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Viscosity bounds in liquids with different structure and bonding types
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Recently, it was realized that liquid viscosity has a lower bound which is nearly constant for all liquids
and is governed by fundamental physical constants. This was supported by experimental data in noble and
molecular liquids. Here, we perform large-scale molecular dynamics simulations to ascertain this bound in two
other important liquid types: the ionic molten salt system LiF and metallic Pb. We find that these ionic and
metallic systems similarly have lower viscosity bounds corresponding to the minimum of kinematic viscosity
of ∼10−7 m2/s. We show that this agrees with experimental data in other systems with different structures
and bonding types, including noble, molecular, metallic, and covalent liquids. This expands the universality of
viscosity bounds into the main system types known.
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I. INTRODUCTION

Different liquids are considered for use as coolants in
nuclear reactors, including molten salts and metals [1–4]. In
these applications, viscosity η and thermal conductivity are
two important properties characterising the performance of
these liquids and governing their flow/diffusion and thermal
transport properties. Understanding and predicting these prop-
erties over a range of temperatures and pressures is therefore
important from the application point of view. This understand-
ing is also of fundamental theoretical importance, in view that
properties of liquids are strongly system dependent and hence
are not considered amenable to a general theory, in contrast to
solids and gases [5].

Viscosity of low-temperature dense liquids is governed by
the activation energy barrier U as

η = η0 exp

(
U

T

)
, (1)

where U is set by the intermolecular interactions and structure
in the liquid, T is temperature, and η0 is the prefactor related
to the high-temperature limit of η. Here and below, kB = 1.
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Equation (1) applies in the low-temperature liquid-like
regime where a molecule oscillates before undergoing a
jump into a neighboring quasiequilibrium position [6,7]. In
this regime, η increases on cooling and, if crystallization is
avoided, can vary by up to 15 orders of magnitude in the vis-
cous regime. At high temperature, the oscillatory component
of particle motion is lost. This can occur in either the gas phase
at pressures below the critical pressure or above the Frenkel
line in the supercritical regime where particle dynamics be-
come purely diffusive [8]. In the gaslike regime of particle
dynamics, η follows a different temperature dependence:

η = 1
3ρvL, (2)

where ρ is density, v is the average particle speed, L is the
particle mean free path, and η increases with temperature as
η ∝ T 1/2 because L ∝ 1

ρ
and v ∝ T 1/2.

The increase of η at low temperature and its increase at
high temperature implies that η has a minimum. It turns out
that the value of the minimum of the kinematic viscosity
ν = η

ρ
, νm, can be approximately evaluated in terms of fun-

damental physical constants as [9,10]

vm = 1

4π

h̄√
mem

, (3)

where m is the mass of the molecule, and me is the electron
mass.

Deriving Eq. (3) involves two steps. First, it was shown
that the minimum of ν depends only on two parameters char-
acterizing a condensed matter system: interatomic separation
a and the largest Debye vibration frequency ωD. Second,
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characteristic values of a and ωD are set by the Bohr radius
and Rydberg energy. This gives Eq. (3) [9,10].

Equation (3) has explained the longstanding question con-
sidered by Purcell and Weisskopf [11], namely, why the
viscosity of all liquids never falls below a certain value com-
parable with the viscosity of water at room conditions. The
answer comes in two parts [12]. First, viscosities stop de-
creasing because they have minima. Second, those minima are
largely fixed by fundamental constants in Eq. (3) (νm ∝ 1√

m
does not change νm too much for most liquids).

In addition to liquids, viscosity minima have been of inter-
est in other areas of physics, including holographic models
based on the correspondence between strongly interacting
field and gravity theories [13]. More generally, understand-
ing the origin of bounds on system properties has enthralled
physicists, including those interested in collective dynamics
and systems where many interacting agents operate. Apart
from the interest in the values and origins of the bounds
themselves, there is another reason why these bounds are
important: finding and understanding bounds on physical
properties often means that we enhance our grasp of or
clarify the underlying physics of the property in question
[10,14,15].

In addition to viscosity, it was realized that Eq. (3) provides
a lower bound for an unrelated property of liquids: thermal
diffusivity α [16]. As discussed earlier, this property is di-
rectly relevant to industrial properties where molten salts are
used, including the operation of coolants in nuclear reactors,
where the heat transfer processes are important.

The lower bound νm in Eq. (3) is of the order of 10−7 m2/s
(this value corresponds to m equal to the proton mass which
sets the magnitude of atomic masses). This agrees with exper-
imental viscosity minima for noble, molecular, and network
liquids to within a factor of 1–3 [9]. It was also found to
agree with the experimental high-temperature limiting value
of viscosity of metallic alloys [15,17]. This analysis was fur-
ther extended in Ref. [18].

However, no estimations of viscosity minima in molten
salts have been undertaken experimentally due to high melting
points and hence very high temperatures required to reach the
minima. It therefore remains unknown how the viscosities of
molten salts conform to the presumably universal crossover
between the liquidlike and gaslike regimes and to the theoret-
ical minimum in Eq. (3). Apart from theoretical importance,
knowledge of this would be important from the application
point of view: knowing the pressure and temperature con-
ditions of the minima of kinematic viscosity and thermal
diffusivity would enable predictions of the optimal state of
operation of molten salts.

Here, we perform large-scale molecular dynamics (MD)
simulations of the molten salt LiF as a case study (LiF is
a common component in molten salt mixtures used in nu-
clear reactors [2]). We also simulate metallic Pb. We find
that these ionic and metallic systems have lower viscosity
bounds corresponding to the minimum of kinematic viscosity
of ∼10−7 m2/s. We show that this agrees with the experimen-
tal data in other systems with different structures and bonding
types, including noble, molecular, metallic, and covalent liq-
uids. This expands the universality of viscosity bounds into
the main types of systems known.

II. METHODS

We use the DL_POLY MD package [19]. For LiF, we used
the empirical potential as in the previous work [20–22] with
parameters derived earlier [23]. For Pb, we used the potential
from Ref. [24]. We also simulated liquid Ar using the standard
Lennard-Jones potential.

Unless otherwise stated, we simulated for 1 000 000 time
steps, with a fixed simulation time step of 0.001 ps. The
system size used varied from 2000 atoms in LiF to 5120
in Pb. We have also simulated larger systems with 100 000
particles and found that the values of viscosity collected were
consistent regardless of the system size. Similar behavior of
measured viscosities with system size has been found pre-
viously [25]. We simulated a wide range of temperatures
for each pressure. We first equilibrated the system at each
pressure in the constant-pressure ensemble for 20 000 steps
and then performed production runs for 1 000 000 steps in the
constant energy and volume ensemble where the data were
collected for calculating properties.

The dynamic viscosity η was calculated using the Green-
Kubo method [26,27] as

η = V

T

∫ ∞

0
dt〈Pxy(0)Pxy(t )〉, (4)

where V is the volume of the system, and Pxy is the xy com-
ponent of the stress tensor.

Obtaining accurate statistics via the Green-Kubo method
is a well-known computational issue [28], which we address
by averaging statistics over 20 independent initial conditions.
This has been sufficient in prior work involving viscosity
calculations [25].

We also calculate the kinematic viscosity ν = η

ρ
governing

the nonequilibrium flow and other properties such as, for ex-
ample, fuel atomization quality [29]. Density ρ was calculated
at the same state points as η.

III. RESULTS AND DISCUSSION

We show the calculated η in Fig. 1(a) for two different
systems sizes. We observe good agreement of η calculated
in the two systems. We also observe agreement with the
earlier MD results in the low-temperature range using the
same potential [22]. Little experimental data for LiF vis-
cosity exists >1000 K. We use the experimental data from
Ref. [30], which contains the widest range of data and was
found to be in agreement with other experiments in the low-
temperature range [31,33]. The MD results underestimate the
experimental viscosity by a factor of ∼1.3–5; however, the
overall shape of η is similar in experimental and MD data.
As discussed in Ref. [22], the simulated viscosity is lower
than experimental viscosity due to the model not accurately
matching the melting point, ∼300 K lower than experimental
values (predicting melting points accurately is a more gen-
eral problem in atomistic simulations due to several factors
including short simulation times which can be insufficient to
exceed slow kinetics of phase transformations). Translating
all temperatures upward by this melting point discrepancy
of 300 K while maintaining all values of viscosity results
in much better agreement, demonstrating that the empirical
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FIG. 1. (a) Dynamic viscosity of LiF for small (500 atoms) and
large (100 000 atoms) systems. We compare with earlier molecu-
lar dynamics (MD) results [22] as well as experimental results in
Ref. [30], which have been shown to have good agreement with
more recent experiments [31,32]. (b) Density at different pressures.
(c) Kinematic viscosity of LiF simulated using 2000 atoms for a
range of pressures.

potential accurately models the dissipative dynamics of the
liquid. We note that the underestimation of the melting point
does not affect our results since we are interested in the values
of viscosity minima.

We observe that the calculated η tends to an approxi-
mately constant value of about η = 2 × 10−4 Pa s at high

temperature. This is close to viscosity minima in noble,
molecular, and network liquids [9]. Simulating higher tem-
perature results in the known instability of the Born-Mayer
potential at short distances. This could be fixed by, for exam-
ple, adding short-range repulsive terms to the potential (e.g.,
in the form of Ziegler-Biersack-Littmark potentials [34]);
however, this is not required for the purposes of this paper,
in which we aimed at evaluating the limiting lower viscosity
bounds.

Density as a function of temperature is shown in Fig. 1(b)
for different pressures. We observe that the slope of density
decrease becomes smaller at high pressure, corresponding to
the decrease of the thermal expansion coefficient with pres-
sure. This is consistent with the common behavior seen in
solids [35].

The calculated kinematic viscosity ν = η

ρ
is shown in

Fig. 1(c) for different pressures. We make several observa-
tions. First, ν reaches a constant value at high temperature
and shallow minima at low pressures. The minima become
more apparent here, compared with in the dynamic viscosity
in Fig. 1(a), due to the decrease of density at high temper-
ature. Second, pressure increases the values of the minima
and constant values at which ν tends to a constant at high
temperature. This is like what is observed in noble, molecular,
and network liquids [9] and is related to the increase of the
activation energy for molecular rearrangement with pressure
and associated increase of viscosity. Third, the value of ν at
their constant value or minima is in the range 2 × 10−7 to
5 × 10−7m2/s. This is of the same order, 10−7m2/s, as pre-
dicted by Eq. (3). This last point is important and implies that
the viscosities of ionic systems and molten salts have the same
behavior in terms of the value of their viscosity minima. We
will make the comparison between calculated and theoretical
values more quantitative later on, alongside the other liquids
we study.

Here, η and ν for the simulated metallic system Pb are
shown in Fig. 2. These show very similar results to those
of LiF. Here, η increases with pressure and tends to about
η = 2 × 10−4 Pa s at high temperature. Also, ν has a mini-
mum ∼2 × 10−7m2/s at low pressure, as predicted by Eq. (3).
To emphasize this similarity, we plot ν for Pb, LiF, and Ar in
Fig. 2(c).

To compare our results for ionic LiF and metallic Pb with
a wider dataset, we add the experimental η and ν for noble Ar
and molecular CH4 and CO2 as well as network H2O [36] to
the plots in Fig. 3. It is appropriate to note here that, differently
from noble and molecular liquids, the NIST database [36]
does not include viscosities of ionic molten salts and metallic
systems. Part of the issue is the experimental difficulty related
to high melting and boiling points of these systems. The
value of our current simulations therefore includes provision
of these data and serves as a guide for future high-temperature
experiments.

The results collected in Fig. 3 are consistent with what is
expected for the dependence of viscosity on temperature, as
discussed in the introduction: the decrease with temperature
in the liquidlike regime, followed by its increase in the gaslike
regime. We observe a great amount of variation in the values
of viscosity collected for different systems as well as the
variability of the shape of viscosity curves. We also observe
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FIG. 2. (a) Dynamic viscosity of Pb at 0.2, 40, 80, and 200 kbar.
(b) Comparison of kinematic viscosity of Ar, Pb, and LiF.

a consistency in the magnitude of the minimum values of
viscosity, in agreement with Eq. (3) predicting close values
of the lower viscosity bound in all liquids. This includes the
ionic molten salt LiF and metallic Pb.

We now address the quantitative comparison between the
predicted and calculated νm. In Table I, we show theoretical
and calculated νm for LiF, Pb, and Ar. The ratio between
calculated and theoretical values is in the range 1.7–4.6. This
is like the range of ratios for the large set of noble, molecular,
and network liquids found earlier, where this ratio is in the
range 0.5–3 [9].

TABLE I. Comparison of predicted values calculated from the
formula against simulated or experimental values of the kinematic
viscosity minimum, vm10−8 m2/s.

Liquid Theory Simulated Experimental

LiF 6.0 18.8
Pb 1.5 6.9
Ar (20 MPa) 3.4 5.7 5.9
CH4 (20 MPa) 5.4 11.0
CO2 (30 MPa) 3.2 8.0
H2O (100 MPa) 5.1 12.1

FIG. 3. (a) Experimental and simulated dynamic viscosity for
LiF, Pb, and Ar. In order: NIST dataset for Ar 20 MPa, CH4 20 MPa,
CO2 30 MPa, H20 100 MPa [36], LiF experiment [30], our LiF simu-
lation, our Pb simulation, Pb experiment [37], and our Ar simulation.
(b) Kinematic viscosity of systems in (a).

The difference between theoretical and observed νm by a
factor of 1–4 is related to a number of approximations in-
volved in deriving Eq. (3). This includes approximating the
interatomic separation by the Bohr radius and the bonding
energy by the Rydberg energy. Recall that the main purpose
of Eq. (3) is twofold: first, it shows that the viscosity mini-
mum is largely the same for all liquids because it is set by
fundamental physical constants. Second, Eq. (3) serves to
evaluate a characteristic value, order of magnitude, of νm.

We have discussed viscosity minima in ionic, metallic, no-
ble, molecular, and network liquids. This leaves the remaining
important bonding type: covalent. Silica is a commonly dis-
cussed system in which covalency is strong: It is a system with
mixed bonding where covalency and ionicity make similar
contributions to the bonding type. Experimentally, viscosity
of silica was measured up to ∼3000 K, and yet no mini-
mum was seen due to challenges involved in high-temperature
experiments [38]. Simulated silica, taken to yet higher tem-
perature in excess of 6000 K, shows saturation to a constant
value of ∼10−3 Pa s [39]. This corresponds to νm of ∼5 ×
10−7 m2/s and falls in the range of νm predicted theoretically
by Eq. (3).

An interesting observation from Eq. (3) is that the minimal
viscosity is a quantum property and approaches zero in the
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classical limit h̄ = 0. This might be perceived to be at odds
with our thinking about liquids as mostly high-temperature
classical systems. However, the nature and origin of inter-
atomic forces and radii are quantum mechanical, and Eq. (3)
reminds us of this [12]. This then brings the question of how
our classical MD simulations reproduce the lower bound of
liquid viscosity, the essentially quantum effect. We understand
this if we recall that the parameters of empirical potentials
in classical MD simulations are tuned to result in interatomic
separations and energy values in real systems (either by fitting
to experiments or quantum-mechanical simulations) where
they are quantum mechanical in origin. The classical simu-
lations capture quantum effects, including the lower viscosity
bound, through these potential parameters.

IV. SUMMARY

We have explored the nature of viscosity minima in ionic
molten salt liquid LiF, complemented by metallic Pb. We
have found that these systems have lower viscosity bounds
corresponding to the minimum of kinematic viscosity of
∼10−7 m2/s. This agrees with the experimental data for other
systems with different structures and bonding type, includ-
ing noble, molecular, metallic, and covalent liquids, and it

expands the universality of viscosity bounds into the main
types of systems known. In future work, it may be interesting
to develop more accurate potentials or employ quantum-
mechanical MD simulations to simulate molten salts.

We have previously found that Eq. (3) also gives the min-
ima of an unrelated yet important property: thermal diffusivity
[16]. This was supported by the experimental data for noble
and molecular systems. Our current findings therefore sug-
gest that, like the kinematic viscosity, the minima of thermal
diffusivity are more universal and include other system types
including the ionic molten salts. This would be interesting to
explore in future work.
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