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We analyze a model of qubits that we argue has an emergent quantum gravitational description similar to
the fermionic Sachdev-Ye-Kitaev (SYK) model. The model we consider is known as the quantum g-spin model

because it features g-local interactions between qubits. It was previously studied as a model of a quantum spin
glass, and while we find that the model is glassy for ¢ = 2, ¢ = 3, and likely ¢ = 4, we also find evidence
for previously unexpected SYK-like behavior for the quenched free energy down to the lowest temperatures
for ¢ > 5. This SYK-like physics includes power-law correlation functions and an extensive low-temperature
entropy, so we refer to the model as Spin SYK. The model is generic in that it includes all possible g-body
couplings, lacks most symmetries, and has no spatial structure, so our results can be construed as establishing
a certain ubiquity of quantum holography in systems dominated by many-body interactions. Furthermore, we
discuss a generalized family of models that includes Spin SYK and which provably exhibit SYK-like physics
in the solvable limit of large local Hilbert space dimension. We also comment on the implications of a bosonic
system with SYK-like properties for the study of holography, Hamiltonian complexity, and related topics.
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I. INTRODUCTION

In this paper, we study the low-energy physics of generic
g-local quantum systems. In their simplest form, these are
Hamiltonians that include all possible g-body interactions be-
tween N sites with minimal additional structure. The models
we consider are bosonic in that their Hilbert space has a
tensor product structure built from the sites such that operators
from different sites commute. Variants of such “mean-field”
models have a long history, including as models of quantum
spin glasses [1-8], as models for investigating Hamiltonian
complexity [9-12], and, when generalizing to fermions, as
simple models of holography [13-23]. Most of this paper is
concerned with what we call the Spin SYK model, for which
the sites are qubits. We argue that Spin SYK is glassy at low
energies when g = 2, 3, 4 but at larger g exhibits holographic
dynamics similar to the fermionic Sachdev-Ye-Kitaev model,
hence the moniker. Even for smaller ¢ for which the physics
appears to be glassy at the lowest energies, Spin SYK can
still exhibit SYK-like physics over a window of energies.
Observations of SYK-like physics at intermediate energies
have also been reported in the ¢ =2 random Heisenberg
model [4,24].

We also discuss a generalization of Spin SYK, the g-local
Gauged Clusters model, in which the qubits are replaced by
sites with local Hilbert space dimension equal to a power of
2 and with interactions drawn from a large but proper subset
of all local operators. The model is designed to be similar to
random SU(M) quantum magnets, which are solvable at large
M [13]. In the limit of large local Hilbert space dimension,
this g-local Gauged Clusters also becomes solvable and is
SYK-like for any g > 2, although it suffers from a known
low-temperature instability [1,4,13] towards glassiness when
g = 2 and the local Hilbert space is finite.
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Our results indicate that the holographic low-energy
physics of the Sachdev-Ye-Kitaev (SYK) model is actually
more generic than previously known. Compared to Spin SYK,
the presence of low-temperature holographic dynamics ap-
pears to be only slightly more robust in SYK, which is
not glassy at ¢ =4 [25] and for which only ¢ =2 is non-
holographic. The SYK model exemplifies many features of
strong-coupling dynamics and provides a simple realization
of holographic duality [26], and these physical properties,
combined with its analytical tractability, have led to its intense
study. Compared to SYK, the bosonic models we consider are
interesting for several reasons: (i) they might be easier to im-
plement in quantum simulations, especially in the near term;
(ii) one can potentially get SYK-like physics at intermediate
energies even when ¢ = 2; and (iii) they provide models of
holography in which all the microscopic degrees of freedom
are bosonic. Spin SYK is also interesting for its potential
applications in Hamiltonian complexity, e.g., [12], and as a
launching point for further model development. Finally, Spin
SYK has the interesting property that SYK dynamics appear
at a quenched saddle point, the one that dominates the dynam-
ics and thermodynamics for random couplings. The annealed
saddle point, which dominates the disorder-averaged partition
function, is still glassy. This is in contrast to the SYK model,
where the quenched and annealed saddle points are the same.

As we have said, the bulk of the paper studies the Spin
SYK model, which was introduced in [8] (where it was called
a quantum p-spin glass model) and further studied in [27-29],
with the Hamiltonian given by

H= Z JrprggOrimy = Orgpags ey
FIy - Fglq
where r =1, ..., N refers to the site and u = 1, ..., 3 refers

to the spin component (Pauli matrix). The J couplings are
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Gaussian random variables with zero mean and variance,

(g — DHWJ?
B[] = —xmr—

We highlight in particular the recent independent study [29],
which considered a variant of (1) with ¢ = 4 and only two
Pauli components o, o, instead of all three and gave evidence
from finite size numerics that the physics was SYK-like over
a wide range of energies. As we discuss in Sec. IX, many of
our conclusions will apply to the two-component case as well.

The main assertion of this paper is that model (1) displays
power-law decay in its low-temperature correlation functions
for sufficiently large g. In the rest of this section, we will
define the model and the primary observables of interest.
We will also discuss what we mean when we calculate the
disorder-averaged properties of this model and overview our
analysis strategy.

In Sec. II we will write down the action for a path integral
formulation of the Spin SYK thermal partition function in
terms of a correlation function G and a self-energy . We
work in the large-N limit in which the path integral can be
evaluated using saddle-point methods. We will differentiate
the Spin SYK action to get saddle-point equations for G
and X.

In Sec. III we will discuss possible solutions of these
equations. We will prove the existence of two saddle-points
of the single-replica action: an annealed solution with G — 1
at low temperatures which dominates the naive average of the
partition function, and a possible quenched solution which
could control the free energy one would actually measure.
This solution is replica-diagonal and gapless, and obeys a
power-law decay.

Section IV examines the large-g limit of the Spin SYK
model, and shows that it obeys a Liouville equation just like
the traditional SYK model. This means that the large g prop-
erties are essentially identical to that of the SYK model.

Section V studies numerical solutions to the single-replica
saddle-point equations for general q. For ¢ = 2, we find only
the annealed solution. For ¢ > 2, we find the annealed so-
lution and another solution, which we refer to as SYK-like.
Moreover, even as low as ¢ = 3, the SYK-like solution to the
Liouville equations is a good qualitative fit for (an) exact so-
lution. We also find that the SYK model’s conformal solution
is a good fit for the SYK-like solution at low temperature.

Section VI goes over exact-diagonalization results, which
suggest that the system is glassy at ¢ = 2, 3,4 and SYK-like
for ¢ > 5. We study a sparse version of Spin SYK which
allows us to address larger ¢ efficiently. Our main strategy
is to measure the Edwards-Anderson order parameter. When
it is zero, then the system should be replica-diagonal and
the power-law solution dominates. When it is nonzero, the
system is presumably glassy. We also look at low-energy level
spacings, finding results consistent with SYK-like physics and
inconsistent with a spin glass for g > 5.

Section VII deals with a generalization of Spin SYK in
which the qubits are replaced by sites of Hilbert space dimen-
sion 2M/2=1 for an even integer M > 4. These sites have an
interpretation as M Majorana fermions, with the local fermion
parity gauged to produce a bosonic local Hilbert space, hence
g-local Gauged Clusters. In this picture, we make a set of

(@)

all possible fermion bilinears (which are bosonic operators)
and consider generic g-local interactions built from these op-
erators. Spin SYK is the special case M = 4. At large M,
the model is solvable and exhibits SYK-like physics over a
wide temperature range for any ¢ > 2. We conjecture that this
behavior persists all the way down to M = 4 for sufficiently
large q.

In Sec. VIII we elaborate on just how similar the low-
energy physics is between SYK and Spin SYK. We discuss
the ground-state entropy, the emergence of spontaneously and
explicitly broken time-reparametrizations, the Schwarzian ac-
tion, and the possible effects of weakly irrelevant operators.

Finally, in Sec. IX we conclude with a brief outlook that
highlights many questions remaining to be addressed. A few
Appendixes contain the derivation of the Spin SYK action and
details of the numerical calculations.

This paper represents the first part of an ongoing investi-
gation. We plan to report on a detailed study of multireplica
saddles in a future work.

A. Model and observables

We consider a model defined on N spin-1/2 degrees of
freedom. We also fix an integer g > 1, the “locality,” which
determines the degree of the interaction. The terms in the
Hamiltonian are obtained by considering all possible g-body
subsets of the spins and an assignment of o, (u =1,...,3)
for each spin. This yields an ensemble of Hamiltonians where
each instance takes the form

H= Z Jrlﬂl"'rqﬂqarlﬂl © Oy 3
F11 = Tglhg
with r =1, ..., N referring to the spin and u = 1, 2, 3 refer-

ring to the component. The model does not have spin-rotation
symmetry (except in a statistical sense), and we typically use
spin and qubit terminology interchangeably.

Our goal in this paper is to analyze the Hamiltonian en-
semble defined in (3). Our primary interest is to obtain the
energy and entropy in the Gibbs state e as a function of B,
averaged over realizations of the J couplings. We focus on the
low-temperature regime of N — oo and SJ large.

Crucial to our considerations will be the Green’s function
or correlation function,

1
G(r1, 1) =+ D Bl (11)0 () ], )
rp

where we take both a thermal and an ensemble average. The
arguments of the Pauli matrices indicate imaginary time val-
ues, with O(t) = ™ 0e™" for t € [0, B). As we will see
below, the low-temperature fate of the model is closely tied
to the properties of this correlation function. In our work,
G(t1, 1p) will be translation-invariant, so that G(ty, 7o) =
G(t1 — 1,0) = G(t; — ).

At very large 8, an important role is played by the asymp-
totic value G(00). From the definition of G, this is equal
to the ensemble average of the “Edwards-Anderson” order
parameter in the ground state,

1
G(00) = + D (gslorules)” = qea- )

ry
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This notation is conventional (although our normalization of
qea 1s slightly different); gga has nothing directly to do with
g, the locality. A nonzero value of gga indicates a frozen
pattern of local expectation values in the ground state, which
is a hallmark of a glass. In contrast, when ggs is zero at
B = 00, at least the equilibrium thermodynamics of the model
is not glassy. An important implication of ggs > 0 is that if
we have multiple “replicas” of the system with identical J
couplings, then the frozen pattern of expectation values will
have some similarity or “overlap” between different replicas.
This overlap is also controlled by gga at large 8.

B. Quenched versus annealed

We are interested in the disorder-averaged free energy, F,
[30]. This is a “quenched” average, meaning we compute
the free energy for a given sample (a realization of the J
couplings), and then average over samples,

F, = /dJP(J)F(J) = E[F]. 6)
Since F is related to the partition function Z = tr(e #7) via
1
F=—-—-InZ, @)
B
this quenched average corresponds to averaging In Z,
1
F, = —=E[InZ]. ®)
B
As is well known, it can be challenging to compute the
average of In Z. The standard method is to use a replica trick
in which we introduce n copies or replicas of the system,

compute the average of Z", and then take n — 0 using the
identity

E[Z"] -1
-,

E[lnZ] = lim ©)]
n—0

Although the replica trick is known or conjectured to have
issues in some cases [31,32], we will assume it is valid and
that we can exchange the order of limits of N — oo and
n— 0.

Even with this assumption, evaluating the “replica limit”
n — 0 is still typically challenging. Our approach is to ex-
press the partition function as a path integral. Then the
disorder average of Z" is straightforward to carry out, and we
are left with a “replicated” path integral to evaluate. In the
large-N limit, we write this replicated path integral schemati-
cally as

E[z"] = / Dpe V1?1 (10)

for some general integration variables ¢ and “replicated ac-
tion” I,. Taking the large-N limit suggests looking among the
saddle points of I, for the physical saddle. However, whereas
one might naively look for saddles of smallest action, there is
a well-known prescription due to Parisi that states the correct
answer in the replica limit is actually to look for saddles
that are maximal [33], at least with respect to “replica order
parameters.” See Eq. (A19) for details of the replicated action
for Spin SYK, written in terms of a variable G which will

reduce to the physical correlation function at the physical
saddle point and a corresponding self-energy X, which jointly
play the role of ¢.

A far simpler quantity to compute is the logarithm of the
average of Z. This order of operations defines the “annealed”
free energy,

1
F,=——mE[Z], (11
B
and for SYK we have the remarkable fact that
F, F,
lim - = lim ==. (12)
N—o0 N—oo N

This is an enormous technical simplification in that we only
ever have to consider a single replica, at least for thermo-
dynamic quantities. The way this works for SYK is that the
relevant saddle point of the replicated action, ¢,, has no
correlation among the replicas. In this case, 1,,(¢x) = nli(¢,)
and the replica limit can be taken without trouble. Thus,
the quenched free energy is determined from 7;(¢,). In this
situation, we say the relevant saddle is “replica-diagonal” (no
correlations between replicas) thus “replica-symmetric” (the
S, symmetry among the replicas is unbroken).

Unfortunately, it was recently shown that the quenched and
annealed free energies must differ for a large class of bosonic
models below a model-dependent (but order 1) temperature
[28]. The Spin SYK model satisfies the conditions of this the-
orem, so I, # F, at sufficiently low temperature. In general,
for systems like the Spin SYK model, at low temperatures the
annealed free energy will be linear in 8, while the quenched
free energy will be the ground-state energy, which is indepen-
dent of B. This implies that different saddle points compute
the annealed and quenched free energies. The annealed saddle
is given by a function G,(r) which goes to some nonzero
constant for large 7, a constant that is not directly related
to gga. The quenched saddle G,(t) must instead approach
qEa, the overlap between replicas. If this gga is zero, then the
quenched solution is replica-diagonal and goes to zero at long
times.

This multitude of solutions does not imply that the model
is necessarily glassy, although one often thinks of glassiness
when quenched and annealed energies differ. But it does mean
that we must deal with the replicated action and try to deter-
mine the correct saddle point, even if the correct solution is
ultimately replica-diagonal. We employ a recently proposed
“minimax” procedure that extends Parisi’s proposal [34]. This
procedure calls for first maximizing I, over replica order pa-
rameters (in this case the correlations between replicas) and
then minimizing it over conventional order parameters (in this
case the single-replica correlation).

C. Analysis strategy

In principle, the procedure is clear: write down the repli-
cated action, find its saddle points, and carry out the minimax
procedure to determine which saddle controls the quenched
free energy. This calculation is possible but somewhat in-
volved, so we are deferring it to future work. Here, we follow a
different strategy in which we use finite-size numerical results
to tell us whether the quenched saddle is replica-diagonal or
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Action for
E[Z™]

Input from finite size
numerics and minimax

o Quenched Model
Minimax :
Saddle Properties
>0 Model is
Single-replica Annealed, Model is
saddles SYK-like SYK-like

FIG. 1. The strategy we follow in this paper is in gray. The top flowchart of blue boxes is the general procedure proposed in [34] in which
we construct the replicated action, carry out the minimax procedure, and then use the quenched saddle to determine the free energy. While
this procedure should be possible to carry out, here we adopt an alternate procedure in which we try to determine gga using an extrapolation
from finite-size numerics (orange box). When gga = 0, we can restrict to single-replica saddles, in which case our results indicate that the only

possibility is the SYK-like saddle.

not. When it is, we can obtain the quenched free energy from
single-replica saddles, which we analyze in detail.

The key point is that, for disordered systems that are not in
a glassy phase, for example, the transverse field Sherrington
Kirkpatrick (TFSK) [35,36] model at large transverse field,
it can be that the minimax saddle is replica-diagonal but is
distinct from the annealed saddle point (which is also replica-
diagonal). In this case, the minimax saddle can be obtained
from the single replica equations of motion. It will always
have higher action compared to the annealed saddle at suffi-
ciently low temperature, nevertheless the minimax procedure
instructs us to take the minimax saddle over the annealed
saddle when computing the quenched free energy.

Our strategy thus has two parts. First, we construct an
inventory of possible single-replica saddles. This turns out
to be a small set, containing just the annealed saddle and
another SYK-like power-law saddle provided g > 2. This is
the business of Secs. II, III, IV, and V. Second, we use exact
diagonalization to directly study the overlap gga in the ground
state of sparse finite-N instances of the model. This provides
an indirect way to determine whether the saddle that controls
the quenched free energy is replica-diagonal or not, although
it relies on an extrapolation to large N. This is the business of
Sec. VL.

If gga is zero in the thermodynamic limit, then whatever
saddle is chosen by minimax at large § must be replica-
diagonal. Since there is only one replica-diagonal option
(remembering that the annealed solution cannot compute the
quenched free energy), we know that it must be the SYK-
like saddle that controls the quenched free-energy. If gga is
nonzero in the thermodynamic limit, then the model is glassy.
Our strategy is summarized in Fig. 1.

The main failure modes of this approach are twofold. First,
we might miss a relevant single-replica saddle. As we discuss
below, we could find no other solutions and rule out large
classes of solutions including exponentially decaying ones,
but we cannot at this time rigorously prove that there are no
additional solutions. Second, the sparse finite-N results might
be misleading, either because of the finite sparsity or the finite
system size. For ¢ > 5, we observed an exponential decrease
of gga with system size, and we saw no evidence of significant

deviations from this behavior, but we cannot rule out a surprise
reversal at large N.

II. THE ACTION OF SPIN SYK

We begin our analysis by using spin coherent states [37,38]
to develop a path integral expression for disorder-average of
the partition function E[Z]. For the spin-1/2 Pauli matrices
in the Spin SYK Hamiltonian, we have the map o, — 3%,
where €2, is a unit vector labeling a spin coherent state. We
include all the overlaps of the spin coherent states into a
measure DVQ, cf. (A13). The single replica average partition
function is then

E[J? p
E[Z] = /DNQexp (% Z |:/ dtsy, ,, (T)
' 0

A

2
.- ~s,qﬂq(r)dt:| ), (13)

where $rx(T) = 3sin0,(t) cos ¢, (), sy(T) =
3sin6,(r)sin¢,(r), and s,,(tr) =3cosb,(r). This sort
of path integral was written down for several closely related
models in [28].

We next introduce G, ¥ variables with the ¥ variable en-
forcing the constraint that

1
Gr,m) =+ %:sm(fl )$77u(T2). (14)
This will correspond to the correlation function
(0x(T1)0ox(12)) + (0y(T1)0y(T2)) + (0.(T1)0(T2)), averaged

over sites. Up to 1/N corrections, the path integral is

J2
E[Z] = /DNSZDEDGexp (Nz—/qurz
q

N 1
-5 = G—ﬁZsm(rl)sm(tz) dr2>. (15)

T

The resulting integral is still hard to solve because of
the spin bilinear. So we take one more step of introducing
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fluctuating magnetic fields A, , (7 ), one for each spin, each with covariance X(zy, 72). Then at last the path integral is

J? N
E[Z] =/DNQD2DGDNhexp NZ/G"dtz— E/EGclerr/Z‘smhm

ru

J? N
= /DZDGexp (NZ—/G%Z - E/EGdrz +N1og<7>ef2mhu<f>df>2), (16)
q

where Dh is a Gaussian measure with covariance X, and
(Pel Xuouhu@dty o denotes a single spin path integral av-
eraged over magnetic fields. For a full writing of the path
integral, see Appendix A.

The equations of motion (EOM) or saddle-point equa-
tions are

¥ =J>G™" (GEOM),
G = ([0,(11)0x(12) + 0y(T1)0,(T2)
+ o (1o (2)])s (X EOM), a7

where (- - - )x denotes a single-spin correlator in the presence
of a random (imaginary) time-dependent field #(t) with co-
variance X. This correlator should be evaluated as an annealed
average over h, meaning we separately average the numera-
tor and denominator. All the saddles we consider will have
time-translation symmetry, meaning G(t;, 72) = G(1; — ©0)
and X(t1, 7p) = X(11 — 12), unless otherwise noted.

A. Sampling approach

Practically speaking, it is still hard to deal analytically
with the fluctuating / field. However, we can adopt a sam-
pling approach. We divide t € [0, 8) up into N; intervals of
length At = B/N;. One sample corresponds to 3N; numbers
h,(jA7) drawn from a Gaussian distribution with covariance
8, L(jAT, j’At). We then construct the single spin path
integral

Zy = tr] Jetronhtinn, (18)
J

By averaging over h, we get E[Z,],. We also need the analog
of Z; but with the operators inserted, Z; o, and its average
over i, E[Z; opl. The correlator G is

]E[Zl,op]h

G= gz, = ‘on@ou@)z. (19

We can approximate both the numerator and the denominator
via sampling. This is an annealed quantity where we sepa-
rately average the numerator and the denominator.

The basic algorithm to solve the EOM starts with a guess
for G and X, uses ¥ and sampling to estimate the correspond-
ing G, updates G and X using the other equation of motion and
some update rule (e.g., a linear combination of old and new),
and then repeats until convergence. There are further details
in the numerical implementation. For example, the update
rule can be changed dynamically to aid convergence. We will
present data obtained from the scheme below in Sec. V.

[
II1. SOLVING THE SADDLE-POINT EQUATIONS

A. Annealed solution

We now discuss solutions to the EOM. Before consider-
ing more complicated saddles, let us first discuss the saddle
that computes the annealed free energy, and dominates the
disorder-averaged partition function at large 8. To make the
annealed free energy proportional to 8 at large S, this saddle
must have the property that G(r) and X(t) have a nonva-
nishing limit as t, 8 — oo. If we make the so-called static
approximation, neglecting the time dependence of G and X,
then we see that the G EOM is solved by

G=13x=J% (20)

At very large B, these values give the large-t limit of G(7)
and X(7).

To see that the G = 1 solution also satisfies the ¥ EOM at
large B, consider the single spin problem with fluctuating field
h. Since ¥ is independent of time (which is approximately
valid for most of t at large ), the fluctuating field & can
be taken to be uniform in imaginary time. A Gaussian dis-
tribution with covariance X(t, t") = const can only generate
constant-in-time £ fields.

Thus, we must analyze a single spin in a uniform random
field where each component has variance J? in the limit of
large B. This is straightforward, as B — oo simply projects
onto the ground state of the & field. In this ground state,
G will be unity since, after a rotation of the axes to align
the x-axis with the random field, only o, has a nonvanishing
contribution,

(B—0)lhl ||
G E (on)e™fon) _ (o) = 1. @1
Pl

The actual annealed free energy can be obtained via a
simple trick. Being dimensionless, E[Z] depends only on the
dimensionless combination BJ. Hence, the thermodynamic
identity

E, = —0gInE[Z] (22)
can be converted into

E, = —Jog nE[Z] = —éa, InE[Z]. (23)

Now, the dependence on J comes from two sources: the ex-
plicit dependence in front of G? and the implicit dependence
via the saddle-point solution. However, the derivative of these
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fields gives no contribution since the EOM is obeyed,
dyaction = explicit term + EOMgd,G + EOMyd; 2. (24)

Hence, we need only consider the explicit dependence. The
result is

JZ
E, = —;/eru(r)", (25)

where again G,(t) — 1 as T — oo. Note that this equation is
true beyond the static limit, and analogous identities relate
other saddles with the corresponding energies.

Since G, is approximately constant for most of t, it follows
that

JZ
Eo= ="t 26)

at large 8. Because the annealed energy diverges to nega-
tive infinity as 8 — oo, it cannot possibly be equal to the
quenched energy as the latter is necessarily bounded given the
bounded spectrum of the Spin SYK Hamiltonian. Hence, the
annealed free energy, while correctly computing E[Z], fails to
capture the quenched physics at sufficiently large 8.

B. The asymptotic value of G

For the annealed solution at large 8, we found G(oco) = 1.
What other possible values can G(oco) have? Here we argue
that the only other possible value for a solution of the single-
replica EOM is G(oco) = 0. Note that other values are possible
for solutions of the multireplica EOM. Even if other asymp-
totic values G(oco) were possible for single-replica solutions,
none of these could control the quenched free energy since
they would all have diverging energy according to (25).

We make use of another way of expressing the energy,

_ NG'(0Y)
==

E 27)

J

which follows from ZW[H , 0 ]or, = 4gH. Both this for-
mula and (25) compute the energy of a given saddle and agree
even when the saddle is not the dominant one.

We work at large § and suppose that G(oco) is some
nonvanishing constant in this limit. From (25) we learn that
E ~ —J*BG(00)?. From (27) we learn that G(t) must vary
rapidly near 7 = 0 in order to generate such a large E, G'(0) ~
—J2BG(c0)!. At large B and fixed G(oc0), we therefore expect
G to be close to its late time value after a very short time
interval of size 1/[BJ>G(c0)?].

This rapid approach to the late time constant value of G
implies a similar rapid approach of X to its late time value.
Since ¥ — X(00) is rapidly decaying, we again appeal to the
static approximation with the expectation that it will be quan-
titatively accurate at large 8. The only possible solution with
nonvanishing G(o0) thus has G(oo) = 1. This is the annealed
solution we already discussed. The only other possibility is
G(00) = 0, for which the static approximation must fail.

C. Nonannealed solutions cannot decay exponentially

In this subsection, we argue that the equations of motion
do not have any rapidly decaying solutions apart from the
annealed solution. For the next two subsections, III C and
III D, we assume that G(oco) = 0 at large 8. The impossibility
of arapid decay which could control the quenched free energy
means that Spin SYK cannot have a gapped “paramagnetic”
phase.

As a warmup, we will first show that the model cannot have
white noise for which (1, 15) o« 8(1; — 12). We start with
the ¥ equation, written as

IE[Zl,op]h
E[Z),

The denominator can be written as

G(r,») = (28)

B
E[Z], = trf Dh, P exp (f hﬂ(t)aﬂdr>, (29)
0

while the numerator is

E[Z opln = 3tr/DhM(O <1t < 1)Dhy(ti <7 < 1)Dhy (12 < T < B),

7 L) B
x Pexp (/ hM(r)rert> exp (/ Eu(r)crﬂdt> exp (/ hﬂ(r)audt>, (30)
0 T 2]

with 7 being & rotated 180° around a given axis. If ¥ is a &
function, then f Dh = f Dh, so after relabeling our variables
the numerator in Eq. (30) equals three times the denominator
in Eq. (29), and we find G(t, 7o) = 3. This is obviously
incompatible with a § function 2.

If ¥ and G decay exponentially, then /4’s at times separated
by more than a few decay times are essentially independent.
The boundary effects can change the integral by at most a
multiplicative constant, so we have

E[Z1,0pln = aE[Z1]; 3D

(

for some constant «. Hence, starting from our assumption that
G decays exponentially, we have shown that it plateaus as
some fixed «, thus reaching a contradiction and showing that
G cannot decay exponentially.

D. A power-law saddle

We have so far found an annealed solution and just ruled
out a solution that decays exponentially to zero. The remain-
ing possibility is a saddle with power-law decay.

To explain why such a saddle in fact exists, it is useful
analyze the path integral as expressed in Eq. (16). From this
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point of view, the integral over £2,,(7) computes the statistical
partition function of a classical XY Z chain with couplings
given by X(t; — 7). Here the chain direction is imaginary
time and the Green function G is obtained as the statistical
correlation in this X¥Z model. The fact that ¥ = J2G¢™!
imposes the nontrivial constraint that the XY Z couplings (X)
are related to the spin correlations (G). We also note that the
measure D2 contains strong nearest couplings that produce
perfect ordering in the absence of X, but this is not a self-
consistent solution except at 8J = 0.
Let us denote the power-law couplings as

o

HO™

(32)
for some to-be-determined parameter s. This implies a corre-
sponding power law in G thanks to the G EOM. To determine
s we must obtain another expression for G by solving the ¥
EOM, i.e., by solving the statistical spin chain problem. We
work in the large-8 limit for simplicity. Remember that B
corresponds to the length of the chain, and the role of inverse
temperature in the statistical mechanics picture of the chain is
played by the magnitude of .

As a function of X, this model has a phase transition from
an ordered state at large X, to a disordered state at small
3. The ordered state boasts long-range order in G and so
corresponds to a nonvanishing value of G at large t. However,
this does not yield a self-consistent solution of the G EOM. At
small ¥, the G correlator decays in the same way as X, like
=049 (note the sign of s), which is also not a self-consistent
solution. The remaining possibility is that ¥, sits right at a
phase transition between the ordered phase and the disordered
phase.

Going back to work of Dyson [39], this “long-range fixed
point” has been analyzed extensively (including in more than
one dimension) [40—45]. The most important feature for our
purposes is that, at the critical point, for ¥ decaying as
7~U+9the corresponding correlations decay as

G(t) ~ (33)

rl=s’
This is why we introduced the s parameter above. Remark-
ably, the long-range character of the fixed point means this
relation, which is what we would have for a Gaussian field
theory, is valid even with interactions. For s < 0, the cou-
plings decay too slowly and the system is always ordered.
For s > 1, the couplings decay too rapidly and one recovers
the short-range physics. There is no phase transition for the
short-range XY Z model in 1D. So the interesting range of s is

O0<s<l1. (34)

It is also known that for s < 1/2, the fixed point is Gaussian,
while for s > 1/2, the Gaussian fixed point is unstable and
flows to an interacting long-range fixed point.

In our case, the G EOM requires

1=5g—-1)=1+s, (35
which yields

2
s=1—-. (36)
q

The corresponding scalings are

~

=y 37

and

1
X i (38)
which are precisely the SYK correlations in the ground state.
Of course, this is essentially a result of dimensional analysis
once we know the Gaussian result for the power-law exponent
is robust.

We refer to this saddle as SYK-like. If it is the saddle
selected by minimax, then the physics of Spin SYK at low
temperature will share at least some similarities with the SYK.
In particular, it will feature an emergent conformal symmetry,
as the long-range fixed points considered above are known
to enjoy an enhanced conformal symmetry which includes
the scaling symmetry [44]. Furthermore, there is an unbroken
SL(2) subgroup. This implies a reparametrization mode grow-
ing with exponent 2 T, which suggests that if the SYK-like
saddle is dominant, the spin SYK model is maximally chaotic
at low temperatures.

E. No ¢ = 2 SYK:-like saddle

It is interesting to study the SYK-like saddle as a function
of g. In particular, for g =2 we see that s = 0. This corre-
sponds to couplings that decay as 1/t, but such a slow decay
actually results in a chain that is always in an ordered phase
in the thermodynamic limit. Hence, we immediately learn that
there actually is no SYK-like saddle for ¢ = 2. This is good
because the physics of the ¢ = 2 SYK model is indeed very
different. For the Spin SYK model, it seems the only option
for g = 2 is glassy physics.

For ¢ =3, we find s = 1/3, which is in the Gaussian
regime. Hence, we can replace the XYZ chain by a Gaus-
sian field theory and obtain explicit Schwinger-Dyson like
equations for G in terms of X. For ¢ = 4, the value of s is
1/2, which is right on the boundary between the Gaussian
and interacting regimes. Interestingly, once we have ¢ =5
or greater, the fixed points are all interacting. Hence, there is
a significant difference between the physics of the SYK-like
saddle for ¢ > 5 and g = 3, 4.

F. Summary of solutions

We first discussed the annealed solution and then searched
for solutions that could control the quenched free energy. We
argued that the only possible values of G(oco) were the an-
nealed value and zero. Moreover, any replica diagonal saddle
that controls the quenched free energy must have G(co) = 0
[otherwise the energy (25) would diverge with S]. Among
replica-diagonal solutions with G(co) = 0, we showed that an
exponentially decaying solution was not possible. However,
for g > 2, there is an interesting solution with power-law
correlations.

Hence, we have the following structure for the quenched
free energy. For g = 2, the only available solution is a replica-
nondiagonal one (which we did not construct). This strongly
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suggests that ¢ = 2 is generically glassy, and this is confirmed
by evidence from exact diagonalization. This conclusion is
broadly consistent with the presence of glassy physics in many
quantum spin models with random 2-local couplings, e.g.,
[13].

For g > 2, we do have the SYK-like saddle, but we may
also have replica-nondiagonal saddles. The correct physics
is determined by minimax. We have not yet carried out the
full minimax procedure, so here we rely on evidence from
exact diagonalization (see Sec. VI) to determine the fate of
the system for g > 2.

To substantiate the general arguments in this section, we
first discuss the single-replica solutions in more detail using
an analytical large-q approach (Sec. IV) and a numerical ap-
proach (Sec. V). Then we return to the exact diagonalization
analysis in Sec. VI.

J

3,,0.,G

_ J Dhr(Ple! " [hy(11)0 (11), 0, ()] (12)0,(72), 0, ()]}

IV. LARGE-g LIMIT AND THE LIOUVILLE EQUATION

To gain further insight into the problem (and because it will
be useful for numerically solving the EOM), we can study the
large-q limit [15,46]. We start with the equations of motion

(11, ) = G (11, 1), (39)

G(t1, ) = (ou(t1)ou(r2)) =, (40)

and we make the ansatz

G=3(1+§+...>,
q

X(r) =371 4. (41)

To close the EOM, we need to compute G in terms of X.
This can be done conveniently starting with a formula for
the derivatives of G,

In the perturbative limit where G is close to 3, we expand
(42) perturbatively in 2. Since the numerator already contains
a factor X that arises from the A, (t)h,(12) factors, we can
neglect the fields in the exponents to obtain

2 s t Vo Vo
90,0,,G ~ (11, )tr([oy, 0 ][0 a“])=—242(t1,t2).

tr(1)
(43)

On the other hand, we have
3
07,0.,G ~ —0;,0r,8 (44)
q

from the large-q ansatz, so we can now close the EOM,
By, 05,8 = —8¢397 %8, (45)
We introduce the new coupling
J?=4q3"77, (46)

and make the further ansatz g(t;, ;) = g(7; — o), to finally
obtain

32g =277, 47)

which is the Liouville equation. The standard solution is
2

o8 = L , (48)
cos [nv(% - %)]
BT = —_. (49)
cos Z¥

2

Note that this has the right boundary values, with g vanishing
att =0, B.

Using (27) for the energy, we can immediately obtain the
thermodynamics from the derivative of g at T = 0%. As an
example, in the B — oo limit, the standard solution limits to

1

g _
et = EES (50)

[ Dhtr(P{el 7))

. (42)

[
Near t = 0 we thus have g = —277 4+ -- -, and so
E G'(0%) _ 3J

N 428

D

We also get a large-g expression for the ground-state entropy
analogous to the SYK result:

2

=~ |0 —_ .
0 g 302

It is also useful to perform an approximate resummation of
the large-g expansion in which we replace

(52)

G=3(1+5+--.>—>3e8/q. (53)
q

For example, at large 8 this gives

G—> —5r, 54

(Tt + 14 >
which clearly displays a scaling behavior with G ~ t=2/4,
This resummation can be understood as arising from an es-
timate of (42),

0, 0,,G ~ —8%(11, 12)G(11, 12). (35)

Using the short-time form of G gives the previous result of
—24%, but more generally we can make the ansatz G = 3¢%/4
and compute

1 1
07,0,G = <581I 0,8 + ?a,] gatzg) G. (56)

At large g, we neglect the second term and again obtain the
Liouville equation.

Note that Lyapunov exponents can be extracted from the
Liouville equations, suggesting that at large g the Spin SYK
has the same four-point functions as the SYK, including max-
imal chaos at low temperature.
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V. NUMERICAL SOLUTION OF THE EQUATIONS
OF MOTION

Here we discuss approximate numerical solutions of the
EOM obtained from an iterative approach. A similar approach
was used many years ago in the ¢ = 2 case [47]. The precise
numerical details are described in Appendix B. We considered
two kinds of initializations for the iterative solver. The first is
the J = 0 solution, G(t) = 3, which often converges to the
annealed saddle at sufficiently large . For the second, we
found it very useful to initialize with the analytic large-g form
obtained above. Specifically, we exponentiate the standard
solution to give

2/q
TV
cos 5

cos [ﬂv(% - %)]

This second type of initialization typically converges to
something consistent with the interesting quenched saddle
discussed above, even if the initial guess is not particularly
close, i.e., g is not large.

The basic structure of the solver is as follows. The
imaginary-time circle is discretized into N; units of length
At = B /N, and we assign a value of G for each time point
7o = LAt. Similarly, ¥ is an N; x N; matrix. We enforce
translation symmetry in G and ¥ and the 7 < 8 — t sym-
metry in G. The method works by proposing an update,
Gprop» Zprop» based on the current values, Geur, Zcurr. The
proposed new X is simply Xpp = J2GY,!. The proposed
new G is obtained by sampling the single-spin problem with
magnetic fields of covariance X.,. Then G is updated to some
linear combination of Geuyr and Gyrop and similarly for 2. To
assess the degree of convergence, we monitor an error given
by

Glarge =3 (57)

1
£ = \/ 7 2 Geun(70) = Grop (7)1
Ty

1
+ \/17 D [Geur(te)1™" = Gprop(re )12, (58)
T

Note that this error is intensive in N, so it represents an error
per site. When it is small, then the proposed update is close to
the current value on a site-by-site basis. Practically speaking,
we can never make this error smaller than our sampling error.

In addition to the large-q analytics, we also compare with
the SYK conformal solution,

. 2/q
Gcon =b R s 59
! <ﬁ sin %f ) (59

11 T
(3 q)lan

with J2b9 = <. A priori, even if the Spin SYK model
has a power-law solution, it would not have to be exactly equal
to the SYK solution, but in practice we find that this is the
case.

Figures 2 and 3 show an annealed-type solution for g = 2
and 3, respectively. These solutions can be obtained with
modest computational effort. We also see that the static ap-
proximation looks good, and we expect it will only improve

qg=2

0 0.5 1 1.5 2 25 3 35 4

FIG. 2. Solution to the EOM with ¢ =2, g =4,J=1, N, =
80, and N; = 1000 samples. The red dashed line is the initialization
(large q), the black line shows the final converged result, and the
blue shaded region gives 3/+/N; around the black line. The result is
consistent with the annealed saddle in which G approaches unity at
long time.

with increasing f. For ¢ = 2, this is the only type of solution
we have been able to find.

For g = 3, one can find other solution types using a large-g
initialization. Such a solution is shown in Fig. 4, where we
also compare it with the SYK conformal result. The confor-
mal result is an excellent approximation except very close to
T = 0, B (where the large-q ansatz is closer). We also find that
the computational resources need to be significantly increased
to find such solutions reliably, including more time points and
more samples to estimate G from X. Readers familiar with
SYK may be surprised that 8 = 4 seems already solidly in
the conformal regime, but this can be understood because the
energy scales of Spin SYK are enhanced by a large factor
arising from the different normalizations of the operators and
the couplings.

We can find similar solutions for ¢ = 4 as shown in Fig. 5.
Here we set 8 =1 instead of 8 =4 in the ¢ = 3 and still

0.5 I I I I |

FIG. 3. Solution to the EOM withg = 3,8 =4,J =1, N, = 80,
and N, = 1000 samples. The red dashed line is the initialization
(J = 0), the black line shows the final converged result, and the
blue shaded region gives 3/4/N; around the black line. The result
is consistent with the annealed saddle in which G approaches unity
at long time.
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q=3

0 0.5 1 1.5 2 25 3 35 4

FIG. 4. Solution to the EOM with ¢ =3, =4,J =1, N, =
300, and N; = 10 000 samples. Compared to the previous figures, we
have now dramatically increased the number of time points and the
number of samples. The red dashed line is the initialization (large g),
the black line shows the final converged result, and the blue shaded
region gives 3/+/N; around the black line. The blue dashed line is the
SYK conformal result (capped at 3). We see quite good agreement
with the large-q result at short times and the SYK result at long times.
Note how the solution goes well below the annealed value at large 7.

find excellent agreement with the conformal ansatz. This is
again demonstrating the very rapid rise in energy scale with
increasing g; cf. (46). We can presumably find such a so-
lution for any g, although the computational cost seems to
continue to increase with increasing g, at least with our current
approach.

Finally, we show an example with ¢ = 5 and even smaller
B = 0.1 in Fig. 6. For this choice of parameters, we are not
in the conformal regime, but the large-g ansatz gives a good
account of the solution.

05 . . .
0

FIG. 5. Solution to the EOM with ¢ =4, =1, J=1, N, =
200, and N; = 10000 samples. The red dashed line is the initializa-
tion (large g), the black line shows the final converged result, and
the blue shaded region gives 3/+/N; around the black line. The blue
dashed line is the SYK conformal result (capped at 3). This result is
roughly consistent with the large-g form for all r. We again see good
agreement with the large-g result at short times and the SYK result
at long times.

q=5

22 I I I I I I
0 0.01 002 0.03 0.04 005 006 0.07 008 0.09 0.1

T

FIG. 6. Solution to the EOM withg =5,8=0.1,J =1,N, =
200, and N; = 10000 samples. The red dashed line is the initializa-
tion (large g), the black line shows the final converged result, and
the blue shaded region gives 3/+/N; around the black line. The blue
dashed line is the SYK conformal result (capped at 3). The blue
dashed line is the SYK conformal result (capped at 3). We have
significantly reduced f relative to the previous figures to demonstrate
the good agreement with the large-g result.

VI. FINITE-SIZE NUMERICS ON SPARSE SPIN SYK

In this section we define and study a sparse version of Spin
SYK using sparse matrix techniques [23,48,49]. We consider
a simple variant of the sparse model defined by randomly
pruning all but kN of the (];] )3" terms from the Hamiltonian.
The remaining couplings are Gaussian with a renormalized
variance adjusted so that E[tr(H 2)] has the same value in the
dense and sparse models. In the SYK context, sparse models
have been shown [23,48-50] to have behaviors similar to the
dense version, while requiring far less computational power to
diagonalize.

For the dense model, the second moment of H is

E[tr(H?)/2"] = E[Jfﬂ,,,](j;,> 37 = NJ2§. (60)

The couplings in the sparse model have variance J? obeying
KkNJ? = NJZ% which gives

34
I
We have observed little variation in observables as « is varied.
In the first set of numerical data discussed below, we set
k = N, which corresponds to a model that is still relatively
sparse but which at large N is likely dense enough to largely
replicate the physics of the dense model, e.g., 1/« corrections
to intensive quantities should vanish at large N.

We consider three observables in the sparse model. (i) The
ground-state Edwards-Anderson order parameter [51-53]:
qgEA = %Zm((WamW)f for the many-body ground state
Y. This order parameter serves as a diagnostic for glassy
behavior, being nonzero for glasses but zero for spin liquids
or gapped paramagnets. (ii) The gap between the ground state
and the first excited state. This would have three different
behaviors for the three possible phases. For a gapped param-
agnet, we would most likely see a sharp peak. For a spin glass,
we would see a continuous distribution down to zero [54,55].

=2 (61)
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Edwards-Anderson order parameter, q=3

10 10.5 1" 1.5 12
N

12.5 13 13.5 14

FIG. 7. The Edwards-Anderson order parameter in the ground
state (log scale) for ¢ = 3 as a function of system size. Each point
is averaged over 2000 samples. The growth with system size and the
macroscopic value indicate glassiness. The red line is a linear fit to

log gga.-

For an SYK-like system with both level repulsion [56—-63] and
an extensive ground-state entropy, one would expect a smooth
distribution going to zero as the gap goes to zero. (iii) The
ground-state energy. This is a fairly self-explanatory quantity.
It provides a sanity check on our overall understanding of the
system and can be used to compare with large-g estimates.
We discuss g = 3,4, and 5 in turn, starting with g = 3. The
EA order parameter is shown in Fig. 7, where we see gga rise
as a function of system size. It obviously cannot rise forever (it
is bounded above by 1), and even at finite size we see hints of
this saturation at a finite value. This indicates that the ¢ = 3
ground state is a glass. This conclusion is supported by the
gap histogram in Fig. 8. This is exactly what we would expect
if the ground state and the first excited state are distinct TAP
states with a macroscopic barrier to tunneling between them.
Next, let us consider ¢ = 4. This case is more complicated
because the model has an antiunitary time-reversal symmetry
which takes o,, — —o,,. For odd N, the states organize into
degenerate doublets related by time-reversal, while for even

800 , Energy gap, =3

600 -

Counts
S
S
S
;

200 -

0 0.2 0.4 0.6 0.8 1 1.2 14
Energy

FIG. 8. A histogram of 2000 samples of the finite-size energy
gap between the ground state and first excited state forg = 3and n =
14. The exponential distribution of the gap and the corresponding
lack of level repulsion are consistent with the two lowest-lying states
being quantum TAP states.

Edwards-Anderson order parameter, q=4
0.06 N ‘ ‘ ‘ ]

0.05- 1

0.04

qEA

0.03

0.02- . . . s k|
10 11 12 13 14 15

FIG. 9. The Edwards-Anderson order parameter in the ground
state (log scale) for ¢ = 4 as a function of system size. Each point
is averaged over 500 samples. The slow decrease with system size
is consistent with the absence of glassiness. We also see a very
clear even-odd effect consistent with the antiunitary time-reversal
symmetry. The red line is a linear fit to log gga.

N there is no exact degeneracy. We generalize the gga order
parameter for even g to take into account the lowest two states,

1
gea =52, ) lalonb). (62)

ri ab=1,2

The modified EA order parameter is shown in Fig. 9, where
we see a slow decrease as a function of system size, although
any decrease is swamped by parity effects. This behavior
(combined with the small magnitude of gga) is suggestive of
a nonglassy ground state, although this case seems marginal
compared to the robust decrease seen below for g =5. A
nonglassy ground state is supported by the gap histogram
in Fig. 10 where we see level repulsion. Nevertheless, the
asymptotic limit at large N is less definite than for either g = 3
or ¢ = 5. We also show an extrapolation of the ground-state
energy in Fig. 11. The proximity to the large-g result is syn-
ergistic with (27) and our observation that the large-g ansatz
works well near v = 0.

Energy gap, q=4

200
150 - J
£
£ 100~ .
O
50 - 1
0 ‘ ‘
0 0.05 0.1 0.15 0.2 0.25 0.3
Energy

FIG. 10. A histogram of 500 samples of the finite-size energy
gap between the ground state and first excited state for ¢ = 4 and
n = 15. The clear level repulsion is consistent with a nonglassy low-
energy state.
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Ground state energy, q=4

0 0.02 0.04 0.06 0.08 0.1

FIG. 11. The energy per spin plotted vs 1/N for ¢ = 4. The red
line is a linear extrapolation to 1/N = 0 and the blue star is the large-
q prediction. Each point is 500 samples.

Finally, let us consider ¢ = 5. The EA order parameter is
shown in Fig. 12 where we see a clear exponential decrease as
a function of system size. This indicates that the ¢ = 5 ground
state is not a glass. This conclusion is supported by the gap
histogram in Fig. 13. This is exactly what we would expect
if the ground state and the first excited state had random-
matrix-like level repulsion. We also show an extrapolation
of the ground-state energy in Fig. 14. The proximity to the
large-q result is synergistic with (27) and our observation that
the large-q ansatz works well near T = 0.

To shed further light on the physics, and in particular to
try to understand the fate of g = 4 at large N, we carried out
a second computation at somewhat larger system size, up to
N = 17, with 100 samples per point. For these data we set
the sparsity parameter to k = 16. The results for the EA order
parameter for g = 3,4, 5, 6,7 are shown in Figs. 15-19. At
these somewhat larger sizes, we see indications of saturation

%10 Edwards-Anderson order parameter, q=5
144 ‘

12 -

10}

10 10.5 11 11.5 12 12.5 13 13.5 14
N

FIG. 12. The Edwards-Anderson order parameter in the ground
state (log scale) for ¢ = 5 as a function of system size. Each point
is averaged over 2000 samples. The rapid decay with system size
strongly indicates the absence of glassiness. The red line is a linear fit
to log gga. One possible reason the finite-size scaling is exponential
in system size is that, like the [64] SYK model, the Spin SYK has an
exponentially large ground-state space and the single spin operators
behave like random matrices on this space.

500 Energy gap, 4=5

400
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I

Counts

100 - 1
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Energy

FIG. 13. A histogram of 2000 samples of the finite-size energy
gap between the ground state and first excited state for ¢ = 5 and
n = 14. The clear level repulsion is consistent with a nonglassy low-
energy state.

for ¢ = 3, 4 and robust exponential decays with system size
forg > 5.

Our conclusion from this section is that g = 3 is glassy,
q = 4 is likely glassy, and ¢ > 5 shows no sign of glassiness.
Although we did not study ¢ > 5 in detail, based on all the
accumulated evidence and trends, we conjecture that g > 5
are all nonglassy and SYK-like down to the lowest tempera-
tures. For g = 3, 4, the relatively small values of gga suggest
the existence of a wide intermediate energy window where the
physics could still be SYK-like even if the system is glassy at
asymptotically low temperature.

VII. THE ¢-LOCAL GAUGED CLUSTERS MODEL

To gain additional analytical insight into the physics, this
section studies a generalization of Spin SYK that we call the
g-local Gauged Clusters model. This model is indexed by an
even integer M = 4,6, ... such that M = 4 is Spin SYK and
the model is solvable at large M. The model is very analogous
to the SU(M) magnets studied by Sachdev and Ye [13], suit-
ably modified since spin-rotation symmetry plays no role for
us. We emphasize that the model is bosonic for any M, but it is

Ground state energy, q=5

E/N

= ‘ ‘
0 0.02 0.04 0.06 0.08 0.1
1/N

FIG. 14. The energy per spin plotted vs 1/N for g = 5. The red
line is a linear extrapolation to 1 /N = 0 and the blue star is the large-
g prediction. Each point is 2000 samples.
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Edwards-Anderson order parameter, q=3
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FIG. 15. The Edwards-Anderson order parameter in the ground
state (log scale) for ¢ = 3 as a function of system size from N = 13
to 17. Each point is averaged over 100 samples. The approximate
saturation with system size indicates a glassy ground state at large
N. The red line is a linear fit to log gga.

Edwards-Anderson order parameter, q=4
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FIG. 16. The Edwards-Anderson order parameter in the ground
state (log scale) for ¢ = 4 as a function of system size from N = 13
to 17. Each point is averaged over 100 samples. The approximate
saturation with system size indicates a glassy ground state at large
N. The red line is a linear fit to log gga.
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FIG. 17. The Edwards-Anderson order parameter in the ground
state (log scale) for ¢ = 5 as a function of system size from N = 13
to 17. Each point is averaged over 100 samples. The rapid decrease
with system size indicates a nonglassy ground state at large N. The
red line is a linear fit to log gga.
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FIG. 18. The Edwards-Anderson order parameter in the ground
state (log scale) for ¢ = 6 as a function of system size from N = 13
to 17. Each point is averaged over 100 samples. The rapid decrease
with system size indicates a nonglassy ground state at large N. The
red line is a linear fit to log gga.

convenient to construct it using fermions. We consider N sites
each of which contains M Majorana fermions. These fermions

are denoted y,o, with r=1,..., Nand e =1,...,M, and
they obey
{Xras Xra'} = 8rrbaa (63)
For each site, we have a fermion parity operator,
(=D = 20" )01 - xom- (64)
The physical Hilbert space is the even parity sector,
(-DF =1, (65)

for each site r. The local Hilbert space dimension is thus d =
oM/2-1

From each site we can construct fermion bilinears,
Or,aﬂ = _2inCer/3a (66)

which are bosonic operators that commute with all the
(—1)f's and square to the identity. The Hamiltonian is built

%107 Edwards-Anderson order parameter, q=7
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N

FIG. 19. The Edwards-Anderson order parameter in the ground
state (log scale) for ¢ = 7 as a function of system size from N = 13
to 17. Each point is averaged over 100 samples. The rapid decrease
with system size indicates a nonglassy ground state at large N. The
red line is a linear fit to log gga.
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from these operators as

ne ¥

ria Biretg By

-]r]a]ﬁ1~~~rqaqﬁq Orl,alﬂ] e Orq,aqﬂq- (67)

The J couplings have variance

-1
21 (q _ 1)']2 (/g)q22q+l
ELZ) =" [ - . (68)

The bizarre numerical factor in square brackets is chosen to
make the equations of motion simple.

In the case M = 4, one may check that the O,.,4, of which
there are six per site, can be identified with the Pauli matri-
ces within the two-dimensional even-parity subspace. Hence,
apart from the fact that each Pauli appears twice in the sum
over @ < f (e.g., O;2 = O34 on the physical Hilbert space),
we obtain exactly the Hamiltonian of Spin SYK when M = 4.
This doubling of the two-fermions operators is a consequence
of the fact that M = 4, and the four-fermi operator (—1)7 is
one on the physical Hilbert space.

We now study the model at large M and show that it is solv-
able using standard SYK technology. In fact, this model is a
generalization of coupled cluster models (e.g., [65]) in which
we allow for g-body interactions between the clusters/sites
and we gauge the fermion parity on each cluster/site. The
result is a purely bosonic model in the sense discussed above:
the total Hilbert space is a tensor product of local Hilbert
spaces, and operators on different tensor factors commute.
The fermions x, are analogous to “partons” or “spinons” in
the condensed-matter language, and they offer a convenient
way to describe the operators of interest, the Ogg.

We discuss the single replica path integral for g-local
Gauged Clusters in two stages, first for general M and then
at large M. Using fermion coherent states, the path integral
for general M is

14 (=D
E[Z] = /DNMX{HT}

r

1
X exp(_ZE/dTXmarXra

N J? M
2gNa-1 (Azl)‘/zzqﬂ

x Y [/dro,l,alﬂ,---T). (69)

ri,on <
The factor in curly brackets is a projector that restricts to even
fermion parity on each site. We then decouple the interaction
term by introducing a Lagrange multiplier term,

MN dtdt'Z(z, )| G(z,t') — !
16 ’ ’ N(Y)
x Y or,a,smor,a,s(r’)}, (70)
ra<f

which allows the path integral to be written as
E[Z] = / DGDxe ™M (71)
with
2 M M
/ / / /
= /d‘[d'l' [—ZWG(T, T )éj + 1—62(1', T )G(T, T )j|

+1 site (7 2)

and

1 —Df
e fr )
1 M
X eXP(—;E/dTXaarXa-FT@,)

x Z/drdr/z(r, r/)oaﬂ(r)oaﬂ(r’))}. (73)

a<f

Before proceeding to the large-M limit, let us understand
the effect of the fermion parity projector. The effect of the
(—1)F insertion is to change the boundary conditions of the
fermions around the imaginary time circle from antiperiodic
(AP) to periodic (P). Hence, the full single site path integral is
a sum of two terms,

Zap +Zp

—I
e site — 2 s

(74)

where Zp is a conventional term without (—1)F, and Zup is
a twisted term Z; p with (—DF. In the large-M limit, this is
not expected to change the physics of the model significantly,
meaning that the free energy per fermion should be the same
in the even- and odd-parity sectors, up to 1/M corrections. We
first describe the large-M limit for the untwisted contribution,
which counts both fermion parity sectors. Then we discuss
how the twisted contribution is obtained.

The point of the large-M limit is that it allows us to evaluate
the path integral over y, in the definition of [z, by saddle
point. We introduce another Lagrange multiplier term,

M 1
> / dtdt's, (t, r’)|:GX(1:, ') — " ZXO,(T)XQ(‘L'/):|,
(75)

so the single site path integral becomes

M
Zap = /DGXDZX exp <M10ng(8T -2+ ?/drdr'

x Bz(r, )G, (1, 7)Y — X, (z, T)G, (7, r/)D.
(76)

The EOM for X, and G, are, respectively,

Gy = —— (77)
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and
¥, = XG,. (78)
The EOM for G and X are, respectively,
2:252Gq1=ﬂ<§>ql (79)
and
G =4G,. (80)

These equations can be reduced to a closed set involving just
Gy and %, ,

Gy=@® -2, 81)

T, =16 (82)

From this we learn that G, is the correlator of an SYK model
with g, = 2g.

What about the twisted contribution, Zp? Starting with
a solution G(t,t’) of the untwisted path integral, we can
obtain a solution of the twisted EOM by modifying G such
that it picks up an extra minus sign whenever 7 or 7’
move past B. The reader may worry that this choice of
time breaks time-translation symmetry, but it is actually a
gauge artifact, and time-translation symmetry is preserved for
any gauge invariant observable. This twisted G is G(t, ') =
Q(1)G(z, ")Q(7’) for some Q that implements the twist, e.g.,
0 = sgn(B — 1) for T near B. Since this is effectively a pre-
and postmultiplication of G by a diagonal matrix, Q, that
squares to the identity, it follows that

Pf(G') = PE(QG~'Q) = PI(G™") (83)

/ququ,/Gizfcz. (84)

Hence, the value of the saddle-point action will be identical.
Now, it may still happen that the full twisted contribution
vanishes, but at least we learn that Zp = ¢Z,p for some value
¢ (possibly zero) which is only polynomially large in M
(and hence cannot change the leading-order free energy per
fermion at large M).

What all this means is simply that, at large M, we can
ignore the fermion parity projector. We can therefore simply
stick with the standard antiperiodic contribution to e, Con-
sidering the EOM and going to the conformal regime, we learn
that the Majorana field has dimension A, = 1/q, = 1/(2q).
The “spin” correlator G is the square of the fermion correlator,
so in the conformal regime, it will be proportional to the
conformal result with dimension A = 1/q. This is precisely
what we found numerically for M = 4 and ¢ > 3. Note that
in the case ¢ = 2, we do get SYK-like physics over a wide
range of energies at large M, but the SYK-like saddle suffers
from an known instability, which results in glassy physics at
the lowest energies [4,13].

and

A. Bounds on glassiness at large M

What happens to the system at large but finite M? From
our numerics on Spin SYK in Sec. VI, it seems likely that

the model is just SYK-like all the way down to M = 4 for
sufficiently large g. Still, we would like to constrain possible
glassy states.

We can derive a bound on the analog of the Edwards-
Anderson order parameter for g-local Gauged Clusters
(similar to the recent analysis in [4]). With the normaliza-
tion of G chosen above, we have G(0) = 1. Now introducing
replicas a =1, ..., n, we have G1;(0) = 1 and we ask how
large can Gy, be? This off-diagonal term can be bounded by
constraining the possible expectation values of the Oqg. The
best we can do is choose a state of the fermions in which

—2iy1x0 = —2ixaxs == 2ixy—1xm =1, (85

or some permutation thereof. In such a state, M/2 of the (’g )
fermion bilinears have a nonzero expectation value, so

1
M—-1
This formula tells us that glassy physics is suppressed at large
M. For M = 4, this formula reduces to the previous result that
Gip/G11(0) < 1/3.

Suppose that we are at sufficiently large M or g such that
G can develop into its conformal form for some range of 8. G
is smallest at T = /2 where it is

Gip <

(86)

G(B/2) ~ 1/(BI)", (87)
which only approaches 1/M when
BJ ~ M2 (88)

At large M and/or large ¢, this indicates the existence of a
parametrically large window in energy over which the physics
can be SYK-like.

B. Comments on generic g-local interactions

We can further generalize the g-local Gauged Clusters
model by expanding the set of local operators which can be
appear in the g-body interaction. So far, we restricted these
operators to be fermion bilinears, but we could allow more
general operators, such as xq xg Xy Xs5- In fact, if we allow all
possible even powers of fermions, we obtain a complete basis
for operators on the 2M/2~!_dimensional site. We make two
comments about this more generic situation.

First, while it is more complicated to address the case
where we add all possible operators with random couplings
of equal variance, it is easier to discuss adding additional
operators perturbatively, i.e., with a random coupling whose
variance is suppressed by a small factor. From the fermion
perspective, this looks like adding higher-g, interactions. But
such higher-g, interactions are typically irrelevant in the
renormalization-group sense. This means we expect the low-
est g, present in the Hamiltonian to control the physics at very
low energy. Hence, it could be that adding these terms actually
does not strongly modify the very low temperature physics. In
other words, adding generic interactions perturbatively could
preserve the SYK-like physics when it is present at very low
energy.

Second, as we add more operators to the Hamiltonian, the
corresponding bound on glassiness improves. For example,
suppose we allow every possible single-site operator in the
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g-body interactions. There are d?> — 1 such operators [the
number generators of SU(d) and the number of distinct op-
erators built from even products of fermions], where again
d = 2M/2=1 et us also continue to normalize G, which now
includes a sum over all single site operators, so that G(0) = 1.
Using the same fermion state as above, we learn that d — 1
distinct operators now have a nonvanishing expectation value.
This number is obtained by considering general operators of
the form (O1,)" (034)* - - -, accounting for a double counting
thanks to (—1) =1, and subtracting one for the identity.
Hence, we have
d—1 1

Gp< ——— — |
PSR T d+1

which again reduces to G1,/G11(0) < 1/3ford =2 (M = 4).

(89)

VIII. PHYSICS OF THE SYK-LIKE SADDLE

Here we briefly discuss the low-energy physics when the
power-law decaying G(t) controls the quenched free energy.
In particular, in SYK the power-law decay of the Green
function is just one part of a whole suite of interrelated phe-
nomena. Do we obtain the same set of phenomena in Spin
SYK?

The general idea is to appeal to the existence of approx-
imate time-reparametrization symmetry. The first two terms
in (16) are manifestly invariant under reparametrizations, but
the third term breaks this symmetry explicitly. The ground-
state solution also breaks the symmetry spontaneously, thus
yielding a pattern of symmetry breaking familiar from SYK.

For example, under a general reparametrization T — f(7),
¥ is modified to

X(t1, ) = f@) A () TAS(f (1), f(2)  (90)

with A = 1/q. Every choice of 4 now has a reparametrized
form,

h(t) = f'(@)' " 2h(f (1)) oD

If we could rescale the integration variables s(t) to
F(1)2s(f (1)), then the G function would transform as ex-
pected. Of course, strictly speaking this is impossible since
s(t) lives on the sphere and there are additional microscopic
terms in the measure. However, after an appropriate coarse-
graining, the coarse-grained s(7) is no longer confined to the
sphere. This suggests that the failure of time reparametrization
symmetry is indeed a UV issue.

This means that when we evaluate that action on a
reparametrized configuration,

F @2 @) G(f (1), f(12)), (92)

the contribution comes from the UV terms, which explicitly
break the symmetry. Following the usual analysis, we expect
the Schwarzian term to be among these contributions. If this
is the leading term in the action, then the physics is very close
to that of SYK.

Another possibility at finite ¢ and M is that there could be
weakly irrelevant operators which contribute a nonlocal action
that dominates over the Schwarzian [66]. This is a possibility
when the theory has an irrelevant operator O with dimension
Ap € (1,3/2) that appears in the microscopic action [67].

Whether this possibility is realized depends on the operator
spectrum and on the nature of the UV terms. Even for models
where this possibility is realized, we still have an extensive
ground-state entropy, maximal chaos, and the Schwarzian is
still present [66].

For example, take ¢ = 3. This case is glassy for Spin SYK,
but for sufficiently large M in g-local Gauged Clusters, the
SYK-like solution should control the quenched free energy
over a wide range of temperatures. In this case, A = 1/3 and
the corresponding long-range fixed point is in the Gaussian
regime. For a Gaussian fixed point, we know the dimensions
of all the operators in the theory and there are seemingly
operators with dimensions in the range Ao € (1, 3/2), e.g., ¢*
where ¢ is some coarse-grained form of O, (7). Nevertheless,
it is not clear if these operators appear in the UV, especially
since they do not contain time-derivatives whereas the coher-
ent state overlaps in the measure are unity unless the fields
vary in time.

These general comments can be elaborated in the various
solvable limits we considered in the paper. Consider first the
large-q limit. From the discussion in Sec. IV and the numer-
ical solutions of the EOM in Sec. V, we know the SYK-like
saddle in this regime hews close to the literal SYK solution, up
to a rescaling of G and a different numerical prefactor relating
J and J. Thus at large ¢ we expect the thermodynamics to
essentially match those of the large-g SYK model. This means
an SYK-like extensive zero-temperature entropy which ap-
proaches the infinite temperature entropy as g becomes large.
We also should have the large-g chaos properties, including
maximal chaos at low temperature. Moreover, in the scaling
limit in which ¢?/N is held fixed as N — oo, SYK is solvable
[68] and Spin SYK will have the same physics [27,69].

Similarly, at large M in the g-local Gauged Clusters model,
we know that the spin correlation G is determined from G,,
which is exactly the correlator of a fermionic SYK with g, =
2g. From (25), suitably adjusted to account for the different
normalization of G, we learn that

—]Ev x / dt(G, (1)), (93)

which in the conformal regime is identical to the SYK expres-
sion up to an overall factor. The integral is

E Bt 7?2 27 7w,
—— — (UV part) ~ dt————— ~ ———cot
N . B2 sin* X B B
%94

for some UV cutoff 7, ~ 1/J, which yields E/N = Ey/
N+cT? +---.

IX. DISCUSSION

In this work, we argued for the existence of SYK-like dy-
namics in a variety of bosonic models. Focusing on Spin SYK,
we catalogued possible solutions to the single-replica EOM
and then, in lieu of carrying out the minimax procedure, we
used small-scale numerical simulations to provide input on the
nature of the quenched saddle. Additional analytical insight
was provided by a large-g limit. We also introduced and ana-
lyzed the g-local Gauged Clusters model, showing that it has
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SYK-like behavior for sufficiently large M, g. Our numerical
results suggest that this behavior persists down to ¢ =5 in
Spin SYK. Even when the asymptotically low-temperature
physics is glassy, e.g., ¢ = 2, 3, 4, we also gave evidence for
an intermediate regime of energies with SYK-like physics.

We considered a three-component model, but there is also
interest in a two-component version as recently discussed
in [29]. One can develop an analogous formulation for the
two-component model, with the main difference being that
the effective spin chain has two components (XY') instead of
three (XY Z). We expect the single-replica solutions that we
found here will have an analog for the two-component action.
Furthermore, we expect that the two-component model will
also be SYK-like for sufficiently large g. We have preliminary
results for the two-component case, which we hope to present
elsewhere.

These results have significant implications for the structure
of quantum field theories, suggesting that nontrivial CFTs
and holographic duals are more common than we thought. It
also has clear implications for near-term quantum simulators,
creating a more viable path to simulating SYK-like physics,
and opening the door to analogous bosonic simulations of
more complicated theories of gravity.

While this paper lays out the basics of g-local quantum
physics in Spin SYK, there is still much to do. Some broad
questions include the following:

(i) Are these results limited to 0+ 1D systems, or are
there other situations in which generic disordered systems
have holographic duals? There has been work on systems with
generic local interactions on a graph [70] and in translation
invariant spin chains [71], but much remains to be understood.

(i1) What can be said about fluctuations of the action
away from the saddle? Spin SYK and its cousins have a
reparametrization symmetry spontaneously broken down to
SL(2). Does that mean that they have a Schwarzian action
that dominates? Not necessarily, as some systems [66] have
nonlocal effective actions. It should be possible to understand
whether this is realized in Spin SYK by a careful study of the
low-temperature thermodynamics and response functions.

(iii) For the experimentalists/quantum simulationists, what
is the actual two-point function for Spin SYK at ¢ =4 at
large system size? In Sec. V we find that a replica-diagonal
solution consistent with SYK-like physics exists, but the exact
diagonalization results suggest a small but nonzero value of
qea. What about for g-local Gauged Clusters at ¢ = 3 for
some modest intermediate M, such as M = 6 or 8? These
questions are all ideal targets for a quantum simulator.

(iv) For the holographers, since we know that quenched is
not equal to annealed in Spin SYK, what is the gravitational
analog of the annealed solution (assuming the usual gravity
solution is the analog of the quenched solution)? How do these
solutions interplay with the recent developments regarding the
role of averaging in theories of gravity? Is there a holographic
interpretation of the glassy state for g = 2, 3, 4?

(v) Can we analyze the limit of large local Hilbert space
dimension while also allowing generic local operators in the
interaction? If so, is the physics SYK-like, at least over a wide
range of energies, as suggested by the g-local Gauged Clusters
model?

Some more model-specific tasks include the following:

(1) It would be interesting to carry out a systematic study
of the SYK-like solution at low energies to, for example,
definitively establish the form of the heat capacity and to
determine the zero-temperature entropy. Perhaps the argument
in [72] can be useful.

(i) It would likewise be desirable to carry out a full numer-
ical analysis of key observables in sparse finite-N instances,
quantities such as the real-time decay of correlations and out-
of-time-order correlations.

(iii) More ambitiously, it would be very interesting to
construct replica-nondiagonal saddles and to carry out the
minimax procedure. This is work in progress.

(iv) It would also be very interesting to compute the leading
1/g correction [43] in Spin SYK and the g-local Gauged Clus-
ters model as well as the leading 1/M correction in g-local
Gauged Clusters.
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APPENDIX A: THE SPIN SYK PATH INTEGRAL

1. Spin coherent states

The path integral is derived using spin coherent states.
Note that, although we use the conventional spin language,
an instance of the model has no spin rotation symmetry. For a
single spin-1/2 degree of freedom, we take the spin coherent

state to be
cos §
=, (A1)
sin Se
with
€2 = (sin @ cos ¢, sin O sin ¢, cos ). (A2)
The overlap of two spin coherent states is
Q1) 0 0’ +si 0 . 0 _is-e) (A3)
= COS = COS — —sin — .
5 €08 - +sin > sin —-e

This set of states yields a resolution of the identity (d2 =
dosin6do),

ao do cos? ¢ cos £ sin e~
[ o= [ z oz
2 27 | cos § sin §e™® sin® &

2 2

=1 (A4)
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They can also be used to represent the Pauli matrices,

dQ 4o cos? cos & sin §e~" .
/ — Q) (R2|(32,) = / — ) (3sin6 cos @) = oy, (AS)
2r 27 | cos § sin S’ sin? §
do do cos? cos % sin %e’“b . )
/—|Q)(Q|(3QV)=/— 0 o g (3sinfsin¢) = oy, (A6)
2n : 27 | cos § sin §e'® sin® §
do do cos cos % sin %e""”
/—|Q)(Q|(3QZ)=/— . (3cos0) = o;. (A7)
2n 27 | cos § sin §e'® in® §
To demonstrate the machinery, consider a single spin with Hamiltonian H = —ho,. For infinitesimal imaginary time A1, we
write
ds2
e NH — [ 4 Atho, = / S 19)(@Il1 + AR, (A8)
T

Diving B into L segments of length At = /L and introducing an €2 variable for each segment, we have

dQ;
U‘(efﬂH)Z/ H—<Q/+1|Q
J

exp ZArhsx(j) :/ Hdz%
J J

exp | Y Alrhs,(j) +isin®0;,A¢;1]|. (A9)
J

where s, (i) = 3L2,;. We absorb all the factors in square brackets into a measure D2 to obtain the compact path integral formula

B
tr(e Py = /DQexp (h/ drsx(t)>.
0

2. Replicated partition function

Now we give the multireplica path integral for Spin SYK.
For an infinitesimal imaginary time At, we have

— At E : Jrl#]"'rqﬂqarlﬂl

Py Tqq

—AtH

(Al1)

Oryuy-

Using the coherent state formulas just above and the notation
uw = 382, we have

a2
_ATH: r ...,Qn Qs'~"Qn
e fUZn €2 |

x | 1-At § ‘Irlltl"'rqltqsrlll«l C o Srug

F11 - Tqlhq

(A12)

We have one 2 variable for each spin and each imaginary
time point, €2,;. The full measure is

DNQ 1_[ (l_[ dQ” ri+1|Qri>)‘

The path integral for the partition function of a single instance
is
/ DV Qexp (
T Srqu,q(r)> .

(A13)

/df Z Ty rquqsrlm(f)]

Fifr-rqlhq

(A14)

(A10)

(

We equivalently write this in terms of a multi-index [ =
Fify - Tglq-

The replicated path integral is obtained from the disorder
average of Z™,

m €XP 2 |

2
x Z{Z/ dest , oo ;‘M} ) (A15)

where now we have included a replica index a on each spin
variable (and modified the measure include m copies, D<2,,).
The replica index runs from 1 to m. The quenched free energy
is obtained from the m — 0 limit as discussed in the main
text.
We now introduce the G, ¥ collective fields. The spin
correlation G, (71, 12) i
Gup(11, 12) = (A16)

1
~ 2 St (TS, (72),
ri

and combined with the Lagrange multiplier X,,, the path
integral becomes

J’N
E[Z"] = /DNQ,,lDEDGexp (Z—Z/Ggh
q ab
N 1
- Z/ Zap | Gay = 5 D 57, (7)s1,,(2) )
ab run

(A17)
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One important feature is that G,.;(71, 72) should be a con-
stant (possibly zero) since we have separate time-translation
invariance in the individual replicas.

There is another representation of the path integral which
decouples the s°s” term by introducing a fluctuating magnetic
field h,,,, for each spin in each replica. The fields are indepen-
dent between spins, and for a single spin across all replicas,
the covariance of £, (t1) and Ay, (12) is 8., Xap(71, T2). This
includes the possibility that 4, (7) is correlated between repli-
cas. The path integral is then expressed as

J’N
E[Z"] = /DNQ,,,DEDGDNhexp (2—2/%
q ab

N
- 5 Z/ Zub(;ab + Z / dfhruu(f)s(rlﬂ(f))v
ab ra

(A18)

where DV is a product of Gaussian measures for Ryap- If we
now do the 2 and % integrals, we can write the replicated
partition function as

JEN
E[Z™] =/D2DGexp Z_ZfGZh
q ab

N
-5 > / SusGap + N log(Pe/ dfhm)zab).
ab

(A19)

The single replica path integral is obtained by setting
m=1.1Itis

v 2N
E[Z] = | D"QDEDG exp > G?
q

1
-5 = G—;%jsmm)sm(rz) ) (A20)

or, equivalently,

J’N N
E[Z] = | DYQDEDGD hexp (2— / G — 5 G
q

+Z/drhm(t)sm(t)>.

APPENDIX B: NUMERICAL METHODS

1. Solving the equations of motion

For the data in Sec. V, we used MATLAB to set up an
iterative solver scheme on a discretized imaginary time circle.
The solver has a few components.

First, given a value of X, we need to obtain an estimate
of G. As stated in the main text, we use sampling to do
this. However, we want to do importance sampling from

the full distribution (single spin partition function times the
Gaussian distribution) of the magnetic fields rather than just
randomly sampling from the Gaussian distribution. To do
this, we implemented a Markov chain Monte Carlo based on
the Metropolis-Hastings algorithm. We generated candidate
steps in the magnetic field by sampling from the Gaussian
distribution and multiplying by a small factor, typically of
order 0.1 or 0.2. We then randomly accept or reject the step
based on the Metropolis-Hastings rule. After some number of
steps, typically six, we use the resulting fields to generate one
sample contributing to G. We do not know the autocorrelation
time of our Markov chain, so these parameters are largely
ad hoc, chosen after much experimentation to give reliable
solutions.

Second, given a value of G, we need to obtain the corre-
sponding X. This is trivial using the G EOM. We do enforce
that G is reflection-symmetric in the above sampling proce-
dure, and we also enforce that ¥ is symmetric and translation
invariant.

Third, we need an update rule. We choose a mix parameter
x and a fraction b, and we propose updates via

Gprop = (1 —=x)Gou + xGrew, BD

where G,y is obtained from the sampling subroutine above.
There is an identical update rule for . If this update does not
increase the error, then we accept it and continue. If it does
increase the error, then we reduce x — bx and continue. We
always carry out at least one update since the error is initial-
ized to a large value. Typically, b = 0.5 and x is initialized to
0.5.

The data in the main text allow for six iterations of this
procedure starting from an initial guess. When not using
enough time points or enough samples, one often finds that no
updates after the first are accepted. However, with sufficient
time points and samples, we have found that nearly every
update can be accepted.

The number of iterations and time points are quite modest
compared to what is standard for solutions of the SYK equa-
tions of motion. However, the sampling procedure is currently
very expensive. The most expensive runs, e.g., Fig. 4, with
N; = 300 time points and N; = 10* samples, took around 5 h
to run on a single core. The code was run on the Zaratan
cluster at University of Maryland, College Park.

We are not sure if there is a vastly more efficient method
for solving the equations of motion. However, at least by
parallelizing the sampling and making some other modest
improvements, one could probably study significantly larger
N; and N;.

2. Finite-size numerics

For the data in Sec. VI, we used MATLAB and defined in-
stances of the sparse Spin SYK model as sparse matrices. We
then made calls to MATLAB’s built-in sparse matrix eigenvalue
routines to access the lowest few eigenvalues and eigenvectors
of the sparse Hamiltonian. The code was run on the Zaratan
cluster at University of Maryland, College Park.
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