θn = ±π which,
in turn, can be seen to lead these high amplitude NLSMs
to be generically stable near the AC limit, similarly to their
Hermitian counterparts [45].

Figure 8 shows the dependence of the total intensity on
the coupling strength for the families emerging from the sec-

FIG. 8. Same as in Fig. 7, but for families emerging, near the
AC (rather than the linear) limit, from the second (q = 2), third
(q = 3), and fourth (q = 4) linear skin modes with t = 0.2. Note that
in the depicted region (namely, close to the anticontinuum limit) all
branches correspond to stable NLSMs. The dashed lines represent
the analytical predictions based on the RPT in the vicinity of the AC
limit.

ond, third and fourth linear skin modes at t = 0.2. In the
neighborhood of the AC limit, it is clear that there is good
agreement between the RPT (black curves) and the numerical
continuations (colored curves). Furthermore, the stability of
these high intensity NLSMs calculated from the numerical
simulations clearly demonstrates that these states are linearly
stable (see colored curves in Fig. 8).
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