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Absence of localization in weakly interacting Floquet circuits
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We present a family of Floquet circuits that can interpolate between noninteracting qubits, free propagation,
generic interacting, and dual-unitary dynamics. We identify the operator entanglement entropy of the two-qubit
gate as a good quantitative measure of the interaction strength. We test the persistence of localization in the
vicinity of the noninteracting point by probing spectral statistics, decay of autocorrelators, and measuring
entanglement growth. The finite-size analysis suggests that the many-body localized regime does not persist
in the thermodynamic limit. Instead, our results are compatible with an integrability-breaking phenomenon.
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I. INTRODUCTION

Thermalization of quantum many-body systems has been
an active topic of research in recent years [1–3]. It is now
known that generic interacting systems reach an equilibrium
state that can be described by a statistical mechanics ensem-
ble [4–6]. Such systems show quantum chaotic dynamics,
which encompasses several dynamical and static traits [7,8].
There are two nongeneric cases where the dynamics is not
expected to be chaotic: (i) Noninteracting systems can show
free propagation or get localized in the presence of disorder,
the latest being called Anderson localization [9]. (ii) Interact-
ing integrable systems whose extensive number of conserved
quantities constrained their dynamics, giving rise to a special
type of thermalization [10]. When integrability is perturbed
in an extensive manner, quantum chaos is expected to set in
the long run and the system thermalizes [8,11–14]. However,
in recent years, it was shown that strong disorder potentials
may cause the breakdown of thermalization, the so-called
many-body localization (MBL) [15–17]. This is described as
an ergodicity-breaking transition at finite interaction strength
and disorder. In this regime, quasilocal conserved quantities
[18,19] are stabilized, leading to emergent integrability out of
an initially quantum chaotic system. There are lots of evidence
of MBL in systems of moderate size [20,21] but, recently, the
fate of MBL in the thermodynamic limit has been put into
question [22–25] and spark debates on the scaling of the criti-
cal disorder and possible delocalization mechanisms [26–32].

*hahn@pks.mpg.de
†colmenarez@physik.rwth-aachen.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by Max Planck Society.

An interesting question arises at the intersection of the
dynamical regimes exposed above: How stable are Anderson
localized systems to small interactions? On the one hand,
any small interactions are expected to drive the system to-
wards thermal equilibrium, on the other hand, disorder may
overcome the interactions and the system becomes MBL. In
Ref. [33] the authors studied a model where the MBL persists
at small enough interactions. The critical value of the localiza-
tion length is the one expected from the avalanche mechanism
[34,35]. In Ref. [36] it is shown that small interactions are not
effectively perturbing the Anderson localized orbitals when
the disorder strength is large. In this work, we study the local-
ization and delocalization transition in a maximally localized
system subjected to small and medium-strength interactions.

Most of the studies that address the strong disorder and
weak interaction limit focus on Hamiltonian systems so
far. Here, we present a family of Floquet circuits that can
interpolate between noninteracting qubits and strongly in-
teracting systems. In this work, we carefully investigate the
finite-size scaling of the putative localization-delocalization
transition by analyzing various spectral and dynamical quan-
tities [17,18,21,37–42]. Our results suggest that there exists
no MBL phase for our system in the thermodynamic limit.
Instead, our numerics suggest a finite-size crossover, rem-
iniscent of integrability-breaking phenomena [43] in clean
systems.

The structure of the paper is as follows: In Sec. II, we
introduce our Floquet model and the quantities we use to
study the onset of thermalization. In Sec. III, we present our
results for various commonly studied quantities in the field,
together with a finite-size scaling analysis. Finally in Sec. IV
we discuss the implications and perspectives of our work.

II. MODEL AND OBSERVABLES

Before we present our results, we provide technical details
about our model and different quantities to detect signatures of
the MBL regime. In the following work, we study a family of
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FIG. 1. Diagrammatic notation of the unitary defined in Eq. (3).
The single-qubit gates ui and wi introduce spatial disorder to the
system, while the interaction between neighboring qubit is mediated
by the two-qubit gate G(c).

Floquet models U (c) shown in Fig. 1, defined by the three pa-
rameters c = (c1, c2, c3). The single-qubit unitaries ui and vi

are independently drawn from the Haar measure and introduce
the spatial disorder of the model. The two-qubit gates G(c) are
determined by three parameters c = (c1, c2, c3) and are fixed
for the entire circuit. The two-qubit unitary G(c) is defined in
Sec. II A and it is shown there how it naturally appears in a
classification of two-qubit gates.

After that, the family of Floquet models is introduced in
Sec. II B, together with a description of special parameter
choices c into the literature. Furthermore, we present a possi-
ble characterization for the “interaction strength” of two-qubit
gates in terms of the gate operator entanglement in Sec. II C.
This section is closed with a description of the various mea-
sures used in this work to characterize the finite-size scaling of
the localization-delocalization transition in Secs. II D and II E.

A. Classification of two-qubit gates

For any two-qubit gate U2, there exist general single-qubit
gates u1, u2, v1, and v2 and a two-qubit gate of the form [with
c = (c1, c2, c3)]

G(c) = exp
[
−i

π

2
(c1σ

x ⊗ σ x + c2σ
y ⊗ σ y + c3σ

z ⊗ σ z )
]
,

(1)

such that it can be decomposed as [44]

U2 = (u1 ⊗ u2)G(c)(v1 ⊗ v2). (2)

Here σα with α = x, y, z are the Pauli operators acting on each
qubit.

Restricting to the subset 0.5 � c1 � c2 � c3 � 0, this al-
lows for a classification of all two-qubit gates in terms of the
vector c: Two gates which are described by the same vector c
are equivalent to each other up to single-qubit gates [45,46].

The space enclosed by the independent set of c is known
as the Weyl chamber [47–49] and indicated by the purple
tetrahedron in Fig. 2. There are a few special points and lines
[45] (see Fig. 2):

(1) c1 = c2 = c3 = 0 corresponds to independent single-
qubit rotations.

(2) c1 = c2 = c3 = 0.5 is the equivalence class of the
SWAP gate up to single-qubit rotations.

(3) c1 = c2 = 0.5 and c3 � 0 denote the family of dual-
unitary gates (shown as an orange line in Fig. 2).

(4) c1 = 0.5 and c2 = c3 = 0 is the CNOT gate up to
single-qubit rotations.

FIG. 2. Parametrization of different equivalence classes for two-
qubit gates: Each two-qubit gate is uniquely determined up to
single-qubit unitaries by three parameters 0 � c3 � c2 � c1 � 0.5
(purple tetrahedron) that form the Weyl chamber. Colored points
indicate common gates. The dashed lines show the corresponding
families of two-qubit gates defined in Sec. II B.

Since any two-qubit gate corresponds to a specific point
of the Weyl chamber, the entanglement properties of each
gate [Eq. (2)] are uniquely determined by the vector
c = (c1, c2, c3) [45,46,50], as will be illustrated in Sec. II C.

B. Floquet circuit model

The characterization of two-qubit unitaries by means of
the gate G(c) allows us to introduce the following family of
Floquet circuits:

U (c) =
L−1∏
i=0

wi

L/2−2∏
k=0

G(c)2k+1,2k+2

L−1∏
i=0

ui

L/2−1∏
k=0

G(c)2k,2k+1.

(3)

A diagrammatic representation of this circuit is shown in
Fig. 1: the gates ui and wi are single-qubit rotations drawn
from the Haar measure. They act as a spatial disorder. The
gate G(c) is defined in Eq. (1). All bonds have the same set
of parameters c = (c1, c2, c3). The Floquet dynamics is given
by repeatedly applying U [Eq. (3)], thus, the Floquet circuit
ensemble is determined by the vector c.

A few special cases of this model have been already studied
in the literature: The case of space-time dual-unitary circuits
c1 = c2 = 0.5, c3 � 0 (see orange dashed line in Fig. 2) has
been extensively studied [51,52]. These circuits are quantum
chaotic despite being exactly solvable, which makes them
special in the study of thermalization [53–60]. For instance,
they are shown to saturate bounds on information scram-
bling [57,61–63]. A random version of this circuit, different
single-qubit gates at each time step, was studied in Ref. [64],
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the authors found that the fastest scrambler quantum circuit,
i.e., highest entanglement rate production, are random circuits
with c1 = c2 = 0.5 and c3 � 0.

The vicinity of the noninteracting point c1 = c2 = c3 = 0
is less explored. A natural question is whether the system
gets many-body localized [2,65] for small finite values of
the coefficients (c1, c2, c3). In principle, there are multiple
possible choices for c that can be studied starting from the
origin. We focus on three lines:

(1) SWAP line: it is determined by c1 = c2 = c3 with
0 < c1 < 0.5 (see Fig. 2). It interpolates between single-qubit
rotations (c1 = 0) and the SWAP gate (c1 = 0.5).

(2) CNOT line: denoted by c2 = c3 = 0 and 0 < c1 < 0.5,
this line ends on a CNOT gate-based circuit.

(3) The imaginary SWAP (iSWAP) [66] line given by
c3 = 0, c1 = c2, and 0 < c1 < 0.5 that ends on the imaginary-
SWAP gate c1 = c2 = 0.5.

In Ref. [67] the authors report MBL for small coef-
ficients on the SWAP line. Aside from the three lines
mentioned above, we study a subset c = (c1, c2, c3) with
c1, c2 ∈ (0.02, 0.28) and c3 ∈ (0.0, 0.18) in order to test the
generality of the chosen lines and possible links between
long-time dynamics and two-qubit gate invariants.

C. Two-qubit gate entanglement

As mentioned in previous sections, a possible quantity to
characterize the “interaction strength” in the introduced class
of Floquet models is by means of their operator Schmidt
decomposition [50]:

U2 =
4∑

l=1

λl (Al ⊗ Bl ), (4)

where Al and Bl are orthonormal operators for the correspond-
ing single-qubit spaces. This is analogous to the Schmidt
decomposition of states. The Schmidt coefficients λl are nor-
malized, i.e.,

∑4
l=1 λl = 1. It turns out that two-qubit gates

[Eq. (2)] that are different only in single-qubit rotations will
have the same set of Schmidt coefficients [50]. Henceforth,
the set (c1, c2, c3) uniquely determines any function of the
Schmidt coefficients. In the following, we use the second
Renyi entropy [45,50] which allows us to define the operator
entanglement per gate as

s(c) = − ln

(
4∑

l=1

λ2
l

)
. (5)

There are a few remarks with respect to the operator en-
tanglement for some regions in the Weyl chamber. First,
the line c1 = c2 = 0.5, c3 < 0.5 has the largest possible
s(c) = 2 log 2 [50]. They are the building block of so-called
dual-unitary circuits [61,62,68], which exhibit the fastest
scrambling in the family of random circuits [63,64]. Recently,
it was shown that after perturbing the dual-unitary point the
gate operator entanglement plays a crucial role in recover-
ing the more generic quantum chaotic behavior [69]. This
motivates our choice to study dynamical signatures of the
localization-delocalization transition as a function of the op-
erator entanglement of the two-qubit gate they consist of.

The operator entanglement at any point of the Weyl cham-
ber is given by [50]

s(c) = − ln[P(c)/32], (6)

with

P(c) = 14 + 4 cos(2πc1) + 4 cos(2πc2) + 4 cos(2πc3)

+ cos[2π (c1 − c2)] + cos[2π (c1 + c2)]

+ cos[2π (c1 − c3)] + cos[2π (c1 + c3)]

+ cos[2π (c2 + c3)] + cos[2π (c2 − c3)]. (7)

D. Level statistics and eigenstate entanglement entropy

The long-time dynamics of Floquet circuits can be probed
by the spectral properties of the Floquet operator [8]. In par-
ticular, we are interested in the eigenphases and eigenstates
U |n〉 = eiθn |n〉. The gaps between consecutive eigenphases are
defined as δi = θi+1 − θi, and the ratio between two consecu-
tive gaps is denoted as

ri = min (δi+1, δi )/ max (δi+1, δi ). (8)

The average gap ratio r is known to serve as an order pa-
rameter for ergodicity-breaking transitions [21,70]: When the
Floquet dynamics leads to thermalization, the mean gap ratio
is described by Gaussian unitary ensemble (GUE) random
matrix ensemble r ≈ 0.60 [71]. In contrast, when the Floquet
dynamics gets localized, i.e., MBL, the gap ratio statistics is
Poissonian such that r = 2 log 2 − 1 ≈ 0.386 [8,17]. If our
Floquet model undergoes a MBL transition it should show up
in the behavior of r as a function of the Schmidt coefficients.

A second diagnostic for the transition is the structure
of eigenstates of the time-evolution operator: we introduce
the reduced density matrix over half of the system as ρA =
TrL/2(|n〉〈n|). We probe the transition at the level of eigen-
states using the half-chain entanglement entropy

S = −TrρA ln ρA. (9)

In the thermal phase, the eigenstates are expected to be essen-
tially random vectors in Hilbert space; thus their entanglement
entropy is proportional to the chain length SPage = (L log 2 −
1)/2, the so-called Page value [72]. On the other hand, in
the localized phase the eigenstates only exhibit short-range
entanglement, resulting in an area law for the entanglement
entropy S ≈ const [1]. Hence, the average entanglement en-
tropy S signals the MBL transition [21,73,74].

These quantities are obtained using exact diagonalization.
For small system sizes L = 8, 10, 12 the whole eigenspectrum
is computed, while for larger system sizes L � 14 polynomial
filtered diagonalization [75] is used for extracting 100
eigenpairs of the Floquet unitary. All quantities are averaged
over 3000–6000 disorder realizations (except for L = 20
where only 500–1000 realizations are used) and all available
eigenstates.

E. Quench dynamics

Another direct way to detect localization in our system
is using transport properties. A common tool is the
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autocorrelator [20,76–79]:

C(t ) = 1

2L
Tr[Ô(t )Ô] = 1

2L
Tr[(Û †(t )ÔÛ (t )Ô]. (10)

Here O is a normalized observable with vanishing mean
(TrÔ = 0, TrÔ2 = 2L), and the time evolution is generated
by the circuit introduced in Eq. (3), i.e., Û (t ) = U (c)t .

Since our goal is to probe scrambling caused by the entan-
gling gates, we choose an operator Ô such that C(t ) = 1 for
c1 = c2 = c3 = 0. To achieve this, consider the product of the
single-site operators at i = �L/2�:

R = uiwi. (11)

Since R is unitary, there exists a diagonal matrix D and a
unitary V such that

R = V †DV. (12)

By choosing

Ô = V †σ z
i V (13)

we obtain an autocorrelator C(t ) with the desired properties.
It is important to note that the choice of V depends on the
specific disorder configuration. When the system thermalizes,
the disorder-averaged autocorrelator vanishes in the long-time
limit [1]. In contrast, C(t ) is expected to converge to a nonzero
value in the MBL regime [1]. In summary, we obtain

lim
t→∞C(t ) =

{
0, thermalization

c > 0, localization.
(14)

Another way to probe transport properties in the study of
MBL is the entanglement entropy production starting from
a product state |ψ (0)〉 = |ψ0〉 [41,80]. Analog to Sec. II D,
we compute the half-chain entanglement entropy S(t ) [cf.
Eq. (9)], but now for the time-evolved state |ψ (t )〉 instead. The
entanglement growth rate depends on the overall dynamics:
quantum chaotic systems show linear growth in time, while
MBL systems exhibit logarithmic growth of entanglement
[37,41]. The latest signals the existence of quasilocal integrals
of motion [18,19].

III. RESULTS

A. Gap ratio and eigenstate entanglement entropy

As a first check, we probe the operator entanglement per
gate s(c) as a unifying parameter for the interaction strength.
To do so, we show the gap ratio and the eigenstate entangle-
ment entropy as a function of the gate entanglement entropy
s(c) in Figs. 3(a) and 3(b), respectively. We focus on pa-
rameters c(c1, c2, c3) within the range c1, c2 = [0.02, 0.28]
and c3 = [0.0, 0.18]. For the system size and s(c) fixed, the
gap ratio and half-chain entanglement almost collapse on top
of the corresponding SWAP line value. This supports our
motivation to choose s(c) as an indicator for the interaction
strength.

However, the results for the CNOT and the SWAP line lie
not directly on top of each other. This difference may originate
from the specific choice of the vector c. On the CNOT line,
two Schmidt coefficients λl [cf. Eq. (8)] are zero [50], which
is not the case for any other choice of c in the Weyl chamber.
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0.60

r

0.0 0.2 0.4 0.6 0.8

s(c)

0.00

0.25

0.50

0.75

1.00

S
/
S

P
a

g
e

L = 8

L = 10

L = 12

L = 14

L = 16

FIG. 3. Gap ratio (a) and eigenstate entanglement entropy
(b) for system sizes L = 8, 10, 12, 14, 16 and combination
of values: c1, c2 = 0.02, 0.04, 0.06, . . . , 0.2, 0.24, 0.28 and c3 =
0, 0.02, 0.04, . . . , 0.18. SWAP line (black dashed) and CNOT line
(gray continuous) are also shown for comparison. Error bars are 68%
confidence interval.

Therefore, the finite-size behavior visible in r and S/SPage may
be affected by this choice of c (see Appendix A for a more
quantitative comparison).

For our further studies, we choose three parameter lines
that differ in the number of nonvanishing coefficients ci: the
SWAP line, the iSWAP line, and the CNOT line (cf. Sec. II B).
The gap ratio and the half-chain entanglement entropy on
these lines of the Weyl chamber and systems sizes are shown
in Fig. 4. In all three cases, we see a crossover between an
MBL regime (indicated by a small eigenstate entanglement
entropy and an r value close to the Poissonian case) for small
interactions towards a thermal regime at large interactions.

The curves of different system sizes intersect. Analogously
to Refs. [17,21,26], we then compare the different crossings
between consecutive system sizes to check the stability of the
phase in the thermodynamic limit [70]. In Fig. 5, the crossings
of gap ratio and entanglement entropy for consecutive sizes
L and L + 2 are shown. The trend of the crossing suggests
a scaling ∝1/L, at least for the accessible system sizes. Re-
markably, finite-size effects for the half-chain entanglement
entropy are less pronounced in comparison to the r value.
The trend of the data suggests that the crossings are shifting
towards zero in the limit L → ∞, thus ergodicity is restored
at any finite interaction. However, given the smallness of the
accessible system sizes, we can not rule out a change in the
trend at larger sizes.

Finally, we present an analysis of the entanglement en-
tropy fluctuations of the Floquet eigenstates. It is known
that fluctuations around the mean eigenstate entanglement
entropy S, probed by σ 2

S = S2 − S
2
, peak at the transition
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FIG. 4. Upper row (a)–(c): Gap ratio as function of the two-qubit-gate operator entanglement entropy for system sizes L = 8, 10, 12, 14, 16
(in addition CNOT line has L = 18 and SWAP line has L = 18, 20). Lower row (d)–(f): Average entanglement entropy normalized by the Page
value SPage = 0.5(L log 2 − 1) for the same system sizes. Right column: CNOT line denoted by c1 ∈ [0.02, 0.40], c2 = c3 = 0. Middle column:
SWAP line denoted as c1 = c2 = c3 with c1 ∈ [0.02, 0.40]. Left column: iSWAP line denoted by c2 = c1, c3 = 0 and c1 ∈ [0.02, 0.28]. Error
bars (too small for this scale) are 68% confidence interval. Gray vertical lines are the s(c) for which dynamics is shown in Sec. III B. In all three
cases, the operator entanglement entropy s(c) indicates an MBL-to-thermal crossover for both gap ratio and eigenstate entanglement entropy.

point [21] and thus are a good indicator to identify the
delocalization-localization transition [80,81]. Such fluctua-
tions are shown in Fig. 6. We see that the peak of the
fluctuations is moving towards smaller s(c), as has been re-
ported in other models where MBL might be stable [74].

0.00 0.05 0.10 0.15

1/L

0.00

0.05

0.10

0.15

cr
o
ss

in
g
s

s(
c
) c

Gap ratio

CNOT

SWAP

iSWAP

0.00 0.05 0.10 0.15

1/L

S/SPage

(a) (b)

FIG. 5. Crossings of the curves in Fig. 4 between system sizes L
and L + 2 for the gap ratio (a) and eigenstate entanglement entropy
(b) along the CNOT line (orange), SWAP line (blue), iSWAP line
(red). The black dashed lines show the scaling 1/L. For accessible
system sizes the trend is compatible within error bars with s(c)c ∝
1/L, suggesting restoring of ergodicity in the thermodynamic limit
for any finite interaction strength.

Importantly, the entanglement entropy fluctuations also seem
to be sensitive only to the operator entanglement s(c) of the
gate rather than the specific choice (c1, c2, c3) in the Weyl
chamber.

B. Single-spin autocorrelation and entanglement
entropy after a quench

From the previous section, we can conclude that the critical
operator entanglement per gate s(c) is scaling roughly as 1/L.
The largest system size for which we could extract eigenval-
ues and eigenvectors is L = 20. From Fig. 5, we estimate
the crossover region for current system sizes to be around
s(c) ∼ 1/20 = 0.05. In this section, we explore signatures for
this crossover in quench dynamics for up to 105 cycles in the
regime s(c) � 0.1 and system sizes L � 18.

In Fig. 7, we show the autocorrelation function introduced
in Sec. II E on the SWAP line of the model. The circuit
dynamics is simulated using CIRQ [82] that allows to reach
105 cycles and up to L = 22 qubits.

For s(c) ≈ 0.09, 0.07 close to the crossover region,
C(t ) decays with a scale either logarithmically or stretched
exponentially, in line with previous work on autocorrelation
decay in prethermal systems [76]. The long-time limit
limt→∞ C(t ) decreases with system size, suggesting a
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FIG. 6. Entanglement entropy fluctuations σ 2
S = s2 − s2 with s = S/SPage as function of the two-qubit gate operator entanglement. Right

column: CNOT line denoted by c1 ∈ [0.02, 0.40]. Middle column: SWAP line with c1 ∈ [0.02, 0.40]. Left column: iSWAP line with c1 ∈
[0.02, 0.28]. Error bars (too small for this scale) are 68% confidence interval. The data set is the same shown in Fig. 4 for S/SPage.

trend towards thermalization. For smaller interactions
s(c) ≈ 0.05, 0.03, our accessible timescales are too short
to draw conclusions about a drift in the long-time dynamics:
we do not reach a steady state in our numerics.

0.2
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0.8

C
(t

)

s(c) =0.0369
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log10 t
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C
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0 1 2 3 4 5

log10 t

s(c) =0.0942
(d)

FIG. 7. Single-spin autocorrelation C(t ) as a function of
time t , gates G(c) are chosen on the SWAP line for c =
(0.05, 0.06, 0.07, 0.08) [the corresponding interaction strength s(c)
is shown in each panel]. Disorder average is taken over 1000–4000
disorder realizations. Errors bars are 68% confidence interval.

Finally, we study the entanglement entropy growth for
initial product states along the SWAP line. As discussed in
Sec. II E, a signature of localization is logarithmic entan-
glement growth. As is visible in Fig. 8, the entanglement
entropy S(t ) is growing faster than logarithmically (black
dashed lines) at timescales t � 103 and interactions s(c) �
0.07. In order to confirm this observation, we compute the
derivative of S(t ) with respect to ln t (see Fig. 9). A logarith-
mic curve would be visible as a constant value. Instead, we
see that the derivative keeps growing with system size even
in the regime when the level statistics is Poissonian s(c) =
0.0369. We conclude that the entropy growth is faster than
pure logarithmic growth even for the smallest interactions.
The latest is in odds with the steady logarithmic growth in
MBL regimes [37].

IV. DISCUSSION

In this work, we have introduced a generic Floquet circuit
model that allows us to parametrically tune the interaction
and keep the disorder maximal. We have identified the gate
entanglement entropy s(c) as a quantitative measure for the
interaction. In the limit s(c) = 0, our model reduces to a non-
interacting system. Our results for various quantities suggest
that the observed MBL regime for small interactions does not
persist in the thermodynamic limit.

Our reachable system sizes and our investigated model
are not sufficient to draw conclusions about the general
fate of the MBL transition in the thermodynamic limit.
Nevertheless, they suggest analyzing whether the results for
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FIG. 8. Half-chain entanglement entropy after a quench on the
SWAP line for c = (0.05, 0.06, 0.07, 0.08) [same values but trans-
lated to s(c) are shown in each panel] and system sizes L =
18, 20, 22. Disorder average is taken over 1000–4000 disorder real-
izations, error bars denote 68% confidence interval. The black dashed
lines denote a fit a ln t + b for comparison, with a determined by the
derivative of the L = 22 curve at t = 103. For large interactions S(t )
the logarithmic growth is proceeded by a faster entanglement entropy
growth.

other commonly studied models in the field of many-body
localization are in alignment with an integrability-breaking
transition [36,83] instead.
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FIG. 9. Numerical derivative of the half-chain entanglement en-
tropy with respect to ln t after a quench on the SWAP line for
c = (0.05, 0.06, 0.07, 0.08) (same data are shown in Fig. 8) and
system sizes L = 18, 20, 22. The entropy growth is faster than pure
logarithmic for all interaction strengths.
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FIG. 10. Distance of (a) the gap ratio r(c, L) and (b) entangle-
ment entropy S(c, L) to the reference values r(cS, L) and S(cS, L) on
the SWAP line. Dashed lines are error bars of r(cS, L) and S(cS, L).
The SWAP reference points are computed by using spline interpola-
tion of the curves shown in Fig. 4. The points are the same data as
shown in Fig. 3.

Moreover, it is an interesting question to establish connec-
tions between this model, where both direction and strength
are subjected to disorder, and models where the direction of
the single-qubit unitaries is fixed. The XXZ spin chain and its
variants are part of the latter. Furthermore, the effect of spatial
variations on the gate operator entanglement can give rise to
“slow” and “fast” dynamical regions very much in the spirit
of quantum avalanches proposed as delocalization mechanism
[34,35]. The investigation of the role of both types of disorder
and the effects of spatial fluctuations in gate operator entan-
glement are both interesting venues for future research.

Apart from that, our model contains dual-unitary circuits
as another special case for a specific choice of parameters c.
This model is thus a good starting point to study the effects of
breaking dual unitarity in more detail [69].

ACKNOWLEDGMENTS

We thank A. Chandran, P. Claeys, D. Long, D. Luitz,
and M. Rampp for inspiring discussions. L.C. gratefully
acknowledges funding by the U.S. ARO Grant No. W911NF-
21-1-0007. All statements of fact, opinion or conclusions
contained herein are those of the authors and should not be
construed as representing the official views or policies of the
U.S. Government.

APPENDIX A: GATE OPERATOR ENTANGLEMENT,
SWAP, AND CNOT LINES

Throughout this work, we assume that the results for the
SWAP, iSWAP, and CNOT line can be extrapolated to any
other set of c = (c1, c2, c3) via the equivalence through the
gate operator entanglement s(c). Inspired by Ref. [69], where
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FIG. 11. (a) Gap ratio and (b) entanglement entropy along the
SWAP line for system size L = 8–20. The two-qubit gate operator
entanglement s(c) is rescaled by L ln L. The data set is the same as
shown in Fig. 4. These visible crossings suggest a drifting critical
value s(c)crit ∝ 1/L, compatible with an integrability-breaking phe-
nomenon (see Appendix B).

the authors found that s(c) plays a leading role in generic
thermalization, we aim to apply these ideas to the weakly
interacting regime. In this Appendix, we provide quantitative
tests for this assumption by computing the gap ratio and

eigenstate operator entanglement at any point (c1, c2, c3),
namely, r(c, L) and S(c, L), and the difference

dr (c) = |r(c, L) − r(cS, L)| (A1)

dS (c) = |S(c, L) − S(cS, L)|/SPage, (A2)

where r(cS, L) and S(cS, L) are the gap ratio and
eigenstate entanglement entropy for the reference choice
cS = (cx, cx, cx ) on the SWAP line and the same gate operator
entanglement entropy s(c) = s(cS ). Our results are shown in
Fig. 10. As a reference, we compare these results with the
effects of the statistical error of r(cS, L) and S(cS, L) due to
the disorder average, indicated by dashed lines. When a point
dr (c) or dS (c) is below the corresponding error bar line, then
the difference of the results for the parameter c and the ref-
erence point cS is the same within statistical errors. Visually,
there is a large fraction of dr (c) or dS (c) above the error bar
line for all system sizes. However, the difference in absolute
value is small enough, such that extrapolating the results from
the SWAP, iSWAP, and CNOT line to other values of c is a
fair assumption for the current setup and system sizes.

APPENDIX B: COMPARISON WITH SCALING
OF INTEGRABILITY-BREAKING PERTURBATIONS

It has been recently shown that noninteracting spin systems
with small perturbative interaction undergo a Fock-space-type
delocalization “transition” that marks the onset of quantum
chaos [43]. Taking ε as the integrability-breaking parame-
ter, the value εc denotes the onset of chaos scaling as εc ∼
(L ln L)−1 with increasing system size. In Fig. 11 we test such
scaling for s(c) for both gap ratio and eigenstate entanglement
entropy. Although the available system sizes do not allow us
to discern the ln L component, the linear scaling is clearly visi-
ble. From this perspective, the MBL-thermalization crossover
appears to have a similar scaling as an integrability-breaking
phenomenon for finite system sizes.
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