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Nonlinear harmonic spectra in the bilayer van der Waals antiferromagnets CrX3
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Bilayer antiferromagnets CrX 3 (X = Cl, Br, and I) are promising materials for spintronics and optoelectronics
that are rooted in their peculiar electronic structures. However, their bands are often hybridized from the
interlayer antiferromagnetic ordering, thus they are difficult to disentangle by traditional methods. In this work,
we show theoretically that nonlinear harmonic spectra can reveal subtle differences in their electronic states.
In contrast to prior nonlinear optical studies, which often use one- or two-photon energies, we systematically
study the wavelength-dependent nonlinear harmonic spectra realized by hundreds of individual dynamical
simulations under changed photon energies. Through turning on and off some excitation channels, we can
pinpoint every dipole-allowed transition that largely contributes to the second and third harmonics. With the
help of momentum matrix elements, highly entangled resonance peaks at a higher energy above the band edge
can be assigned to specific transitions between the valence bands and three separate regions of conduction bands.
Our findings demonstrate a feasible means to detect very complex electronic structures in an important family
of two-dimensional antiferromagnets.
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I. INTRODUCTION

Among the two-dimensional van der Waals (vdW) mag-
netic materials discovered so far, bilayers CrX 3 (X = Cl, Br,
and I) stand out as a key group of materials for spintronics and
optoelectronics. They exhibit remarkable electronic and opti-
cal properties [1–5] that are unparalleled by other materials.
The interlayer magnetic coupling between adjacent ferromag-
netic monolayers of CrX 3 can be manipulated by applying ex-
ternal fields [6–10] or adjusting the stacking patterns [11,12].
Different interlayer magnetic couplings in bilayers CrX 3 are
vital to tunnel magnetoresistance. More notably, bilayers
CrX 3 provide an excellent platform for studying light-matter
interactions such as the magneto-optic Kerr effect [13], mag-
netic circular dichroism [14], polarized photoluminescence
[15], and second-harmonic generation (SHG) [16,17]. Further
progress is not possible without a detailed understanding of
their electronic states. Nonlinear optical techniques such as
SHG, third or high harmonic generation (HHG) [18–23], and
delivering attosecond laser pulses [24] are methods of choice.
Based on the three-step model proposed by Vampa et al.
[25], the valence and conduction bands during excitation are
selected by the wavelength of a laser pulse. They have shown
that the interband contribution is more pronounced with a
shorter wavelength [25]. In ZnO, high harmonic spectra up
to 25th order are generated by a driving laser with wavelength
of 3250 nm, where the maximum cutoff is determined by the
maximum energy difference between the valence and conduc-
tion bands [26]. Decreasing the wavelength to 800 nm, Osika
et al. predict that the cutoff moves to the lower harmonics
[27]. This wavelength dependence is confirmed in a model
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system [28]. In monolayer MoS2, Liu et al. report that the
even and odd harmonics are extended to the 13th order under
a wavelength of 4133 nm. It is found that the even-order
harmonic intensity is much smaller than that of the odd-order
harmonic intensity, implying different excited origins of these
two kinds of harmonics [19]. This conclusion is also theoret-
ically confirmed from the decreased wavelength [29]. All the
above studies reveal that the underlying physics of nonlinear
optical response depends on the wavelength of the applied
laser pulses. In fact, both experimental and theoretical studies
have already pointed out that the wavelength dependence of
harmonics is a key characteristic of solids, which is different
from the cases in atoms and small molecules. In experiments,
Sun et al. extracted SHG susceptibilities |χ (2)

xxx| and |χ (2)
xyy| of bi-

layer CrI3 by scanning 17 excitation wavelengths in the range
from 800 to 1040 nm [16]. At relatively low photon energies,
the intensities of the resonance peaks are weak, but as the
photon energy gradually increases, their intensities become
stronger. However, due to a small number of photon energies
used, some important resonance peaks may be missed, which
is crucial for analyzing the electronic state of the material.
This motivates us to carry out a systematic study.

In this work, we demonstrate that nonlinear harmonics in a
group of bilayers CrX 3 can pinpoint electronic states, state by
state, by scanning the photon energy between 0.3 and 1.4 eV
in steps of 0.01 or 0.02 eV, rather than one- or two-photon en-
ergies often employed. The first peaks of the second-harmonic
spectra, resulting from the real electronic transitions between
the valence and conduction bands, are the onset of the optical
band gaps for each CrX 3. As the band gap gradually decreases
with halogens down the Periodic Table, the peaks redshift.
Above the first peak, complex peaks are attributed to the
resonance transitions. We verify the reliability of the second-
harmonic spectra by continuous wave (cw) SHG. For CrCl3,
the second-harmonic peaks, consisting of three eigenpeaks I,
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II, and III, are associated with the conduction bands between
1.6 and 2.0 eV, called region 1 or R1. These three eigen-
peaks are dominated by the transitions between the valence
bands and the conduction bands in R1. The eigenpeaks result
from the dipole-allowed transitions, where the incident photon
energy matches the energy difference between the valence
and conduction bands, and the corresponding momentum ma-
trix elements are also large. The same is true for the other
two materials CrBr3 and CrI3. In the third-harmonic spectra,
15 transition channels are identified from the same strategy.
Our study demonstrates the potential power of nonlinear har-
monic spectra by mapping out the electronic states through
a systematic scan of many incident photon energies, which
complements the experimental studies [16].

The rest of the paper is arranged as follows. In Sec. II,
we present our theoretical methods. Then, the results and
discussions are given in Sec. III. Section IV focuses on the
third harmonic and the underlying physical picture. Finally,
we conclude our work in Sec. V.

II. THEORETICAL METHODS

We employ the first-principles method combined with the
Liouville equation to simulate the dynamical nonlinear op-
tical response. The electronic structures for bilayers CrX 3

are calculated in the framework of density functional theory
(DFT), which is implemented in WIEN2K [30–32]. We employ
the generalized gradient approximation (GGA) for exchange-
correlation potential in the form of Perdew-Burke-Ernzerhof
(PBE) [33]. We self-consistently solve the Kohn-Sham equa-
tion [34–36] as[

− h̄2

2me
∇2 + Veff (r)

]
ψnk(r) = Enkψnk(r), (1)

where ψnk(r) is the Bloch wave function of band index n
at crystal momentum k, and Enk denotes the corresponding
eigenvalue. The first and second terms of the Hamiltonian
are the kinetic energy and the Kohn-Sham effective potential,
respectively. In our calculations, the plane-wave expansion
is determined by a cutoff parameter Rmt Kmax = 7.0. Dense
k-sample points with 32×32×1 are used to ensure the conver-
gence of the total energy. All calculations are performed under
the spin-orbit coupling (SOC), which are realized through the
second variational method. The experimental lattice constants
of 5.94, 6.30, and 6.87 Å are used for CrCl3, CrBr3, and CrI3,
respectively [2,37,38]. The AB-stacking order is taken for
bilayers CrX 3. The unit cell contains four Cr atoms and twelve
X atoms. The interlayer distances for CrCl3, CrBr3, and CrI3

are 5.76, 6.05, and 6.82 Å, respectively [12]. To mimic the
two-dimensional geometry, a vacuum layer of height 16 Å is
inserted between the bilayers along the z direction.

To obtain HHG, we first construct the density matrix of
the ground state as ρ0 = |ψnk(r)〉〈ψnk(r)|. Then, the dynamic
density matrix can be obtained by numerically solving the
time-dependent Liouville equation [39–41]

ih̄〈mk|∂ρ/∂t |nk〉 = 〈mk|[H, ρ]|nk〉, (2)

where ρ is the time-dependent density matrix, and a generic
Hamiltonian is expressed as H = H0 + HI . H0 is the system
Hamiltonian. HI is the interaction Hamiltonian between the
laser field and the system: HI = e

me
P̂ · A(t ), where P̂ is the

momentum operator, and A(t ) represents the vector poten-
tial of the laser field. The detailed vector potential used in
this work is A(t ) = A0e−t2/τ 2

[cos(ωt )n̂], with n̂ being the
unit vector of laser pulse polarization. The vector potential
amplitude is taken as A0 = 0.03 Vfs/Å and the duration τ

is set to 60 fs. The incident photon energies h̄ω range from
0.3 to 1.4 eV at steps of 0.01 or 0.02 eV. After obtain-
ing the time-dependent density matrix ρ, we can calculate
the expectation value of momentum operator [42] through
P(t ) = �kTr[ρk(t )P̂k] with P̂k = −ih̄∇. Finally, we get the
harmonic spectra by Fourier transforming P(t ) into the fre-
quency domain by P(ω) = ∫ ∞

−∞ P(t )eiωtW (t )dt , with ω being
the harmonic frequency and W (t ) the window function.

III. RESULTS AND DISCUSSIONS

A. Static properties and cw SHG

The crystal structure of bilayers CrX 3 is displayed in
the bottom panel of Fig. 1(a). Bilayers CrX 3 have an S6

point group. There are six symmetry operations that can be
generated by the inversion symmetry I and the threefold
rotational symmetry C3 with the trigonal axis as the z axis.
It should be noted that I is broken from the interlayer anti-
ferromagnetic (AFM) ordering with the magnetization of the
monolayer along the z axis, denoted as AFM-z. Under AFM-z,
the combined symmetry IT is preserved with T being the
time-reversal symmetry. The band structure of CrCl3 is given
in Fig. 1(b). All those bands are doubly degenerate, which
is protected by IT [43]. The valence bands near the Fermi
level are mainly from the Cr-d orbitals. Below them, the bands
mainly come from the Cl-p orbitals. Above the Fermi level,
the conduction bands mainly come from the Cr-d orbitals,
which are grouped into three separate regions R1 − R3.

The nonlinear optical response has the potential to reveal
the physical properties of a material from the light-matter
interaction. The resonant enhancement is crucial to detect
the band structure of a material, and it has the most im-
portant contribution to the susceptibilities [44–46]. Based on
the three-level model as schematically shown in the inset of
Fig. 1(c), the second-order susceptibility of cw SHG can be
obtained as

χ
(2)
i jk = Ne3

2ε0 h̄2

∑
lmn

ρ
(0)
ll

[
ri

lnr j
nmrk

ml

(ωnl − 2ω − iη)(ωml − ω − iη)
+ rk

lnri
nmr j

ml

(ωmn − 2ω − iη)(ωnl + ω + iη)

+ r j
lnri

nmrk
ml

(ωnm + 2ω + iη)(ωml − ω − iη)
+ rk

lnr j
nmri

ml

(ωml + 2ω + iη)(ωnl + ω + iη)

]
+ ( j ↔ k), (3)
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FIG. 1. (a) A schematic diagram of nonlinear optical responses in bilayer CrX 3, which are related to the band structure and the momentum
matrix elements P. |P|40,42 between the bands 40 and 42 is larger than |P|30,42 along �-M in bilayer CrCl3. (b) Orbital-resolved band structure
for bilayer CrCl3, where the red and blue circles represent the Cr-d and Cl-p orbitals, respectively. The band indices 1–68 are marked on the
right side of this figure. The conduction bands are divided into three individual regions R1 − R3. (c) The second-harmonic spectra as a function
of photon energy for bilayer CrCl3. The blue numbers near the peaks represent the peak indices and the red number is the photon energy of the
first peak. The inset shows the conventional double-sided Feynman diagram corresponding to the first term in Eq. (1). The Feynman diagram
has two lines of propagation, one for the |l〉 side of ρ

(0)
ll and the other for the 〈l| side. The red, green, and blue arrows correspond to the input

photon energies h̄ω and h̄ω and the output photon energies 2h̄ω, respectively. The energy conservation relation h̄ω + h̄ω = 2h̄ω is satisfied.
(d) and (e) The second-harmonic spectra as a function of photon energy for bilayers CrBr3 and CrI3, respectively.

where subscripts i, j, and k of χ
(2)
i jk denote the Cartesian

indices, N is the atomic density, ρ
(0)
ll is the initial population

for the state |l〉, ωnl = ωn − ωl , with h̄ωn being the energy
of band n, h̄ω is the photon energy, rln is the matrix element
of the position operator between electronic states |l〉 and |n〉,
and η is the damping parameter [47,48]. The notation ( j ↔ k)
means an exchange of the two Cartesian directions. The first
term in Eq. (1) can be visualized by the double-sided Feynman
diagram, as shown in the inset of Fig. 1(c). The resonant
enhancement can be understood from its denominator, where
two terms (ωnl − 2ω − iη) and (ωml − ω − iη) are involved.
When 2h̄ω = h̄ωnl or h̄ω = h̄ωml , the cw SHG susceptibility
has two typical peaks: one at h̄ωml for the transition |m〉 → |l〉
and the other at half of h̄ωnl for the transition |n〉→ |l〉. Our
peaks in cw SHG originate from these resonant contribu-
tions. However, for the degenerate bands, h̄ωnl and 2h̄ωml

are usually small. This will lead to a divergence when the
photon energy h̄ω approaches zero [49]. We are aware that
the low-frequency divergence in the nonlinear optical re-
sponse depends on the gauges used. Although the velocity

gauge can handle the low-frequency divergence, it is problem-
atic to truncate the summation of multiple bands [50,51]. On
the other hand, the length gauge takes the k derivative instead
of the position operator to account for the local effect of wave
functions, but to numerically compute it is challenging [52].
Thus, our dynamical nonlinear response approach is a better
way to overcome limitations, as discussed below.

B. Dynamical response

In the perturbation theory, the first-order density matrix
ρ (1) is computed as

ih̄ρ̇ (1) = [H0, ρ
(1)] + [HI , ρ

(0)], (4)

where H0 is the unperturbed Hamiltonian and HI is the interac-
tion between the laser field and the system. The second-order
density matrix is given by

ih̄ρ̇ (2) = [H0, ρ
(2)] + [HI , ρ

(1)]. (5)
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(a) (c)

(b) (d)

FIG. 2. (a) The second-harmonic spectra as a function of photon energy at � for bilayer CrCl3. The blue and red numbers near each peak
represent the peak indices and the corresponding photon energies, respectively. (b) The second-harmonic spectra as a function of photon energy
excluding R1 (red line) and R2 (black line) in the conduction bands. (c) The absolute value of the momentum matrix elements |P| for bands
1–68 in bilayer CrCl3. (d) The energy diagram at � for bilayer CrCl3, where the arrows denote transitions with large P, and the letters on the
arrow label the different transitions.

In the interaction picture, ρ (2) is

ρ (2)(t ) = 1

(ih̄)2

∫ t

−∞
dt1

∫ t1

−∞
dt2[HI (t1), [HI (t2), ρ0]]. (6)

Because the system response is in the expectation value of
the momentum operator through the trace Tr(ρP̂), the second-
order response depends on Pi j . Although we numerically
solve the Liouville equation exactly, this dependence is useful
for our purpose, as illustrated in Fig. 1(a), where the nonlin-
ear response is linked to the product of multiple momentum
transition matrix elements. In addition, the nonlinear optical
response based on the time-dependent density matrix has no
limitation of the energy difference between electronic states.
This leads to a relatively accurate result near the zero-photon
frequency. If the excitonic effect is considered, additional res-
onant peaks would appear in the low-frequency range [53,54],
which is beyond the scope of our current work. A normal
practice in HHG is to choose one- or two-photon energies and
then to Fourier transform the expectation value of momentum
operator P(t ) = �kTr[ρk(t )P̂k] with P̂k = −ih̄∇ to get the
spectrum as P(ω) = ∫ ∞

−∞ P(t )eiωt dt . But this has a deficiency.
Because of the energy-time uncertainty relation in the Fourier
transform, one cannot resolve harmonic peaks energetically
down to 0.2 eV, except that one uses an extremely long pulse.

Higher harmonics need many more parameters, and even
within the perturbation theory their formulas become overly
convoluted. This requires a different strategy.

C. Physics of even harmonics

Nonmagnetic bilayers CrX 3 remain centrosymmetric as
their monolayers. If we consider the magnetic structures of
Cr atoms, the inversion symmetry is broken from the inter-
layer antiferromagnetic order as the top layer with spin-up
magnetic orders is changed to the bottom layer with the same
spin-up magnetic orders under the spatial inversion opera-
tor (�r → −�r) and vice versa, as shown in the bottom panel
of Fig. 1(a). Meanwhile, the time-reversal symmetry is also
broken from this antiferromagnetic order. According to the
electric-dipole approximation, the even harmonics are allowed
and also time-nonreciprocal, usually denoted as c-type [16].
Our calculated HH spectra did include both the odd and even
harmonics and confirm this symmetry analysis, as shown in
Fig. S1(c) of the Supplemental Material (SM) [55]. When the
interlayer magnetic order is changed to be ferromagnetic, the
spatial inversion symmetry is recovered as the top layer with
spin-up magnetic orders is identical to the bottom layer under
�r → −�r. As a result, the even harmonics disappear, as shown
in Fig. S1(d) [55]. Thus, these unique magnetic structures in
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bilayers CrX 3 can be used to study the magnetization-
mediated nonlinear harmonic spectra.

D. Photon energy scan

We scan the incident photon energies h̄ω between 0.3 and
1.4 eV in steps of 0.02 eV to obtain nonlinear harmonic spec-
tra. Figure 1(c) shows the second-harmonic spectra of bilayer
CrCl3. When h̄ω is below 0.9 eV, the second-harmonic signals
are negligible. We understand the reason behind this. 2h̄ω

corresponds to the energy 1.8 eV, about 0.1 eV above the band
gap of CrCl3, so only virtual transitions occur, which explains
the negligible harmonic signal. When the photon energy is
above 0.9 eV, the real electron transitions touch the bands.
Thus, the first peak in this second-harmonic spectrum can be
regarded as an indicator of the band gap of a material. This
is also the case for CrBr3 and CrI3, as displayed in Figs. 1(d)
and 1(e).

As the photon energy increases, an additional six peaks
2−7 appear for CrCl3, as shown in Fig. 1(c). Four of them,
peaks 2−4 and 6, are comparable to the first peak. Peaks 5 and
7 have smaller amplitudes and peaks at 1.21 and 1.33 eV, re-
spectively. It should be noted that most of these characteristic
peaks also appear in cw SHG, as discussed in the SM [55] (see
also Refs. [56–60] therein). For CrBr3, the first peak appears
at h̄ω = 0.79eV, as shown in Fig. 1(d), thus 2h̄ω = 1.58eV
is only 0.16 eV above the band gap of 1.42 eV for CrBr3.
Seven peaks, 2 − 8, appear after peak 1. For CrI3, more peaks
appear, but they have much stronger amplitudes, as shown in
Fig. 1(e).

E. Understanding the complex spectra

The peaks in Figs. 1(c)–1(e) are very complex, but they
offer an opportunity to demonstrate the power of harmonic
generation. In the following, we use an even finer step of
0.01 eV to scan the photon energy from 0.3 to 1.4 eV. This
requires 110 separate runs. We focus on the second-harmonic
spectra at �. Figure 2(a) shows that the harmonic amplitude
is small until the photon energy reaches 0.95 eV, where peaks
I−III, called eigenpeaks, appear. Peak I has a small blueshift
compared with the result in Fig. 1(c), because the conduction-
band minimum and the valence-band maximum of CrCl3 are
not at �. Peak II appears at 1.13 eV, and its amplitude is large,
indicating an enhanced transition at this energy difference
of 2.26 eV. Peak III at 1.34 eV is very small. The differ-
ence among these eigenpeak amplitudes implies the different
transitions between the valence and conduction bands. As
seen above, we divide the conduction bands of CrCl3 into
three regions R1 − R3, so we can determine their separate
effects on the harmonic amplitude. We first exclude R1 and
find that peaks I and II disappear, and peak III decreases
[the red line of Fig. 2(b)]. This means that peaks I − III are
significantly affected by the transitions between the valence
bands and conduction bands in R1. Excluding only R2 hardly
changes anything [the black line of Fig. 2(b)]. When only
R3 is excluded, these three peaks are also intact. Therefore,
eigenpeaks I − III in the second-harmonic spectra are mainly
contributed by the transitions between the valence bands and
conduction bands in R1.

TABLE I. Transitions in regions A–G in Fig. 2(c), with large
momentum matrix elements |P|. The corresponding transition en-
ergies match the harmonic energies of the eigenpeaks, where I–III
denote the peaks in the second-harmonic spectra and 1–7 denote
those eigenpeaks in the third-harmonic spectra. �E and h̄ω rep-
resent the transition and photon energies, respectively, in units of
eV. The momentum matrix elements are in units of atomic unit
(a.u.).

Region Transition |P| �E Peak h̄ω (2h̄ω/3h̄ω)

35, 36 → 41, 42 0.03 2.02 (a1) I 0.95 (1.90)
A

31, 32 → 43, 44 0.03 2.16 (a2) II 1.13 (2.26)

B 29, 30 → 47, 48 0.03 2.66 (b) III 1.34 (2.68)

23, 24 → 45, 46 0.18 3.07 (c1) 1 1.02 (3.06)
23, 24 → 47, 48 0.15 3.08 (c2) 1

C
21, 22 → 45, 46 0.13 3.14 (c3) 2 1.05 (3.15)
21, 22 → 47, 48 0.15 3.15 (c4) 2

11, 12 → 41, 42 0.11 3.20 (d1) 2 1.05 (3.15)
D

13, 14 → 43, 44 0.11 3.21 (d2) 2

E 15, 16 → 48, 47 0.09 3.26 (e) 3 1.12 (3.36)

7, 8 → 45, 46 0.11 3.88 ( f1) 6 1.30 (3.90)
7, 8 → 47, 48 0.11 3.89 ( f2) 6

F
5, 6 → 45, 46 0.12 3.98 ( f3) 7 1.33 (3.99)
5, 6 → 47, 48 0.11 3.99 ( f4) 7

27, 28 → 51, 52 0.23 3.46 (g1) 4 1.15 (3.45)
25, 26 → 49, 50 0.20 3.53 (g2) 4

G
27, 28 → 55, 56 0.13 3.56 (g3) 4
25, 26 → 55, 56 0.11 3.65 (g4) 5 1.23 (3.69)

All the above discussions tell us that these eigenpeaks
require resonant transitions, where the incident photon energy
must match the transition energy. However, this is not the
entire story. Another criterion for these eigenpeaks is large
momentum matrix elements between transition bands. We
calculate the momentum matrix elements for those bands that
are indexed in 1–68 for bilayer CrCl3, as shown in Fig. 2(c).
There are seven major regions with large momentum matrix
elements, which are labeled as A, B, C, D, E, F, and G,
respectively. We use lower-case letters a, b, c, d , e, f , and
g for each transition in these regions, respectively. Region A
contains two main transitions a1 and a2, as shown in Fig. 2(d).
a1 is the transition from the valence bands 35 and 36 to the
conduction bands 41 and 42 in R1, where both the valence
and conduction bands are doubly degenerate. In Table I, we
label it as 35, 36 → 41, 42. The transition energy of a1 is
about 2.02 eV, which matches the harmonic energy of peak
I in Fig. 2(a). The photon energy of peak I is about 0.95 eV.
Thus, 2h̄ω gives 1.90 eV and is nearly equal to the transition
energy of a1. This means that peak I comes from the transition
a1. The transition energy of a2 is 2.16 eV, which is close to the
second-harmonic energy of 2.26 eV for peak II. Therefore,
peak II comes from a2. There is only one transition b in
region B, and its transition energy is 2.66 eV. It matches the
second-harmonic energy of 2.68 eV for peak III, so peak III is
dominated by b. The |P| for a1, a2, and b are 0.03 a.u. (see
Table I). This shows that one can attribute each eigenpeak
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FIG. 3. (a) The third-harmonic spectra as a function of photon energy h̄ω at �. The blue and red numbers near each peak represent the
peak indices and the photon energies, respectively. (b) The third-harmonic spectra as a function of photon energy excluding R1 (red line) and
R2 (black line) in the conduction bands. (c) The energy diagram at � for bilayer CrCl3, where the arrows denote transitions with large P, and
the letters on the arrow label different transitions.

down to a specific transition, where the nonzero momentum
matrix elements are essential.

IV. GOING BEYOND THE SECOND ORDER
AND ESTABLISHING A PHYSICAL PICTURE

The above finding is also true for the third-harmonic spec-
tra. From the above discussion, a physical picture is emerging.
The harmonic response R is related to the momentum matrix
products [45]

R(n)(t ) ∝ Pi jP jk · · · Pl f︸ ︷︷ ︸
n

ei(E f −Ei−nh̄ω)t/h̄ · · · , (7)

where n is the order of interaction, and the time-dependent
exponent highlights the most important term only. Obviously
Eq. (5) is overly simplified [45], but it captures the essential
physics of the very complex processes during laser excitation
as already seen in Eq. (4). This response function replaces the
susceptibility χ (n) in the cw limit. The finding is also true
for the third-harmonic spectra. Figure 3(a) shows the third-
harmonic spectra at � for CrCl3, where the photon energy is
scanned from 0.5 to 1.4 eV in steps of 0.01 eV. The first peak
is at 1.02 eV, followed by six additional peaks 2–7. Peaks
1–3, 6, and 7 have comparable amplitudes, while peaks 4
and 5 are relatively small. Figure 3(b) presents two sets of
data: one excludes R1 and the other excludes R2. When only
R1 is excluded (the red line), the original peaks 1, 2, and 3
disappear. Peaks 6 and 7 are largely reduced, while peaks 4
and 5 are almost unchanged. This indicates that peaks 1–3, 6,

and 7 are dominated by the transitions between the valence
bands and conduction bands in R1. When we only exclude R2

(the black line), peaks 1–3, 6, and 7 remain almost unchanged,
but peaks 4 and 5 are sharply reduced. This means that those
transitions are closely related to peaks 4 and 5. When we only
exclude R3, seven peaks are unchanged, indicating that these
peaks are dominated by R1 and R2.

Recall Fig. 2(c), where we have five regions C–G with large
momentum matrix elements |P| between the valence bands
and conduction bands in R1 and R2. Figure 3(c) shows the
energy diagram and five regions from C to G, each of which
has multiple transitions. Region C contains four transitions:
c1, c2, c3, and c4, as shown in Fig. 3(c) and Table I. The
transition energy of c1 is about 3.07 eV, which matches the
third-harmonic energy of 3.06 eV for peak 1 in Fig. 3(a). This
shows that peak 1 mainly comes from the transition c1. The
transition energy of c2 is only 0.01 eV larger than that of
c1, so it also contributes to peak 1. Comparing with c1 and
c2, c3 and c4 have slightly larger transition energies of 3.14
and 3.15 eV, which generate peak 2 with 3h̄ω = 3.15eV. The
absolute value of |P| for c1 and c2 is about 0.18 and 0.15 a.u.
(see Table I). The other two transitions c3 and c4 have almost
equal |P| with the values of 0.13 and 0.15 a.u., respectively,
which explains their comparable amplitudes of peaks 1 and
2, as shown in Fig. 3(a). Region D contains two transitions
d1 and d2, as shown in Fig. 3(c). The corresponding transition
energies are 3.20 and 3.21 eV, which contribute to peak 2. The
transitions d1 and d2 have a smaller |P| of 0.11 a.u. Region
E has only one transition e, and the corresponding transition
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energy is 3.26 eV. It matches the harmonic energy of peak 3,
where 3h̄ω = 3.36eV. The |P| of this transition is 0.09 a.u.,
which is smaller than those of peaks 1 and 2. This leads to the
amplitude of peak 3 being smaller than those of peaks 1 and 2.
For region F, there are four transitions f1 − f4 with the tran-
sition energies of 3.88, 3.89, 3.98, and 3.99 eV, respectively.
These transition energies are close to the harmonic energies
of peaks 6 and 7 with 3h̄ω = 3.90 and 3.99 eV, indicating
that these two peaks are mainly from the transitions f1 − f4

[see Fig. 3(c)]. The corresponding |P| are 0.11, 0.11, 0.12,
and 0.11 a.u., respectively. It is found that the |P| of peaks 6
and 7 is almost equal, so the amplitudes of these two peaks
are also close, as shown in Fig. 3(a).

As shown in Fig. 2(c), we can see that only one region
G related to R2 has large momentum matrix elements. It
mainly contains four transitions g1, g2, g3, and g4, as shown
in Fig. 3(c) and Table I. Their transition energies are 3.46,
3.53, 3.56, and 3.65 eV, respectively. The first three transition
energies almost match the harmonic energy of peak 4 with
3h̄ω = 3.45eV. This indicates that these three transitions con-
tribute to peak 4. This is the reason why peak 4 is so broad.
However, only one transition g4 contributes to peak 5 with
3h̄ω = 3.69eV, giving rise to a narrow peak in comparison
with peak 4. In addition, the momentum matrix elements
|P| of g1 − g3 are 0.23, 0.20, and 0.13 a.u., respectively. By
contrast, g4 has a slightly smaller |P| of 0.11 a.u. As a result,
the amplitude of peak 5 is smaller than that of peak 4.

It is found that the amplitudes of eigenpeaks for the
third-harmonic spectra are larger than those for the second-
harmonic spectra. The appearance of the strong eigenpeaks
needs large |P|. In fact, |P| in regions C–G did have much
larger values than those in regions A and B, as shown in
Fig. 2(c). The underlying physics comes from the fact that
|P| contributing to the second-harmonic spectra are related
to the valence bands 29–40 and the conduction bands in
R1, which are mainly dominated by the same Cr-d orbitals,
as shown in Fig. 1(b). However, |P| for the third-harmonic
spectra involves a larger energy difference. The corresponding

valence bands are much lower, which are mainly from the
Cl-p orbitals and are denoted as bands 1–28 in Fig. 1(b).
Compared to |P| related to the second-harmonic spectra, |P|
for the third-harmonic spectra would be much larger as the
transitions belong to different orbitals. Our calculated mo-
mentum matrix elements confirm this conclusion (see Table I
for more details).

V. CONCLUSIONS

We have demonstrated that the nonlinear harmonic spectra
in a group of bilayers CrX 3 can pinpoint specific transitions
between valence and conduction bands. We scan over 100
photon energies from 0.3 to 1.4 eV in fine steps. We map
out the momentum transition matrix elements and calculate
the corresponding contributions to the harmonic spectra. By
including and excluding some transitions, we can directly
correlate each peak in both the second- and third-harmonic
spectra to a specific transition, which has not been possible
previously because often only one- or two-photon energies
are used. The first resonance peak in the second-harmonic
spectra serves as the onset of the band gap of a material. Com-
plex peaks can now be attributed to the intrinsic electronic
properties. All the results are further confirmed by the third-
harmonic spectra. Our findings unleash the power of nonlinear
harmonic spectra to study the vdW antiferromagnets, and they
are likely to motivate future experimental studies beyond CrI3
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