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Small admixture of nonadiabaticity facilitating topologically protected splitters
and routers via optimizing coupling engineering
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We propose to implement fast and robust quantum state transfer in symmetrical beam splitters and routers
through a specific topological edge channel in splicing Su-Schrieffer-Heeger–like models, for which a small
admixture of nonadiabatic character into evolution facilitates the accelerated adiabatic pumping process to a
great extent. Through optimizing coupling engineering, we develop the acceleration capacity for the symmetrical
beam splitting process, and we investigate robustness enhancement against disorders and environment-induced
losses. Furthermore, the model manifests good scalability and can be extended to a crossed-chain configuration
of realizing a topological router with tunable numbers of output ports. Finally, we discuss the experimentally
feasible implementation in quantum optomechanical systems by alternately assembling optical cavities and
mechanical oscillators, enabling topologically protected splitters and routers of photons or phonons. This work
provides a typical example of a functional quantum device, which could motivate further research into efficient
quantum information processing and the construction of large-scale quantum networks.
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I. INTRODUCTION

Excitation transfers in classical and quantum networks
have extensive applications in different fields, such as co-
herent control of chemical reactions [1], effective exciton
transport in organic molecules [2,3], quantum state transfer,
and large-scale quantum information processing [4,5]. A fun-
damental mission in the construction of large-scale quantum
networks is to achieve efficient and undistorted transmission
of quantum states encoded with information between different
nodes [6–8]. To enhance the resilience of a quantum state
transfer (QST) process to perturbation in actual physical sys-
tems and the decoherence effect induced by the environment,
multiple technical solutions such as tunable coupling [9–11],
quantum error correction [12–14], dark mode assistance [15],
and dissipative tunneling [16] have been proposed. In addition
to these conventional techniques, the discovery of topological
insulators in condensed-matter physics paves the way for effi-
cient and robust quantum information processing [17,18]. Due
to the topological nonequivalence of its energy band structures
in momentum space as compared with a traditional insulator,
topological insulators possess insulating bulk but support con-
ducting states at the boundary of the system simultaneously
[19–22]. The conductive boundary states enable lossless and
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unidirectional propagation of information, which is attributed
to their outstanding insensitivity to local perturbations and
disorder [23,24], making them an excellent platform for high-
fidelity QST [25–28], quantum computing [29,30], quantum
interference [31], and quantum entanglement [32,33].

As the simplest one-dimensional lattice with nontrivial
topological boundary states, the Su-Schrieffer-Heeger (SSH)
model was initially abstracted from polyacetylene to study
the formation of solitons in the 1980s [34], and it has been
intensively exploited to describe spinless fermions hopping on
a one-dimensional lattice with staggered hopping amplitudes
[35–37]. Due to the simple lattice configuration of the SSH
model, it can be mapped easily in various different phys-
ical systems such as optomechanical arrays [27,28,38–40],
quantum dots [41–43], coupled waveguides [44–50], super-
conducting circuits [51–54], coupled-cavity arrays [55,56],
etc., which provides broad experimental feasibility for the
implementation of topologically protected quantum commu-
nication based on the SSH model. In addition, the SSH model
and its generalized counterparts can hold rich forms of edge
states [57–62], based on which researchers have designated
numerous quantum optical devices such as topological beam
splitters [63,64], topological routers [65,66], and topological
lasers [67–71]. Essentially, based on robust excitation trans-
fer via adiabatic evolution of the topological channel states,
these devices generally require a long duration of evolution
for successful QST so as to limit their practical applica-
tions. However, existing methods for fast topological pumping
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concentrate mainly on improving the QST efficiency in the
point-to-point transmission via topologically protected edge
states [50,72–76]. Therefore, it is of urgent need and great
significance to accelerate QST in specific quantum optical
devices based on the SSH model.

In this paper, we propose to realize efficient topologically
protected QST from a central site to two ends in a symmetri-
cal beam splitter based on a succession of two SSH chains
showing distinct topological orders with staggered on-site
potentials. Based on adiabatic theory and numerical analysis
of the instantaneous spectrum, our approach conducts del-
icate modulation on the nearest-neighbor (NN) hopping as
well as staggered on-site potentials using different driving
functions, so that the system can be driven strongly in the
case of a large energy gap between the channel and bulk
states but mildly in the case of a small energy gap. Through
optimization of parameters, we show that the beam splitter
adopting the tangential and three-step modulation schemes
that contain a small admixture of nonadiabatic character into
adiabatic QST can be accelerated by up to seven and ten times,
respectively, over the commonly used trigonometric coun-
terpart. By observing the performance of the tangential and
three-step protocols under diagonal and off-diagonal disorders
and environmental losses, we conclude through numerical
sampling that one drawback accompanying the accelerating
effect for both schemes is the reduced resilience of the system
to off-diagonal disorder, while at the same time the system
still exhibits strong robustness against diagonal disorder and
improved robustness against environment-induced losses for
the tangential and three-step protocols.

Furthermore, we confirm the good scalability of the beam
splitter modulated by the protocols, and we discover that the
proposed model can be extended to a crossed-chain config-
uration to construct a topological router with an adjustable
number of output ports. In addition, we also discuss experi-
mental implementation of the protocol through constructing
optomechanically coupled systems to implement topologi-
cally protected splitters and routers of photons or phonons by
alternately assembling optical cavities and mechanical oscil-
lators. Our work provides a typical example of a functional
quantum device, which could induce further research into
efficient quantum information processing and the construction
of large-scale quantum networks.

II. PHYSICAL MODEL AND ENGINEERING
OF TOPOLOGICAL PUMPING

A. Symmetrical beam splitter via edge channel
in a splicing SSH model

To realize a symmetrical topological splitter, we consider
here an odd-sized SSH model comprised of L = 2N + 1 sites,
as schematically shown in Fig. 1, in which each unit cell
contains two sublattice sites an and bn with the staggered
on-site potentials Va and Vb. For the first half of the lattice
chain, the intracell and intercell NN hopping amplitudes be-
tween two adjacent sites are J1 and J2, respectively, while
for the second half of the lattice chain, intracell and intercell
hopping amplitudes are exchanged, generating a topological
interface at the site aN/2+1. The number of unit cells N is

FIG. 1. Diagrammatic sketch of an odd-sized SSH model struc-
tured by interfacing two SSH chains with distinct topological orders.
Each unit cell contains a pair of a- and b-type sites, as shown in
the yellow dashed rounded rectangle. The size of the SSH chain is
L = 2N + 1 (N being even). The NN hopping rates J1,2 and stag-
gered on-site energies Va,b are mirror-symmetric with respect to the
topological interface.

set to be an even number, so that the topological interface
falls on an a-type site. The lattice chain mentioned above can
be described by the following second-quantized Hamiltonian
(using the natural unit h̄ = 1):

H =
N+1∑

n

Vaa†
nan +

N∑
n

Vbb†
nbn

+
N/2∑
n=1

[
J1a†

nbn + J2a†
n+1bn + H.c.

]

+
N∑

n=N/2+1

[
J2a†

nbn + J1a†
n+1bn + H.c.

]
, (1)

where an (a†
n) and bn (b†

n) are the annihilation (creation) op-
erators of a particle at the nth a-type and b-type sites,
respectively. The first term denotes on-site potentials of two
types of sites, while the second and third terms represent the
NN hopping amplitudes between two adjacent sites for the
first and second halves of the lattice chain. For a finite-sized
lattice chain, when staggered on-site potentials are imposed
on the system, i.e., Va = −Vb, by analytically solving the
eigenvalue equation under the open boundary condition, we
can find a special eigenstate with eigenenergy Va expressed
by distribution of probability amplitudes of the 2N + 1 sites,

|ψVa〉 =
∣∣∣ρa,1eiφa,1 , ρb,1eiφb,1 , . . . , ρa, N

2 +1e
iφ

a, N
2 +1 , . . . ,

× ρb,N eiφb,N , ρa,N+1eiφa,N+1
〉

= ∣∣1, 0, ξ , 0, ξ 2, 0, . . . , 0, ξN/2, 0, . . . , 0, ξ 2, 0, ξ , 1
〉
,

(2)

where ξ = −J1/J2 denotes the decay factor of the on-site
probability amplitude depending on the ratio of J1 and J2. Ob-
viously, when the NN hopping configuration satisfies J1 > J2,
the normalized distribution of this eigenstate is localized at
the interface site, while when J1 < J2 it is localized at two end
sites. Its localized position can be conveniently modulated by
continuously tuning the intracell and intercell hopping ampli-
tudes and can thus serve as a topologically protected quantum
channel. When setting J1/J2 = +∞ initially and J1/J2 = 0
finally, an excitation injected into the interface site can be
transferred to two end sites with equal probabilities. If we
regard the interface site as an input port, and the two end
sites as output ports, then the lattice configuration illustrated
in Fig. 1 is equivalent to a symmetrical beam splitter. It is
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worth noting that such a symmetrical beam splitting process is
topologically protected by the energy gap between the channel
and its adjacent bulk states, thus the symmetrical beam splitter
is immune to inherent defects and inevitable local disorders
residing in the system.

B. Characteristics of driving functions and analysis
of the spectrum

To realize a topologically protected QST from the interface
to the two ends, it is necessary to take a glimpse of the
characteristic of the NN hopping amplitudes, which can be
written in the form [74]

J1(t ) = J+ + J− f (t ), J2(t ) = J+ − J− f (t ), (3)

where J+ = J1(0)+J2(0)
2 , J− = J1(0)−J2(0)

2 . To realize symmetri-
cal beam splitting, we need continuous modulation of J1/J2

from +∞ to 0. We can try to achieve this by dynamic control
of the driving function f (t ) from 1 to −1, so that the intracell
and intercell hopping rates exchange their values between
initial and final instants, namely

J1(0) = J0, J2(0) = 0, J1(t∗) = 0, J2(t∗) = J0. (4)

The implementation of the beam splitting function is essen-
tially based on adiabatic evolution of the topological channel
state. To satisfy the adiabatic limit, a sufficient condition

is
∑

m �=n
〈ψn(t )| ∂H (t )

∂t |ψm (t )〉
|Em (t )−En (t )| � 1, where En, Em, |ψn(t )〉, |ψm(t )〉

are the nth and mth eigenenergies and corresponding eigen-
states obeying the instantaneous eigenequation H (t )|ψn(t )〉 =
En(t )|ψn(t )〉. Generally, the energy gap between the channel
and bulk states is quite small, thus the system should be
driven slowly enough to make the initial state evolve along the
channel state without exciting bulk states. To realize fast beam
splitting which satisfies the adiabatic condition so as to pre-
vent the topological channel state from leaking into the bulk
states, the instantaneous energy gap between the channel and
bulk states should be sufficiently large, and the differentiation
of the Hamiltonian with respect to time, which is proportional
to the slope of the driving function f (t ), should be suffi-
ciently small. One extensively researched method to suppress
nonadiabatic effects and override the adiabatic constraint of
sufficiently long total evolution time needed for a successful
QST is a shortcut to adiabaticity [73], in which carefully
devised counter-adiabatic terms in the Hamiltonian are in-
troduced to cancel nonadiabatic excitations. In this work, we
try to enhance the speed of QST through dynamic control of
the NN hopping in which the system can be driven strongly
in the case of a large energy gap between the channel and
bulk states and mildly in the case of a small energy gap. This
approach only involves engineering of the driving function,
and therefore the evolution process is always accompanied by
slight nonadiabatic transition excitations.

We start our analysis with the commonly used trigonomet-
ric modulation of not only the NN hopping amplitudes but
also on-site energies,

f (t ) = cos

(
πt

t∗

)
, (5a)

J1 = J0

2

(
1 + cos

πt

t∗

)
, (5b)

FIG. 2. (a) Dynamic control of hopping amplitudes (solid blue
and red lines) and staggered on-site energies (magenta dotted line),
as well as evolution of the energy gap between the gap state and the
adjacent bulk state (green dotted line) for the trigonometric protocol.
(b) Instantaneous energy spectrum as a function of the normalized
time t/t∗. (c) Fidelity of the symmetrical topological beam splitter
assisted via edge pumping vs total transfer time t*. (d) Distribution
of the gap state during the evolution process. The chain is comprised
of L = 21 sites.

J2 = J0

2

(
1 − cos

πt

t∗

)
, (5c)

Vb = −Va = J0

√
J2(2t )

J0
= J0 sin

(
πt

t∗

)
, (5d)

where t∗ denotes the total QST time. According to
the definitions in Eqs. (5b) and (5c), J1,2 satisfy J1/J2 =
+∞ and J1/J2 = 0 at the initial and end moments, re-
spectively. Consequently, the system can perform a topo-
logically protected QST from the interface site to two end
sites, corresponding to a symmetrical beam splitting pro-
cess. To examine how faithfully the QST process in the
beam splitter has taken place, we introduce the transfer fi-
delity defined as F = |〈�t | �(t∗)〉|2, i.e., the square of the
modulus of the inner product of the target state |�t 〉 =

1√
2
|1, 0, 0, . . . , 0, 0, 0, . . . , 0, 0, 1〉 and the evolved final state

|�(t∗)〉 which can be obtained by numerically solving the
time-dependent Schrödinger equation. The initial state of the
system |�i〉 = |0, 0, 0, . . . , 0, 1, 0, . . . , 0, 0, 0〉 is specified to
set the interface site as the input port of the beam splitter.
Without a loss of generality, taking the system with a chain
length of L = 21 for example, we plot in Figs. 2(a)–2(d)
modulation of the NN hopping amplitudes and staggered
on-site energies for the trigonometric protocol, evolution
of the corresponding instantaneous energy spectrum, the
QST fidelity of beam splitter versus the total transfer time,
and the distribution of the gap state during the QST pro-
cess, respectively. Comparing the evolution of the gap states
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FIG. 3. (a),(e),(i) Modulation of hopping amplitudes and staggered on-site energy, as well as evolution of energy gap between the gap
state and the adjacent bulk state for the linear protocol in (a), for the tangential protocol in (e), and for the linear protocol in (i). (b),(f),(j)
Instantaneous energy spectrum as a function of the normalized time t/t∗ for the linear protocol in (b), for the tangential protocol in (f), and for
the linear protocol in (j). (c),(g),(k) Fidelity between the ideal final state and the evolved final state versus total transfer time t∗ for the linear
protocol in (c), for the tangential protocol in (g), and for the linear protocol in (k). (d),(h),(l) Distribution of the gap state during the evolution
process for the linear protocol in (d), for the tangential protocol in (h), and for the linear protocol in (l). Fixed total transfer time for the four
protocols are set to be J0t∗ = 1080, 676, 153, 100, respectively. Other parameters take L = 21, α/π = 0.5887 and top/t∗ = 0.4923.

(magenta solid line) in the instantaneous energy spectrum
in Fig. 2(b) and modulation of staggered on-site potentials
(magenta dotted line) in Fig. 2(a), we identify that the gap
state |ψVa〉 evolves along the topological channel in the QST
process. This can be strongly reinforced by the distribution of
the gap state versus the transfer time as illustrated in Fig. 2(d),
in which the state |�i〉 initially injected into the interface
site is transferred to two end sites with equal probabilities.
As noted above, after a finite evolution time, it is hard to
achieve an expected QST with F ≈ 1 due to excessive de-
struction of the adiabatic criterion. To make a comparison in
terms of the speed of QST, we need to set a lower bound
of fidelity. To this end, we specify that symmetrical beam
splitting is successful when the fidelity is stabilized � 0.99.
For the trigonometric protocol, the total transfer time needed
for the fidelity reaching 0.99 is J0t∗ = 1080, as shown in
Fig. 2(c).

To analyze the characteristics of the driving function capa-
ble of accelerating the QST process in the symmetrical beam
splitter, we continue our analysis by considering a simple
example of a linear protocol in which the NN hopping am-
plitudes changes linearly with time,

f (t ) = 1 − 2t

t∗ , (6a)

J1 = J0

(
1 − t

t∗

)
, (6b)

J2 = J0
t

t∗ , (6c)

Vb = −Va = J0

√
J2(2t )

J0
= J0

√
2t

t∗ . (6d)

f (t ) is modulated to vary continuously from 1 to −1,
so symmetrical beam splitting through the topological edge
channel is theoretically attainable. Still for the system with
size L = 21, we plot in Figs. 3(a)–3(d) modulation of the NN
hopping amplitudes and staggered on-site potentials for the
linear protocol, the corresponding instantaneous energy spec-
trum as a function of the normalized time, the QST fidelity
between the ideal final state and the evolved final state versus
the total transfer time, and the distribution of the gap state
during the QST process, respectively. For the linear protocol,
the total transfer time needed to reach 0.99 fidelity is J0t∗ =
676. The improvement of QST efficiency, compared to the
trigonometric protocol, can be reasonably explained through
analyzing modulation of the driving functions and evolution
of the energy gap between the gap state and the adjacent
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bulk state. As illustrated in Figs. 3(a) and 2(a), the system is
driven at a constant rate during the whole evolution process
for the linear protocol, while for the trigonometric protocol
the system is mildly driven for a large energy gap at the initial
stage of evolution, yet later as the band gap decreases, the
driving intensity first increases and then decreases. Therefore,
we can conclude that the trigonometric protocol is in the
wrong direction of energy spectrum manipulation and hence
needs longer total transfer time to achieve high-fidelity QST
and suppress nonadiabatic excitations.

In light of the analysis above, to enhance the speed of QST,
the driving function should be elaborately designed so that the
system can be driven strongly in the case of a large energy gap
between the channel and bulk states and mildly in the case
of a small energy gap. Next, we consider the scenario of a
tangential protocol,

f (t ) = tan
(
πt/Tf + α

)
tan α

, (7a)

J1 = J0

2

(
1 + tan(πt/Tf + α)

tan α

)
, (7b)

J2 = J0

2

(
1 − tan(πt/Tf + α)

tan α

)
, (7c)

−Va = Vb = J0

√
1

2

(
1 − tan(2πt/Tf + α)

tan α

)
, (7d)

where Tf = πt∗
2π−2α

, with free parameter α ∈ ( π
2 , π ). The

tangential parameter can be fine-tuned for systems of different
sizes to increase the efficiency of QST in the symmetrical
beam splitter. Through a simple optimization search within
the parameter scope, we find that for the system of size
L = 21, the optimal tangential parameter for the tangential
protocol is α = 0.5887π and the corresponding transfer time
needed to reach 0.99 fidelity is J0t∗ = 153, as demonstrated
in Fig. 3(g), which is about 86% shorter than the commonly
used trigonometric counterpart. This can be mainly attributed
to the fact that for the tangential protocol, the system is
strongly driven for a large energy gap at the initial stage of
evolution, yet later as the band gap decreases, the driving
intensity first decreases and then increases, as depicted in
Figs. 3(e)–3(f). Although the beam splitting process can be
substantially accelerated through tangential modulation that
makes the adiabatic QST contain a small admixture of nona-
diabatic character, it is worth noting that the parameter values
cannot be taken to the extreme case where the nonadiabaticity
is dominant. For example, for the system with size L = 21
adopting the tangential protocol with α = π/2 + 0.01 and
J0t∗ = 153, Figs. 4(a)–4(d) demonstrate modulation of the
hopping amplitudes and staggered on-site energies for the
tangential protocol, the corresponding instantaneous energy
spectrum versus the normalized time, the QST fidelity versus
the total transfer time, and the distribution of the gap state
during the QST process, respectively. The fidelity oscillates
strongly and does not reach high values at J0t∗ = 153. In
addition, the distribution of gap states at different lattice sites
is chaotic during the evolution process, and the system cannot
achieve symmetrical beam splitting successfully. This is due
to the fact that during most of the evolution process, the

0 100 200 300
0

0.5

1

F
id

el
it

y

tangential

0 0.5 1

1

11

21

L
at

ti
ce

 s
it

e

tangential

0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.5

1
tangential

0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5
tangential

0 0.5 1
-0.75

-0.7

-0.65

(a)

(c) (d)

(b)

FIG. 4. (a) Evolution of hopping amplitudes and staggered on-
site energy (magenta dotted line), as well as the energy gap between
the gap state and the adjacent bulk state (green dotted line) for the
tangential protocol with L = 21, α = π/2 + 0.01, and J0t∗ = 153.
(b) Instantaneous energy spectrum as a function of the normalized
time t/t∗. (c) Fidelity of the symmetrical topological beam splitter
assisted via edge pumping versus total transfer time t∗. (d) Distribu-
tion of the gap state during the evolution process.

channel mode stays at the vicinity of a small band gap, as
shown in Fig. 4(b). Thus, the substantial nonadiabatic exci-
tation dynamics between the channel and bulk states leads
to destruction of the topology edge channel and failure of
symmetrical beam splitting. The common feature of the three
modulation schemes mentioned above is that the sum of NN
hopping amplitudes J1 + J2 remains constant throughout the
state evolution. In the following, we try to examine whether
we could attain a faster QST if such a restriction is lifted.
We check this idea by investigating a three-step protocol, in
which the evolution process can be divided into three stages:
(i) in the first stage, the intracell NN hopping amplitude is kept
at the maximum value, while the intercell NN hopping ampli-
tude increases linearly from zero to this value with a larger
slope compared to the linear protocol; (ii) in the second stage,
the intracell and intercell NN hopping amplitudes remain
constant at the maximum value; (iii) in the third stage, the
intercell NN coupling strength is kept at the maximum value,
while the intracell NN hopping amplitude decreases linearly
to zero, i.e.,

J1 =
{

J0, t � t∗ − top
J0t∗
top

(
1 − t

t∗
)
, t > t∗ − top,

, (8a)

J2 =
{

J0
t

top
, t � top

J0, t > top
, (8b)

Vb = −Va = J0

√
J2(2t )

J0
= J0

√
2t

top
, (8c)
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as illustrated in Fig. 3(i). The initial and final values of the
intracell and intercell NN hopping amplitudes still satisfy the
constraints in Eq. (4), so the system can still function as a
symmetrical beam splitter when adopting such a three-step
modulation protocol. If we keep the mirror symmetry, or in
other words, if it is assumed that the time intervals given
for the intracell (intercell) NN hopping amplitude to decrease
(increase) from initial to final value (and vice versa) is equal,
then the only free parameter in the three-step scheme is the
time interval top of a linear increase or decrease. In fact, even
if we remove the restriction of mirror symmetry and leave two
free parameters for the system adopting either the three-step
protocol or the tangential protocol, it can be verified that
after parameter optimization, the optimal parameter values
will render back the mirror symmetry condition. Through a
simple optimization search within the parameter scope, we
find that for the system of size L = 21, the optimal time of
linear increase (decrease) as a proportion of the total transfer
time for the three-step protocol is β = top/t∗ = 0.4923. We
plot fidelity between the ideal final state and the evolved final
state versus total transfer time t∗ for the three-step protocol
in Fig. 3(k). The total transfer time required for the fidelity
to reach 0.99 is J0t∗ = 100 for the three-step protocol, which
is about 90% shorter than the commonly used trigonometric
counterpart. As depicted in Fig. 3(j), the instantaneous energy
spectrum for the three-step protocol is bent and the mean
value of the channel state is significantly increased. As a
consequence, the timescales that may be considered inversely
proportional to the time average of the eigenenergy of the
channel state decrease substantially. We plot the distribution
of the gap state versus total transfer time in Fig. 3(l). In accor-
dance with theoretical analysis, the channel mode is localized
at the interface site at the beginning instant and localized
at two end sites with equal probability at the final instant.
As shown by bright fringes in Figs. 3(d), 3(h), and 3(l), the
distribution of the topological channel state at odd sites is
elongated in the timescale compared with Fig. 2(d), indicating
stronger nonadiabatic transitions among the channel state and
bulk states under the linear, the tangential, and the three-
step driving functions than the commonly used trigonometric
counterpart.

C. Optimization of the driving functions

The implementation of fast QST via the topological edge
channel in the symmetrical beam splitter is exemplified above
in a system of size L = 21 with the NN hopping ampli-
tudes and staggered on-site potentials being modulated by
the tangential and three-step protocols with fine-tuned tan-
gential and proportional parameters α = 0.5887π and β =
top/t∗ = 0.4923, respectively. For different parameter choices
in the tangential and three-step modulation schemes, apparent
differences in the slopes of the driving functions and the cor-
responding energy gaps between the gap state and its adjacent
bulk state in the instantaneous spectrum will result in different
beam splitting effects. In this section, we provide a detailed
presentation of the parameter optimization process.

We start our quantitative optimizing procedure with the
tangential protocol. As illustrated in Figs. 5(a)–5(d), we in-
vestigate fidelity of the symmetrical topological beam splitter
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FIG. 5. (a)–(d) Fidelity of the symmetrical topological beam
splitter vs the varying α and total transfer time t∗ for the tangential
protocol with chain size (a) L = 21, (b) L = 33, (c) L = 45, and
(d) L = 57. The green and red solid lines represent 0.9 and 0.99
fidelity contour lines, respectively. (e),(f) The numerical scatters
and fitting functions of optimal tangential parameters in (e) and the
corresponding total evolution time needed for 0.99-fidelity in (f) as a
function of the size of the chain.

versus the varying α and total transfer time t∗ for the tangen-
tial protocol with different chain sizes L = 21, 33, 45, and
57, respectively. For larger choices of the tangential parameter
in the scope α ∈ ( π

2 , π ), the total QST duration needed to
implement successful symmetrical beam splitting is positively
correlated with α, which can be attributed to weakened driv-
ing effects in the case of smaller slopes of the modulation
functions. However, as noted in Sec. II B, for extremely small
choices of the parameter α in the range ( π

2 , π ), a long stay
at the vicinity of the closed energy gap during the evolu-
tion process leads to such prominent nonadiabatic excitation
between the modes as well as intense oscillations of each
mode that the time duration for successful QST through the
topological edge channel increases significantly. For a system
with fixed size, we can always find a tradeoff point up to
which the system can be driven strongly enough to implement
the beam splitting function with fast speed, yet gently enough
to preserve the topological edge channel and avoid excessive
nonadiabatic transition effects. For example, for systems with
sizes L = 21, 33, 45, and 57, the optimal α for the tangen-
tial protocol are α/π = 0.5887, 0.5493, 0.5333, and 0.5236,
respectively. By sampling from chains of different sizes, we
plot the optimized tangential parameter and the corresponding
evolution timescale needed for 0.99-fidelity QST as functions
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FIG. 6. (a)–(d) Fidelity of the symmetrical topological beam
splitter vs the varying β [defined as time interval top given for the
hopping rates to increase (decrease) from the initial to the final value
(and vice versa) as a portion of the total transfer time t∗] and total
transfer time t∗ for the three-step protocol with chain size (a) L = 13,
(b) L = 17, (c) L = 21, and (d) L = 25. The green and red solid lines
represent 0.9 and 0.99 fidelity contour lines, respectively. (e),(f) The
numerical scatters and fitting functions of optimal β parameters in (e)
and the corresponding total evolution time needed for 0.99-fidelity in
(f) as a function of the size of the system.

of chain size in Figs. 5(e) and 5(f). Obviously, the tangential
parameter that is negatively correlated to the slope of the driv-
ing function decreases with L, and the corresponding transfer
time should be large enough to satisfy the adiabatic condition
for a longer size of the chain. According to the numerical
samples, αoptimal versus L and t0.99

optimal versus L can be fit-
ted by a quartic function αoptimal = 0.0212 × L4 − 0.0366 ×
L3 + 0.0131 × L2 − 0.041 × L + 1.6715 and a cubic func-
tion J0t0.99

optimal = 0.0011 × L3 − 0.0427 × L2 + 10.696 × L −
52.228, respectively.

Analogously, for the three-step protocol we plot in
Figs. 6(a)–6(d) fidelity of the symmetrical topological beam
splitter with different chain sizes L = 13, 17, 21, 25 in the
parameter space (β, t∗), in which β is defined as the ratio
of time top for a linear increase (decrease) of the hopping
amplitudes to the total transfer time t∗. For larger choices
of the proportional parameter in the scope β ∈ (0, 1), the
total QST time needed to implement successful symmetrical
beam splitting increases with β, which can be explained
by its inverse relationship to the slope of the modulation
function. However, for smaller choices of β, the 0.9 and
0.99 fidelity contour lines manifest strong oscillations for all

values of the total evolution time due to intense nonadiabatic
transitions, which are in general undesirable in the QST
process since high precision is required when tuning the
transfer time. We can always find the optimal parameter β so
as to reach a balance between high-efficiency symmetrical
beam splitting and avoidance of excessive oscillations. For
instance, for systems with sizes L = 13, 17, 21, 25 adopting
the three-step modulation protocol, the optimal proportional
parameters are β = 0.5077, 0.5179, 0.4923, 0.4821,
respectively. As demonstrated in Figs. 6(e) and 6(f), through
parameter optimization for systems of different sizes, optimal
proportional parameter βoptimal versus L as well as correspond-
ing total transfer time t0.99

optimal for the final fidelity reaching
0.99 versus L can be fitted by cubic functions βoptimal =
−6.1628 × 10−7 × L3 + 0.0001 × L2 − 0.0064 × L+0.5827
and J0t0.99

optimal = 0.0032 × L3 + 0.1812 × L2 − 5.0594 × L +
101.17, respectively.

III. DISORDER EFFECT

So far, we have shown several schemes adopting different
modulation of the time-dependent NN hopping amplitudes,
which allow us to introduce a small admixture of nonadi-
abatic transitions so as to accelerate the symmetrical beam
splitting process, and we provided numerical evidence of
high-efficiency QST in the symmetrical beam splitter. Never-
theless, one lingering concern is whether such improvement in
QST speed is realized at the cost of performance degradation
in other aspects, e.g., robustness against disorders and envi-
ronmental losses, to name a few. In practical physical systems,
due to the existence of erroneous physical implementation and
the decoherence effect induced by environmental factors, the
modulation of hopping amplitudes and on-site potentials will
inevitably deviate from our preset. Therefore, it is necessary
to take into account the influence of imperfect factors on
the beam splitting process based on these protocols. In the
following, we consider the influence of three representative
influencing factors: (i) imperfection in hopping amplitudes,
which is generally addressed as off-diagonal disorder because
it distorts the off-diagonal term of the matrix representation
of the Hamiltonian; (ii) defect in on-site potentials, which is
generally addressed as diagonal disorder; (iii) losses of on-site
potentials due to environment-induced decay. To begin with,
we examine the robustness of the four above-mentioned QST
protocols by introducing symmetrical disorders both in hop-
ping amplitudes and on-site potentials, and we discuss their
effects on the performance of the beam splitter. The way each
disorder implementation is imposed on the system parameters
can be described by

Ji
1(2),n → Ji

1(2),n

(
1 + δJi

1(2)

)
,

V i
1(2),n → V i

1(2),n

(
1 + δV i

1(2)

)
, (9)

where the ith pair of samples δJi
1(2) and δV i

1(2) obtain random
real values, uniformly distributed within the range [−ωs, ωs],
in which ωs is termed the disorder strength. δJi

1(2) and δV i
1(2)

are assumed to remain fixed during each evolution process
since static disorder is considered here. Without loss of gener-
ality, we plot in Fig. 7 the statistical distribution of the transfer
fidelity obtained from 10 000 diagonal and off-diagonal
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FIG. 7. Robustness against two types of symmetrical disorders for the four protocols. (a),(b) Statistical distribution of fidelity for the
trigonometric protocol with total transfer time J0t∗ = 1080 under (a) diagonal disorder and (b) off-diagonal disorder. (c),(d) Statistical
distribution of fidelity for the linear protocol with total transfer time J0t∗ = 676 under (c) diagonal disorder and (d) off-diagonal disorder.
(e),(f) Statistical distribution of fidelity for the tangential protocol with total transfer time J0t∗ = 153 and α/π = 0.5887 under (e) diagonal
disorder and (f) off-diagonal disorder. (g),(h) Statistical distribution of fidelity for the three-step protocol with total transfer time J0t∗ = 100
and β = 0.4923 under (g) diagonal disorder and (h) off-diagonal disorder. Other parameters take L = 21 and ωs = 0.2.

disorder realizations adopting the trigonometric, linear, tan-
gential, and three-step protocols, respectively, in a symmet-
rical beam splitter with size L = 21 and a moderate disorder
strength ωs = 0.2. Note that the total transfer time for each
protocol is fixed to the values when each QST reaches 0.99
fidelity under zero disorder so as to inspect whether the
enhancement in efficiency is accompanied by a shortfall of
robustness, as calculated in Sec. II B. We can immediately
notice that the four protocols exhibit impressively high robust-
ness against diagonal disorder, with their fidelity distributions
being concentrated at high values near 0.99. In terms of
robustness against off-diagonal disorder, the tangential and
three-step protocols obviously underperform their trigonomet-
ric and linear counterparts. Such a performance degradation
is due to the strong oscillation arising from intense nonadi-
abatic excitations between the topological channel state and
the bulk states. It is no wonder that the improvements in
QST efficiency of the tangential and three-step protocols are
achieved at the expense of reduced robustness against disorder
because of the fast topological pumping induced by nona-
diabatic transitions and the large average value of hopping
amplitudes for each instant throughout the temporal evolution.
Diagonal and off-diagonal disorders as described in Eq. (9)
are mirror-symmetric with respect to the topological interface.
Next, we will try to reveal the effects of asymmetric disorders.
We consider the case of asymmetric distortions on hopping
amplitudes and on-site potentials. Their effects on the system
parameters can be assumed as

Ji
1(2),n → Ji

1(2),n

(
1 + δJi

1(2),L

)
, n = 1, . . . ,

N

2
,

Ji
1(2),n → Ji

1(2),n

(
1 + δJi

1(2),R

)
, n = N

2
+ 1, . . . , N, (10)

V i
1(2),n → V i

1(2),n

(
1 + δV i

1(2),L

)
, n = 1, . . . ,

N

2
,

V i
1(2),n → V i

1(2),n

(
1 + δV i

1(2),R

)
, n = N

2
+ 1, . . . , N, (11)

where δJi
1(2),L(R) and δV i

1(2),L(R) acquire random real values
from the interval [−ωs, ωs].

As depicted in Fig. 8, for both kinds of asymmetric disor-
ders for the four protocols with L = 21, we plot the average
fidelity of the topological beam splitter and phase difference
of the evolved final state at two end sites as functions of disor-
der strength ωs. The total transfer time for each protocol and
chain size is the same as in Fig. 7, so that our system adopting
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FIG. 8. Average fidelity and phase difference of the evolved final
state at two-end sites vs disorder strength for asymmetric (a) diagonal
and (b) off-diagonal disorders for the four protocols whose total
transfer time is set to be J0t∗ = 1080, 676, 153, 100, respectively.
Other parameters take L = 21, α/π = 0.5887, and β = 0.4923.
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the four protocols can successfully implement 0.99-fidelity
symmetrical beam splitting when disorder strength equals
zero. Each point corresponds to the mean value of fidelity
F̄ = 1

M

∑M
i=1 Fi averaged over M = 100 samples for the sake

of universality. Numerical results reveal that, when asymmet-
ric diagonal disorders are added into the system, it can almost
always function as a symmetrical beam splitter, with insignif-
icant fidelity reduction and phase difference of the evolved
final state at the two end sites as ωs increases. However, in
the case of asymmetric off-diagonal disorders, fidelities for
the four protocols decrease rapidly with an increase of the
disorder strength ωs. The tangential and three-step protocols
manifest weaker robustness against asymmetric off-diagonal
disorder than the trigonometric and linear counterparts, as
shown in Fig. 8(b). In addition, phase differences of the
evolved final state at the two end sites become prominent, and
the deviations will be amplified when ωs increases.

On the other hand, for high-efficiency QST in quantum
networks, the systemic loss is another influencing factor.
When considering the effect of losses in the lattice chain,
the system can be described by the following non-Hermitian
Hamiltonian:

H ′ = H − i
∑

n

[
γ a

n a†
nan + γ b

n b†
nbn

]
, (12)

where H is the lossless Hamiltonian given in Eq. (1), and
γ a,b

n denotes the loss rate of each type of site. For conve-
nience, we assume γ a

n = γ b
n = γ . The dynamics of the system

is governed by the non-Hermitian Liouville equation ρ̇ =
−i(H ′ρ − ρH ′†). We plot in Fig. 9(a) the final fidelity of
QST versus loss rate for a system adopting the four protocols
with size L = 21. The total transfer time for each protocol
is fixed to the values calculated in Sec. II B so that the QST
can be successfully implemented via all protocols when no
loss exists. Compared with the trigonometric protocol, the
fidelities of other protocols have been improved to a different
extent, the tangential and three-step protocols in particular,
with the degree of improvement depending on their respective
total evolution time. We also investigate the performance of
different protocols in chains of different sizes, as illustrated
in Fig. 9(b). The numerical results indicate that the tangential
and three-step protocols manifest a notable amelioration of
robustness against environment-induced loss.

IV. SCALABILITY

In the sections above, we have designated effective
modulation functions for the hopping amplitudes and on-site
potentials in a splicing odd-sized SSH model through
engineering a spectrum for substantially speeding up the QST
in the symmetrical beam splitter. It has also been proven
that the improvement of efficiency comes at the expense of
reduced robustness against off-diagonal disorder. In addition,
a symmetrical beam splitter adopting the aforementioned
protocols exhibits strong robustness against diagonal disorder
and improved robustness against environment-induced losses.
To obtain a more extensive understanding of the crucial
characteristics of a small admixture of nonadiabaticity
facilitating QST protocols proposed in this article, another
significant property is the scalability. In the following, we
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FIG. 9. (a) Final fidelity as a function of loss rate γ for the co-
sine protocol with J0t∗ = 1080, the linear protocol with J0t∗ = 676,
the tangential protocol with J0t∗ = 153 and α/π = 0.5887, and the
three-step protocol with J0t∗ = 100 and β = 0.4923. (b) Fidelity as
a function of the chain size with fixed loss parameter γ = 2.5 ×
10−5J0 for the four protocols. Modulation parameters are fixed at the
optimal values of α/π = 0.5887 and β = 0.4923 for L = 21.

examine the performance of the four protocols when the size
of the system is altered. We plot in Fig. 10 the total transfer
time t∗

0.99 needed for each protocol to achieve symmetrical
beam splitting versus the size of the system, where t∗

0.99 versus
L for the trigonometric, linear, tangential, and three-step

20 30 40 50 60 70 80
0

1

2

3

4

5

6
10

4

Numerical:trigonometric

Numerical:linear

Numerical:tangential

Numerical:step

Fitting:trigonometric

Fitting:linear

Fitting:tangential

Fitting:step

FIG. 10. Numerical results and fitting functions of the total trans-
fer time needed to reach 0.99 fidelity for chains of different sizes for
the trigonometric protocol, the linear protocol, the tangential proto-
col, and the three-step protocol. The parameter α for the tangential
protocol and the parameter β for the three-step protocol are set to be
the optimal values α/π = 0.5887, and β = 0.4923 for the system of
size L = 21, respectively.
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FIG. 11. Schematic illustration of the topological router with
four output ports obtained by cross-linking four even-sized SSH
chains.

protocols can be fitted by cubic functions J0t0.99
trig = 0.104 25 ×

L3 − 0.455 54 × L2 + 28.478 × L − 263.35, J0t0.99
lin =

0.062 827 × L3 + 0.153 05 × L2 + 1.5217 × L − 3.3575,
J0t0.99

tan = 0.014 941 × L3 + 0.276 81 × L2 − 13.189 ×
L + 184.83, and J0t0.99

step = 0.002 95 × L3 + 0.520 58 ×
L2 − 18.431 × L + 253, respectively. Obviously, in the
symmetrical topological beam splitter modulated by the
four protocols, longer total transfer time is needed to realize
0.99-fidelity QST with the augmentation of chain size L.
Nevertheless, it is evident that within the range of chain size
considered here, the four protocols manifest good scalability,
and the efficiency of QST based on the three-step protocol
improves most significantly with length, closely followed by
the tangential protocol, leaving the trigonometric and linear
protocols far behind.

The symmetrical topological beam splitter based on an
odd-sized SSH model with staggered on-site potentials and
a topological interface is structurally equivalent to the sys-
tem attained by connecting two even-sized SSH chains with
distinct topological order through a mutual additional a-type
site. Apart from the size of chains, another important direction
for scalability analysis is to investigate the performance of
the four protocols when the number of constituent chains in
the cross-linking model is altered. We consider a crossed-
chain configuration comprised of K identical even-sized SSH
chains as depicted in Fig. 11 for the case of K = 4. The
second-quantized Hamiltonian of the crossed-chain configu-
ration formed by L = KN + 1 (N ∈ even) sites reads

H ′ =
∑

σ

∑
n

[
Vaaσ†

n aσ
n + Vbbσ†

n bσ
n

]

+
∑

σ

N/2∑
n=1

[
J1aσ†

n bσ
n + J2aσ†

n+1bσ
n + H.c.

]
, (13)

where aσ
n and bσ

n are the annihilation operators of particles at
the nth a- and b-type sites in a single SSH chain indexed by
σ , respectively, and aσ

N/2+1 = aN/2+1 = a0. If we regard the
linking site as an input port, and the K end sites as output
ports, then the crossed-chain configuration is equivalent to a
topological router with a tunable number of output ports, in
which a particle injected into the linking site can be trans-
ferred to K end sites with equal probabilities. Without loss of
generality, we take the scenario of K = 4 depicted in Fig. 11
as a typical example, and we investigate the performance of
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FIG. 12. Final fidelity of the topological router with K = 4 out-
put ports as a function of total transfer time for the trigonometric,
linear, tangential, and three-step protocols. Other parameters take
L = 4N + 1 = 41, α/π = 0.5887, and β = 0.4923.

the four aforementioned protocols in the following. We plot
in Fig. 12 the final fidelity of the topological router with
K = 4 output ports and L = 4N + 1 = 41 as a function of
total transfer time for the trigonometric, linear, tangential,
and three-step protocols. The parameters in the tangential and
three-step protocols are set to be the optimal values in the
symmetrical beam splitter with L = 2N + 1 = 21. The total
transfer time needed for the fidelity to stabilize above 0.99
is J0t∗ = 935 for the trigonometric protocol, J0t∗ = 582 for
the linear protocol, J0t∗ = 147 for the tangential protocol,
and J0t∗ = 266 for the three-step protocol, respectively. The
QST speed for the tangential protocol is still about 84%
faster than the commonly used trigonometric counterpart,
while the total transfer time needed to realize successful
routing for the three-step protocol is only about 72% shorter
than the trigonometric counterpart, which is mainly due to
the failure of the first peak of the fidelity-t∗ curve to reach
0.99. The process of topological routing and the amplitude
distribution of the evolved final state under the basis of

C = (
a1

1, b1
1, . . . , a1

N/2, b1
N/2, a2

1, . . . , b2
N/2, a3

1, . . . , b3
N/2, a4

1,

× . . . , b4
N/2, aN/2+1

)
for the four protocols are illustrated in Fig. 13. Apparently,
the evolved final state is localized at four end sites in the
topological router adopting the four protocols, implying that
all protocols can achieve successful topological routing under
sufficient transfer time, but the tangential and three-step pro-
tocols are obviously faster.

We plot in Fig. 14(a) the total transfer time t∗
0.99 as a

function of the size N of each constituent chain. Obviously,
in the topological router with K = 4 output ports modulated
by the four protocols, longer total transfer time is needed to
realize 0.99-fidelity QST with the augmentation of the size N
of each constituent chain, which is consistent with the results
in the symmetrical beam splitter. In addition, it is evident
that within the range of chain size considered here, the four
protocols manifest good scalability, and the efficiency of QST
based on the three-step protocol improves most significantly
with length in general (with a few exceptions in small choices
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FIG. 13. Distribution of the gap state during the topological routing process and amplitude distribution of the evolved final state for the
trigonometric protocol with total transfer time J0t∗ = 935 in (a) and (b), for the linear protocol with total transfer time J0t∗ = 582 in (c) and
(d), for the tangential protocol with total transfer time J0t∗ = 147 and α/π = 0.5887 in (e) and (f), and for the three-step protocol with total
transfer time J0t∗ = 266 and β = 0.4923 in (g) and (h).

of N), closely followed by the tangential protocol, leaving the
trigonometric and linear protocols far behind.

The total transfer time t∗
0.99 as a function of the number of

constituent chains K is shown in Fig. 14(b), with the size of
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FIG. 14. Total transfer needed to realize 0.99-fidelity QST as a
function of (a) the size of each constituent chain with fixed output
port number K = 4, and (b) the number of output port number with
a fixed number of lattice sites in each constituent chain for the four
protocols. Other parameters take α/π = 0.5887 and β = 0.4923.

each constituent chain being fixed at N = 10. We can notice
that in general, the total transfer time needed to achieve 0.99-
fidelity topological routing for the four protocols decreases
with the augmentation of the number of constituent chains in
the crossed-chain configuration, which can be attributed to a
smaller population distribution that needs to be transferred to
the end site of each constituent chain in the case of a larger
number of chains. However, for the tangential and three-step
protocols, this trend in the t∗

0.99-K curve is broken at several
mutation points. For example, for the three-step protocol, t∗

0.99
increase substantially at K = 4; for the tangential protocol,
t∗
0.99 increase substantially at K = 4, 10, 15, 19. Such a phe-

nomenon can be attributed to strong oscillation in the F–t∗
curves arising from attendance of a small admixture of nona-
diabatic transitions in the tangential and three-step protocols
as the size of the system L = KN + 1 augments rapidly with
K , and nonadiabatic excitations do not suffice to achieve high
fidelity within a short transfer time. The order of the peak
in the F -t∗ curve where fidelity reaches 0.99 and stabilizes
above this value ever since varies with the size L = KN + 1
of the system. Therefore, the tangential and three-step proto-
cols manifest far superior scalability in terms of the size of
each constituent chain N to that in terms of the number of
constituent chains K in the crossed-chain configuration. But
generally, the tangential and three-step protocols exhibit good
scalability and outperform the commonly used trigonometric
counterpart. This good flexibility provides a broad prospect
for applications of topological beam splitters and topological
routers in quantum information distribution and large-scale
quantum information network construction.

V. IMPLEMENTATION OF SPLITTER AND ROUTER
MODELS IN QUANTUM OPTOMECHANICAL ARRAYS

As the simplest one-dimensional topological model, the
SSH model can be readily constructed in diverse quantum
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FIG. 15. Schematic of implementing topologically protected (a) photon and (b) phonon splitters in one-dimensional optomechanical arrays
with photon and phonon inputs, respectively, at the middle site.

systems [27,28,38–56]. Because the proposed models of split-
ters and routers in the present work are splicing SSH chains,
the SSH model could also be easily implemented in vari-
ous quantum systems. In this section, we show how to use
optomechanical systems to construct the proposed model by
alternately assembling optical cavities and mechanical oscil-
lators, enabling topologically protected splitters and routers of
photons or phonons.

Taking the implementation of a photon splitter as an ex-
ample, we consider an alternate assembly of N + 1 optical
cavities and N mechanical oscillators that form a one-
dimensional optomechanical array, as shown in Fig. 15(a),
where each optical cavity is driven by a pumping laser.
Intracell and intercell couplings are realized through the
optomechanical radiation pressure with intracell (intercell)
coupling strength λ j (η j) between the jth mechanical oscilla-
tor and the jth [( j + 1)th] optical cavity. The Hamiltonian of
the optomechanical array shown in Fig. 15(a) can be described
by

Htotal = H0 + Hom + Hd. (14)

H0 is the free Hamiltonian of the optomechanical array

H0 =
N+1∑
j=1

ωc, j ĉ
†
j ĉ j +

N∑
j=1

ωm, j m̂
†
j m̂ j, (15)

where ĉ†
j (ĉ j) and m̂†

j (m̂ j) are creation (annihilation) operators
of the photon and phonon modes in the jth optical cavity and
the jth mechanical oscillator, respectively, with correspond-
ing frequencies ωc, j and ωm, j . The optomechanical radiation
pressure coupling is expressed as

Hom = −
N∑

j=1

(
λ j ĉ

†
j ĉ j − η j ĉ

†
j+1ĉ j+1

)(
m̂†

j + m̂ j
)
, (16)

and Hd denotes the laser-pumping interaction with the optical
cavities

Hd =
N+1∑
j=1

(
� je

−iω j t ĉ†
j + �∗

j e
iω j t ĉ j

)
, (17)

where � j and ω j represent the amplitude and frequency of the
laser driving the jth optical cavity, respectively.

We rotate the frame of the optomechanical array system
with respect to the frequency of the laser driving the jth
optical cavity by a unitary operator exp(−it

∑N+1
j ω j ĉ

†
j ĉ j ),

and the total Hamiltonian becomes

Htot =
N+1∑
j=1

(
δ j ĉ

†
j ĉ j + � j ĉ

†
j + �∗

j ĉ j
) +

N∑
j=1

[
ωm, j m̂

†
j m̂ j

− (
λ j ĉ

†
j ĉ j − η j ĉ

†
j+1ĉ j+1

)(
m̂†

j + m̂ j
)]

, (18)

where δ j = ωc, j − ω j is detuning of the laser driving the jth
optical cavity. Assuming the lasers driving optical cavities are
strong, we can perform the standard linearization process by
rewriting the photon and phonon operators, respectively, as

ĉ j = α j + â j, m̂ j = β j + b̂ j, (19)

for which we define the mean α = 〈ĉ j〉 (β = 〈m̂ j〉) and the
fluctuation operator â j (b̂ j) of the photon (phonon) annihila-
tion operator ĉ j (m̂ j). The linearized Hamiltonian is divided
into three parts, Hlin = H ′

0 + HRW + HCRW, in which H ′
0,

HRW, and HCRW denote the diagonal term, the rotating-wave
term, and the counter-rotating-wave term, respectively, with
expressions

H ′
0 =

N+1∑
j=1

� j â
†
j â j +

N∑
j=1

ωm, j b̂
†
j b̂ j,

HRW =
N∑

j=1

(
λ′

j â
†
j + η′

j â
†
j+1

)
b j + H.c.,

HCRW =
N∑

j=1

(
λ′

j â j + η′
j â j+1

)
b j + H.c., (20)

where λ′
j = −λ jα j and η′

j = η jα j+1 are the effective
strengths of optomechanical couplings, and �1 =
δ1 − λ1(β1 + β∗

1 ), � j∈[2,N] = δ j − λ j (β j + β∗
j ) + η j (β j−1 +

β∗
j−1), and �N+1 = δN+1 + ηN (βN + β∗

N ) are effective cavity
field detunings.
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Under the rotating-wave approximation with conditions
|� j + ωm, j |  |λ′

j | and |� j+1 + ωm, j |  |η′
j |, the counter-

rotating-wave Hamiltonian HCRW can be neglected, and
further performing a rotation operation exp{−it[

∑N+1
j (� −

Va)â†
j â j + ∑N

j (ωm − Vb)b̂†
j b̂ j]}, the effective Hamiltonian of

the optomechanical array system can be written as

Heff =
N+1∑
j=1

Vaâ†
j â j +

N∑
j=1

Vbb̂†
j b̂ j

+
⎡
⎣ N∑

j=1

(
λ′

j â
†
j + η′

j â
†
j+1

)
b j + H.c.

⎤
⎦, (21)

by setting � j = �, ωm, j = ωm, and � − Va = ωm − Vb.
The effective Hamiltonian in Eq. (21) can be equivalent to

the Hamiltonian of the splitter model in Eq. (1) when setting
λ′

j = J1 and η′
j = J2 for j ∈ [1, N/2] but λ′

j = J2 and η′
j = J1

for j ∈ [N/2 + 1, N], which indicates that the photon splitter
model can be constructed by the proposed quantum system
of the optomechanical array shown in Fig. 15(a), where the
modulation of parameters λ′, η′

j , Va, and Vb in the effective
Hamiltonian can be realized by modulating frequencies, am-
plitudes, and phases of the pumping lasers driving optical
cavities [77,78]. In the same way, a phonon splitter can be
implemented by the quantum system of the optomechanical
array shown in Fig. 15(b), and similarly, topologically pro-
tected routers of photons and phonons can also be constructed
by splicing more optomechanical chains.

VI. CONCLUSION

To summarize, we have proposed fast and robust sym-
metrical beam splitters and routers induced by topological
edge channel in an odd-sized SSH model with a topological
interface and staggered on-site potentials. Several protocols
show that a small admixture of nonadiabatic transitions can

accelerate the beam splitting process and provide numerical
evidence of fast-speed QST in the symmetrical beam split-
ter. Through parameter optimization, systems of size L = 21
adopting the tangential and three-step protocols can realize
topologically protected QST from the interface site to two
end sites with 0.99 fidelity in timescales that are 86% and
90% shorter than the commonly used trigonometric coun-
terpart, respectively. We prove through numerical sampling
that decreased time needed for high-efficiency beam splitting
in the tangential and three-step protocols is implemented at
the expense of robustness degradation against off-diagonal
disorders. Besides, the symmetrical beam splitter adopting
the tangential and three-step protocols manifests strong ro-
bustness against diagonal disorder and improved robustness
against environment-induced losses. In addition, we prove
the scalability of the four protocols when the chain size is
varied, and we show a crossed-chain configuration to real-
ize a topological router whose number of outports can be
conveniently adjusted by cross-linking different numbers of
even-sized chains. Finally, we discuss possible implementa-
tions of splitters and routers of photon or phonon through
constructing optomechanically coupled systems by alternately
assembling optical cavities and mechanical oscillators. The
fast and robust topological beam splitter via optimizing cou-
pling engineering exhibits sound properties and provides
a typical example of functional quantum device, which
could trigger further research into efficient quantum informa-
tion processing and the construction of large-scale quantum
networks.
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