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We study the one-dimensional non-Hermitian lattices with linearly varying nonreciprocal hopping, where the
non-Hermitian skin effect (NHSE) is found to be dissolved gradually as the strength of nonreciprocity increases.
The energy spectrum under the open boundary condition is composed of real and imaginary eigenenergies when
the nonreciprocal hopping is weak. Interestingly, the real eigenenergies form an equally spaced ladder, and the
corresponding eigenstates are localized at the boundary with a Gaussian distribution due to NHSE. By increasing
the nonreciprocity, the number of real eigenenergies will decrease while more and more eigenenergies become
imaginary. Accompanied by the real-imaginary transition in the spectrum, the eigenstates are shifted from the
boundary into the bulk of the lattice. When the nonreciprocity gets strong enough, the whole spectrum will be
imaginary and the NHSE disappears completely in the system; i.e., all the eigenstates become Gaussian bound
states localized inside the bulk. Our work unveils the exotic properties of non-Hermitian systems with spatially
varying nonreciprocal hopping.
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I. INTRODUCTION

During the past few years, the research on non-Hermitian
physics has undergone rapid development [1–5]. Non-
Hermitian Hamiltonians have been exploited to study a wide
range of classical [6–16] and quantum open systems [17–26],
and have unveiled many exotic phenomena that do not ex-
ist in traditional Hermitian systems. Since the operators are
non-Hermitian, the eigenvalues, such as the eigenenergies of
non-Hermitian Hamiltonians, are commonly complex. How-
ever, for the Hamiltonians that are PT -symmetric [27–29]
or pseudo-Hermitian [30–35], the energy spectra can still
be real.

One of the most exotic phenomena in non-Hermitian
systems is the accumulation of eigenstates at the system’s
boundaries, which is called the non-Hermitian skin effect
(NHSE) [36,37]. The presence of NHSE results in a variety
of phenomena that are absent in the corresponding Hermitian
systems [38–52]. For example, the band topology can be
modified in a significant way, and the conventional principle
of bulk-boundary correspondence in the Hermitian topologi-
cal phase breaks down in non-Hermitian systems due to the
NHSE [36,37,53–61]. As a matter of fact, the emergence of
NHSE itself also has a topological origin, which is closely
connected to the point gap in the spectrum under the periodic
boundary condition (PBC) [62,63]. The spectra of such sys-
tems are sensitive to the change of boundary conditions [64],
which inspires the designing of new quantum sensors [65,66].
In addition, the NHSE also influences the phenomenon of
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Anderson localization significantly [67–73], where the spectra
for extended and localized states exhibit different topolog-
ical structures. So far, most studies mainly focus on the
NHSE induced by homogeneous nonreciprocity in the hop-
ping amplitude of the non-Hermitian lattice model, where
the eigenstates are localized exponentially at the boundaries.
If the nonreciprocity becomes spatially dependent, what will
happen to the eigenenergies, eigenstates, and the NHSE re-
mains unexplored.

To answer these questions, in this paper, we study the one-
dimensional (1D) lattices with linearly varying nonreciprocal
hopping in the nearest-neighboring sites. When the nonre-
ciprocity is weak, the energy spectrum is composed of real and
imaginary eigenenergies. The real eigenenergies are found to
be equally spaced with the eigenstates localized at one end
of the 1D lattice due to the NHSE under the open boundary
condition (OBC). Interestingly, differently from the systems
with constant nonreciprocity, where the eigenstates are ex-
ponentially localized, here the eigenstates show Gaussian
distributions at the boundary. The eigenstates corresponding
to the imaginary eigenenergies are also Gaussian. However,
they are not localized at the boundary of the lattice but be-
come tightly bound states inside the bulk. As the strength
of nonreciprocity increases, the real spectrum will disappear
gradually, and all the eigenenergies become imaginary in the
end. Accompanied by the real-imaginary transition in the
OBC energy spectrum, the NHSE is dissolved completely,
as all the eigenstates are shifted from the boundary into the
bulk and become Gaussian bound states. Our work reveals the
peculiar behaviors of energy spectra, eigenstates, and NHSE
in the non-Hermitian 1D lattices with linearly varying nonre-
ciprocal hopping.
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The rest of the paper is organized as follows. In Sec. II, we
will first introduce the model Hamiltonian of the 1D lattices
with linearly increasing nonreciprocal hopping. In Sec. III,
we discuss the properties of the eigenenergy spectrum of the
system. Then we will further explore the behaviors of the
eigenstates and the dissolution of NHSE in Sec. IV. The last
section (Sec. V) is dedicated to a summary.

II. MODEL HAMILTONIAN

We introduce the 1D nonreciprocal lattice described by the
following Hamiltonian:

H =
L−1∑
j=1

t jc
†
j c j+1 + t ′

jc
†
j+1c j

=
L−1∑
j=1

(t + γ j)c†
j c j+1 + (t − γ j)c†

j+1c j . (1)

Here c j (c†
j ) is the annihilation (creation) operator of spin-

less fermions at the jth site. t j = (t + γ j) and t ′
j = (t − γ j)

are the backward and forward hopping between the nearest-
neighboring sites, which vary linearly along the system. t
is the constant hopping amplitude and is set to be 1 as the
energy unit throughout this paper. γ indicates the strength
of nonreciprocity in the hopping terms. Both γ and t are
real numbers. L is the number of lattice sites. Distinguished

from the models in previous studies, where the nonreciprocal
hopping is homogeneous along the whole lattice, the nonre-
ciprocal hopping here is site-dependent and increases linearly
in the system. In the following sections, we will check how the
linearly increasing nonreciprocity will affect the properties of
the energy spectrum and NHSE in 1D lattices.

III. EIGENENERGY SPECTRUM

We first check the energy spectrum of the system. For a 1D
lattice described by Eq. (1) with L sites under OBC, the model
Hamiltonian can be represented by an L × L tridiagonal ma-
trix. Since the Hamiltonian is non-Hermitian, the eigenvalues
of the matrix are normally complex. Interestingly, for the
Hamiltonian shown in Eq. (1), we find that the eigenenergy
spectrum is composed of real and imaginary energies. To
illustrate this, we can make a similarity transformation to
the matrix by h = D−1HD with D being a diagonal matrix:
D = diag(d1, d2, . . . , dL ), where the diagonal elements for the
case with |t/γ | � L are given by

d j =

⎧⎪⎨
⎪⎩

1, j = 1,√
t ′

j−1t ′
j−2···t ′

1

t j−1t j−2···t1 , j = 2, 3, . . . , L.
(2)

Then the non-Hermitian Hamiltonian matrix H1 with |t/γ | �
L is transformed into the following Hermitian matrix:

h1 = D−1H1D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1 sgn(t1)
√

t1t ′
1 0 · · · 0

sgn(t1)
√

t1t ′
1 V2 sgn(t2)

√
t2t ′

2 · · · 0

0 sgn(t2)
√

t2t ′
2 V3 sgn(t3)

√
t3t ′

3 · · ·
...

...
...

. . .
...

0 0 0 · · · VL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

Thus, the spectrum of the Hamiltonian H1 is purely real. In
Fig. 1(a), we present the eigenenergies of a lattice under OBC
with γ = 0.01 and L = 100, which are all real as expected.

However, when |t/γ | < L, the situation becomes
more complicated. For instance, if we have γ > 0 and

FIG. 1. The eigenenergy spectrum under OBC of the 1D lat-
tice with different linearly increasing nonreciprocity: (a) γ = 0.01,
(b) γ = 0.02, and (c) γ = 0.07. The black circles and red squares
represent the energy spectrum of hA and hB in the matrix h in Eqs. (6)
and (8). The insets in (a) and (b) show the level spacings of the real
(black dots) and imaginary (red dots) eigenenergies, respectively.
Here the lattice size is L = 100.

|t/γ | = m < L with m being a positive integer, then
the backward and forward hopping between the mth and
(m + 1)th site will be tm = t + m j and t ′

m = 0, respectively.
The Hamiltonian can be represented as a block matrix as
follows:

H2 =
(

HA t + m j
0 HB

)
, (4)

where HA is an m × m dimensional matrix and HB is an (L −
m) × (L − m) dimensional matrix. Then the eigenenergies of
H are determined by HA and HB. By performing the similarity
transformation using the D matrix with the following diagonal
elements,

d j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, j = 1,√
t ′

j−1t ′
j−2···t ′

1

t j−1t j−2···t1 , j = 2, 3, . . . , m,

1, j = m + 1,√
t ′

j−1t ′
j−2···t ′

(m+1)

t j−1t j−2···t(m+1)
, j = m + 2, m + 3, . . . , L,

(5)
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FIG. 2. (a) Real and (b) imaginary parts of the eigenenergies of
the 1D lattice under OBC described by Eq. (1) as a function of γ .
(c)–(f) show the energy spectra and the distribution of eigenstates
under OBC and PBC when γ = 0.001. The purple solid line in
(d) represents the Gaussian envelope function. Here the lattice size is
L = 100.

we can transform HA into a Hermitian matrix and HB into a
anti-Hermitian one. The Hamiltonian matrix becomes

h2 = D−1H2D =
(

hA c
0 ihB

)
. (6)

Here, both hA and hB are Hermitian matrices, and c is a
nonzero real number. The eigenenergies of H are given by
the eigenvalues of hA and ihB, which means that there are
m real eigenenergies and (L − m) imaginary eigenenergies.
Figure 1(b) shows the spectrum σ (H ) of the original Hamil-
tonian matrix in Eq. (1) and those of hA and ihB [i.e., σ (hA)
and σ (hB)] when γ = 0.02. We can see that they are perfectly
matched with each other. Notice that if t/γ > L, then we
have hA = h1 and thus the real spectrum of hA still matches
the one of H , as indicated by the black circles and yellow
dots in Fig. 1(a). From the above analysis, we find that in the
case with t/γ being an integer, the spectrum of the 1D lattice
can be divided into two independent parts, where HA (or hA)
represents the part with t ′

j = (t − γ j) < 0 while HB (or hB)
represents the part with negative (t − γ j) > 0. However, if
t/γ is not an integer, the model Hamiltonian is

H3 =
(

HA t + γ s
t − γ s HB

)
, (7)

with s = �t/γ � being the largest integer when (t − γ s) is
positive. Then we can still make the similarity transformation
using the diagonal matrix D with elements shown in Eq. (2) to
transform the model Hamiltonian matrix into a block form as

h3 = D−1H3D =
(

hA a
b ihB

)
, (8)

where a and b are two nonzero numbers. Differently from H2,
now the system cannot be divided into two independent parts.
As we can see from Fig. 1(c), the eigenenergy spectrum still
composes of real and imaginary values, but the eigenvalues of
HA and HB cannot fully match the ones of H3.

In Figs. 2(a) and 2(b), we plot the real and imaginary
parts of the energy spectrum as a function of the nonreciproc-
ity γ . It is clear that when |γ | > t , the spectrum becomes

purely imaginary. The reason is that when the nonreciprocity
γ > t (or γ < −t), all the terms (t − γ j) [or (t + γ j)] in
the Hamiltonian are negative, then the matrix after similarity
transformation is anti-Hermitian, and the spectrum will be
imaginary.

Another interesting feature in the energy spectrum of the
1D lattice with linearly increasing nonreciprocity is that the
real eigenenergies are almost equally spaced. To see that, we
sort the real eigenenergies in order from the smallest to the
largest and get a set {EnR}. As to the imaginary eigenenergies,
we sort them by their imaginary part and get another set {EnI}.
Then the level spacing is defined as

δn,n+1 = En+1 − En, (9)

where En is the nth eigenenergy in {EnR} or {EnI}. The insets
in Figs. 1(a) and 1(b) show the level spacings of the real and
imaginary eigenenergies. We can see that the level spacings
of the real eigenenergies are almost constant, indicating that
the real spectrum forms an equally spaced ladder, similar to
the Wannier-Stark ladder in the 1D lattices imposed by a uni-
form external field [74–76]. On the other hand, the behavior
of the imaginary eigenenergies is quite different, where the
level spacings are not constant. So, the real and imaginary
spectra behave differently in this model. It will be interesting
to check whether the eigenstates corresponding to the real and
imaginary energies will also exhibit distinctive behaviors.

The spectrum of our model also behaves differently from
the non-Hermitian systems with constant nonreciprocity. For
instance, in the 1D Hatano-Nelson model described by the
Hamiltonian HHN = ∑

j (t + γ )c†
j+1c j + (t − γ )c†

j c j+1, the
eigenenergies under OBC are real when |γ | < t but become
imaginary when |γ | > t . The real-imaginary transition only
depends on the strength of γ and is independent of the system
size. Similar behaviors can also be observed in other non-
Hermitian lattices with constant asymmetric hopping such
as the 1D Su-Schrieffer-Heeger model in Ref. [36] and the
mosaic nonreciprocal lattices in Ref. [52]. However, for the
model we studied here, since the nonreciprocal hopping in-
creases linearly and thus depends on the lattice size, the
real-imaginary transition spectrum also becomes size depen-
dent. If both γ and L are small, the spectrum is purely real.
When the system size gets larger than a critical number, there
will be both real and imaginary eigenenergies. If γ becomes
very strong, then the spectrum is purely imaginary. So, the
real-imaginary transition in the spectrum of our model is
determined by nonreciprocity γ and lattice size L.

While we have mainly discussed the cases with γ > 0 in
the above, the method can also be used for the cases with
γ < 0, where similar conclusions will be obtained. So, in the
1D lattices with linearly increasing nonreciprocal hopping, we
find that as the nonreciprocity gets strong or as j increases,
the eigenenergy will undergo a real-imaginary transition. In
the next section, we will further investigate how the lin-
early increasing nonreciprocity will influence the behaviors
of eigenstates and the NHSE.

IV. NHSE AND TIGHTLY BOUND STATES

As the hopping amplitudes between the nearest-
neighboring sites are nonreciprocal in our model, we can
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expect the emergence of NHSE, where the eigenstates
accumulate at the boundaries of the 1D lattice. As shown
in Figs. 2(c) and 2(d), the eigenenergies for lattices with
γ = 0.001 are real, and all the eigenstates are localized at the
left boundary. However, differently from the previous models
with constant nonreciprocity in the hopping terms, such as
the famous Hatano-Nelson model, where the eigenstates
are exponentially localized at the boundary, here we find
that the eigenstates form a Gaussian distribution instead.
More interestingly, the accumulation of eigenstates forms a
Gaussian bell shape, as indicated by the thick solid purple
line in Fig. 2(d), which can be approximately described by a
Gaussian envelope function as

φ(x) = max(|ψ |)e− |γ |
2 (x−x0 )2

, (10)

where max(|ψ |) represents the largest component in the distri-
bution of all eigenstates and x0 is the center of the distribution,
which is 1 here. So, due to the spatially linearly varied feature
in the nonreciprocal hopping, the eigenstates and the NHSE
behave differently from the systems with constant nonre-
ciprocity.

On the other hand, it is well known that the exis-
tence of NHSE under OBC is closely connected to the
point gap in the PBC spectrum [62,63]. In Figs. 2(e) and
2(f), we present the eigenenergies and eigenstates under
PBC. The eigenstates now are extended over the whole lat-
tice. The eigenenergies form a closed loop in the complex
energy plane and can be characterized by a nonzero wind-
ing number. This is the topological origin of the NHSE
under OBC.

As stated in the above section, when the nonreciprocity
increases, the energy spectrum of the system under OBC
will undergo a real-imaginary transition. For the lattice with
size L = 100, the hopping terms (t − γ j) � 0 when 0 < γ <

0.01, and the OBC spectrum will be purely real, as shown in
Fig. 3(a1) for the case with γ = 0.01. The eigenstates accu-
mulate at the left end of the lattice and the whole distribution
can be encapsulated by a Gaussian envelope function as rep-
resented by the solid purple line. If we increase the strength of
nonreciprocity a little, for instance, we set γ = 0.011, then 10
out of the 100 eigenenergies will become imaginary, as shown
in Fig. 3(b1) (notice that there are two imaginary energies
that are very close to zero). Now, the PBC spectrum again
forms a closed loop, implying that there will be NHSE under
OBC. It seems that all eigenstates will still localize at the left
end. However, we find that the eigenstates corresponding to
the imaginary eigenenergies under OBC will not be localized
at the boundary. Instead, they are shifted into the bulk, as
shown in Fig. 3(b2). The larger the imaginary part is, the
further will the corresponding eigenstate be moved away from
the boundary. Moreover, these eigenstates are still Gaussian.
For instance, for the two eigenstates v1,2 with eigenenergies
±0.6864i, the distribution of the wave functions can be well
approximated by using Eq. (10), where max(|ψ |) now is the
largest component of |v1| or |v2| and x0 = 32. Thus the states
with imaginary energies become tightly bound states in the
bulk, and the NHSE is partially dissolved. Even though the
PBC eigenenergies enclose the whole OBC spectrum and the

FIG. 3. (a1)–(c1) Energy spectrum under OBC (yellow solid
dots) and PBC (blue circles) of the 1D lattice with different linearly
increasing nonreciprocal hopping. As the strength of γ increases,
the OBC spectrum undergoes a real-imaginary transition. The dis-
tributions of the corresponding eigenstates under OBC are given in
(a2)–(c2). The eigenstates under OBC are shifted from the bound-
ary into the bulk and become tightly bound states as the real
eigenenergies change to imaginary ones. The purple dots represent
the values of the Gaussian function at jth sites, which are well
matched with the eigenstates with eigenenergies ±0.6864i. Other
parameters: L = 100.

point gap still exists, not all the eigenstates are accumulated at
the boundary under OBC.

If we increase the strength of the nonreciprocity in the
hopping terms further, then more and more eigenenergies
under OBC will become imaginary. Correspondingly, more
and more eigenstates will be shifted into the bulk as a tightly
bound state, as shown in Fig. 3(c). Notice that in this case,
some of the eigenenergies under PBC also become imaginary.
When γ becomes strong enough, all the eigenenergies become
imaginary, and the PBC spectrum will be identical to the OBC
spectrum. The closed loop formed by the PBC eigenenergies
disappears, and there is no point gap anymore. Accordingly,
no states will be localized at the end of the 1D lattice under
OBC; i.e., the NHSE totally disappears. The disappearance of
NHSE can be qualitatively understood as follows. When γ is
very strong, the constant term t in the forward and backward
hopping can be ignored. Then the hopping amplitudes are al-
most the same for the two directions, leading to the dissolution
of NHSE. So, by tuning the strength of the linearly increasing
nonreciprocity, the NHSE can be dissolved gradually, which
is accompanied by the real-imaginary transition in the energy
spectrum under OBC.

The behaviors of the eigenstates of our model described
above are totally different from the 1D lattice with con-
stant nonreciprocity, where the eigenstates are localized at
the boundaries exponentially under OBC. The situation also
differs from the system with disorders, where localized eigen-
states arise in bulk due to the Anderson localization phase
transition. The model studied here is disorder-free. The emer-
gence of tightly bound states is similar to the Wannier-Stark
(WS) localization in 1D lattices with a uniform external field
[74–76], which results in a linear variation in the on-site
potential in the model Hamiltonian. It is known that in the
WS localization phenomenon, the eigenenergies will form an
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FIG. 4. The distribution of the eigenstates with real eigenener-
gies of the 1D nonreciprocal lattice when (a) γ = 0.02 and (b) γ =
0.021. The lattice size here is L = 100.

equally spaced ladder, and the eigenstates are tightly bound
states. However, our model differs from the WS Hamiltonian
in that the linear variation is only added in the hopping terms
instead of the on-site terms. Moreover, the bound states in the
WS localization are localized inside the bulk, which is not
the case for our model since the linearly increasing hopping
is asymmetric and the bound states can be localized at the
boundary by NHSE. Here the more peculiar feature is that
the equally spaced ladder only exists in the real spectrum
with the corresponding eigenstates localized at the boundary
due to NHSE, while the tightly bound states in the bulk have
imaginary eigenenergies. In this sense, the ladder in the spec-
trum and the tightly bound states in the bulk are separated in
our model.

On the other hand, by taking a more careful investigation
of the eigenstates with real eigenenergies, we can find that
the behaviors of these states localized at the boundary depend
on whether |t/γ | is an integer or not. If we have |t/γ | =
m < L, the Hamiltonian matrix takes the form of Eq. (4),
where the eigenenergies are determined by HA and HB. Let
us further show that the eigenstates for the real eigenenergies
are also only determined by HA. In Fig. 4(a), we present
the distribution of one of the eigenstates with real energy
for H2 with γ = 0.02 and L = 100. We can see that for
j � 51, the jth component of the eigenstate becomes zero,
meaning that the eigenstates with real eigenenergies in this
case are fully restricted in the region with j � m. These states
are also the eigenstates of HA. To see this, suppose that ψA

is the eigenstate of HA with eigenenergy EA; then we can
construct a state vector as ψ = (ψA 0)T and we can prove
that H2ψ = EAψ . Thus, the eigenenergies and eigenstates are
the same for HA and H2, and they are not dependent on the
rest of the lattice at all. However, if t/γ is not an integer,
then such decomposition will not hold. In Fig. 4(b), we also
present the profile of one eigenstate with real energy from
the system with γ = 0.021 and L = 100. We can find that
components of the state at the lattice sites with j > �t/γ �
are very small but not zeros; thus they cannot be taken as an
independent part.

Since the nonreciprocal hopping increases linearly with j,
there will always be negative hopping terms in the model
Hamiltonian, as long as the lattice is long enough. Thus
in the thermodynamic limit, there will always be imaginary
eigenenergies in the spectrum with the corresponding eigen-

FIG. 5. Energy spectra of the 1D lattice with γ = 0.01 and dif-
ferent sizes: (a1) L = 200, (b1) L = 400. The yellow solid dots and
blue circles represent the OBC and PBC spectra, respectively. (a2)
and (b2) show the corresponding eigenstates under OBC.

states shifted from the boundary into the bulk. In Fig. 5, we
present the energy spectrum and the profile of eigenstates for
the 1D lattice with L = 200 and 400, respectively. Here, the
nonreciprocity γ = 0.01. The hopping between the first 100
sites will be positive, while the rest of the forward hopping
terms are negative. Then some of the eigenstates will be local-
ized at the boundary due to NHSE, and the others are tightly
bound states in the bulk. Moreover, according to the above
analysis, as t/γ = 100 is an integer, the real eigenenergies
and the corresponding eigenstates are only determined by the
first 100 sites.

V. SUMMARY

In this paper, we study the 1D non-Hermitian lattices
with linearly increasing nonreciprocal hopping between the
nearest-neighboring sites. We find that due to the spatially
varying nonreciprocity, the eigenenergies and eigenstates
behave quite differently from those of non-Hermitian systems
with constant nonreciprocity. When the nonreciprocity is
weak, some of the eigenenergies under OBC remain real and
form an equally spaced ladder. The corresponding eigenstates
are localized at one end of the 1D lattice due to the NHSE and
exhibit a Gaussian distribution. The rest of the eigenenergies
are imaginary with the eigenstates shifted from the boundary
into the bulk and forming tightly bound states. As the strength
of nonreciprocity increases, the energy spectrum undergoes
a real-imaginary transition, accompanied by the shifting of
eigenstates from the boundary to the bulk. Thus, the NHSE
is dissolved gradually. When the nonreciprocity becomes
strong enough, there will be no NHSE in the system, and
all the states are Gaussian bound states in the bulk. It is
quite interesting to see that the increment in nonreciprocal
hopping does not necessarily lead to the enhancement of
NHSE. On the contrary, the model we studied here shows that
the linear variation in the nonreciprocal hopping terms can

094208-5



HOU, XIAO, LÜ, AND ZENG PHYSICAL REVIEW B 109, 094208 (2024)

dissolve the NHSE. Our work reveals the exotic properties of
non-Hermitian lattices with spatially varying nonreciprocity
and opens a door for future studies on such systems. As
to the experimental realization, it has been reported that
nonreciprocal hopping can be realized by using photonic
coupled resonant optical waveguides, where judicious optical
gain and loss elements in the coupling link rings can be
designed [77]. The variation in the hopping terms can be
realized by tuning the distance between the neighboring
waveguides.
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