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Generalized dynamical cluster theory for off-diagonal disorder
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We present a generalized dynamical cluster theory for addressing the cluster effects of off-diagonal disorder.
In this work, we introduce an extended local degree of freedom, namely the coupling space, to encapsulate the
off-diagonal disorder in an auxiliary medium, and to form a cluster coupling space so that each site of the cluster
can be homogenously handled. Within the cluster coupling space, the self-consistent auxiliary dynamical cluster
approximation (ADCA) with full symmetry of the lattice is developed to treat the diagonal and off-diagonal
disorders on an equal footing. ADCA recovers the coherent-potential approximation at the single-site limit
and the dynamical cluster approximation for diagonal-only disorder. Especially for the disordered vibrational
system, ADCA conserves the force-constant sum rule. As important tests, we apply ADCA to the one- and
three-dimensional disordered lattices, and we find that the ADCA density of state results with appropriate
cluster size are in very good agreement with the exact and supercell calculations, especially for the localized
defect modes. Moreover, the important interplay of mass and force-constant disorders is revealed by comparing
the geometrically and arithmetically averaged density of states calculated by ADCA, presenting both effects
of significantly enhanced localization and delocalization. The development of ADCA provides an effective
approach for simulating both diagonal and off-diagonal disorders in materials.

DOI: 10.1103/PhysRevB.109.094203

I. INTRODUCTION

Disordered systems, such as metallic alloys, are of sig-
nificant interest in materials science and engineering due to
their technological applications [1–16]. A reliable and effec-
tive theoretical method for treating disorder is thus critical
for understanding the important effects of disorders, and is
desirable for the design of disordered materials. However, the-
oretical tools for describing disordered systems are faced with
extreme difficulties, because the breakdown of translational
symmetry requires the calculation of configurational-averaged
physical properties. Over the past 50 years, significant
progress for mean-field-type approaches has been made in
the study of disordered systems. The fundamental idea behind
the coherent-potential approximation (CPA), as a dynamical
mean-field theory dating back to 1960s [17–21], is to map the
original infinite disordered lattice onto a single impurity em-
bedded in an effective medium, which is chosen such that, on
average, it does not scatter. This method has many desirable
properties, including computational simplicity, the ability to
interpolate between important physical limits, and the preser-
vation of full point-group symmetry of the underlying lattice.
CPA has proven to be a useful tool for understanding the
properties of disordered systems, and it has contributed to the
development of new materials [22–24]. However, in a single-
site approximation, CPA fails to account for the nonlocal
correlation of the local fluctuations. Moreover, the embedding
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model utilized in CPA requires that the impurity atom couple
to the effective medium in a constant way, excluding the
randomness in the off-diagonal term of the Hamiltonian, while
the off-diagonal disorder can be expected to play a signif-
icant role in determining the properties of many disordered
alloys [1]. These limitations strongly motivate the search for
advanced mean-field approaches that can treat both cluster
effects and off-diagonal disorder.

Great efforts have been made to overcome these limita-
tions. These include the cluster extensions to CPA, such as
molecular CPA (MCPA) [25–29] and the dynamical clus-
ter approximation (DCA) [30–35], which are also grounded
in the embedding model. However, all these methods have
only considered diagonal disorder and are unable to capture
the disorder fluctuations on the coupling terms between the
impurity cluster and the effective medium. To address this
limitation, Blackman, Esterling, and Berk (BEB) introduced
an augmented space technique to transform the problem of
decoupled diagonal and off-diagonal disorder into a diag-
onal disorder to apply CPA [36]. This technique has also
been extended to the cluster level by applying DCA, which
proves suitable for electronic systems [34,35]. Unfortunately,
for disordered vibrational systems [37], the diagonal and
off-diagonal elements of the dynamic matrix are correlated
by the momentum conservation law, which requires that the
force-constant sum rule Dii = −∑

j �=i Di j be satisfied. This
kind of coupled diagonal and off-diagonal disorder makes
the BEB method infeasible. Moreover, BEB transformation
is not suitable for handling Anderson-type off-diagonal disor-
der (with continuous distribution), which generally exists in

2469-9950/2024/109(9)/094203(13) 094203-1 ©2024 American Physical Society

https://orcid.org/0000-0002-0267-1815
https://orcid.org/0000-0003-4676-0737
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.094203&domain=pdf&date_stamp=2024-03-11
https://doi.org/10.1103/PhysRevB.109.094203


ZHAI, CHENG, ZHANG, AND KE PHYSICAL REVIEW B 109, 094203 (2024)

realistic alloys. Another way to address the force-constant
sum rule is the itinerant coherent-potential approximation
(ICPA) [38,39]. However, ICPA leads to changes in the self-
energy terms associated with nearest neighbors. This issue can
result in additional errors when calculating bulk and transport
properties for specific parameters using ICPA [40]. Further-
more, the computational cost increases significantly with the
number of atomic species or when dealing with systems with
distributed force constants.

Recently, some of the authors have presented the aux-
iliary coherent potential approximation (ACPA) within the
embedding model [40–43], which retains all the desirable
properties of CPA and can handle force constant disorder with
the sum rule strictly conserved. In previous work, ACPA has
shown good agreement with supercell calculation and exper-
imental measurements in the phonon dispersions of different
alloys [42]. Moreover, ACPA is proficient in directly dealing
with Anderson-type off-diagonal disorder, and it presents sig-
nificant improvement for the spectral linewidth function to
agree well with the supercell method and experiment [43].
Furthermore, implementing ACPA for electronic systems is
straightforward, offering potential integration with dynamical
mean-field theory (DMFT) for treating the strongly correlated
Anderson-Hubbard model with off-diagonal disorders [44].
This single-site ACPA method has shown important potential
as a starting point for constructing a general effective-medium
theory. However, the problem of how to construct a trans-
lationally invariant cluster extension formalism for ACPA
remains unresolved. In this work, by introducing the cluster-
coupling space, we develop an auxiliary dynamical cluster
approximation (ADCA) formalism to handle the important
cluster effects of off-diagonal disorder. This ADCA formalism
reduces to ACPA at the single-site limit and recovers DCA
when only mass disorder is present. We demonstrate the ef-
fectiveness of ADCA by calculating the phonon density of
states in one- and three-dimensional (1D and 3D) disordered
systems, and we compare with the exact and supercell results.

The rest of the paper is organized as follows: Section II
provides a quick review of the basic formalism of the ACPA
method. Section III presents the concept of cluster coupling
space. Section IV provides a detailed description of the self-
consistent ADCA formalism, and the ADCA self-energy is
analyzed in Sec. V. In Sec. VI, the results and discussions
of the study are presented. Finally, we conclude our work
in Sec. VII and provide more information in Appendixes A
and B.

II. AUXILIARY MEDIUM THEORY
FOR DISORDERED VIBRATION

The Green’s function for lattice vibration in the harmonic
approximation is given by

G = (mω2 − D)−1, (1)

where D is the force-constant matrix. Due to the transla-
tional symmetry, the force matrix is subjected to the sum rule∑

j Di j = 0. In a random alloy, this sum rule leads to the
inseparability of diagonal and off-diagonal disorders, which
makes the theory of disordered phonon excitations difficult.

To address this issue, the ACPA approach brings forth a
general decomposition technique that transforms the intricate
off-diagonal disorder into a tractable diagonal-like disorder
problem. This unique strategy offers a unified approach that
encapsulates a broad range of physical parameters and scenar-
ios for handling the general off-diagonal disorders, including
force-constant disorder (FCD) in lattice vibration [40–43].
This is achieved by writing the random force constant k in
a separable form, namely

kQI QJ
RIαRJβ

= xQI
RI

SRIαRJβ
xQJ

RJ
+ λRIαRJβ

(I �= J ), (2)

where xQI
RI

/xQJ
RJ

is dependent on the atomic occupant QI/QJ on
the site RI/RJ , and α/β are bases of each site. The quantities
SRIαRJβ

and λRIαRJβ
are independent of the atomic occupations

on sites RI and RJ . As demonstrated, Eq. (2) can accurately
describe the disorder in the force constant of realistic 3D
alloys, presenting very good agreement with ICPA and exper-
imental measurements in calculating the phonon dispersions
[42] and linewidth function [40] of different fcc alloys. This
representation of FCD allows the force constant to be written
as a product of two matrices,

D = XK. (3)

X is a diagonal matrix with elements XRI RJ = xQI
RI

δIJ , and the
K matrix is defined as

KRIαRJβ
= −

(
SRIαRJβ

xQJ
RJ

+ λRIαRJβ

xQI
RI

)
(I �= J ), (4)

KRIαRIβ =
∑
J �=I

(
SRIαRJβ

xQJ
RJ

+
λRIαRJβ

xQI
RI

)
. (5)

It can be shown that the matrix K satisfies the force constant
sum rule. The key point of this decomposition is that the terms
containing xRI are linearly separated in K and thus we can
write K as a sum of single-site dependent quantities as

K =
∑

I

K̃RI , (6)

where K̃RI contains all the contributions that are associated
only with xRI . For a site RI with MN neighboring sites of
nonzero coupling, K̃RI is then a d (MN + 1) × (MN + 1)d
quantity with (where d is the dimension or the bases of a
single site)

K̃RI
RJαRJβ

= SRIαRjβ xQI
RI

(J �= I ),

K̃RI
RJαRIβ

= −SRIαRjβ xQI
RI

(J �= I ),

K̃RI
RIαRJβ

= −λRIαRJβ

xQI
RI

(J �= I ),

K̃RI
RIαRIβ

=
∑

J

λRIαRJβ

xQI
RI

,

K̃RI
RJαRJ′β

= 0 (J, J ′ �= I ). (7)

As a consequence, the Green’s function can be rewritten as

G = gX−1, (8)
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FIG. 1. Schematic illustration of ACPA in a 2D lattice model.
The single impurity PRI contains the couplings to nearest-neighbor
sites; the field in pink represents the Weiss mean field in which the
single-site PRI is embedded.

where g is the auxiliary Green’s function defined as

g = (X−1mω2 − K)−1 = P−1, (9)

with the auxiliary Hamiltonian

P =
∑

I

PRI , (10)

where PRI = xQI ,−1
RI

mQI
RI

ω2 − K̃RI , and the dimension of PRI

is the same as that of K̃RI . In this form, the general disorder
(including both mass disorder and FCD) in lattice vibration
is reduced to an auxiliary diagonal-like disorder problem.
Thus, the self-consistent ACPA loop for solving the coher-
ent medium P = ∑

I PRI can be carried out by mapping the
original infinite disordered lattice onto an averaged single
impurity embedded in an effective medium [40], as schemati-
cally shown in Fig. 1.

Nevertheless, the single-site nature of ACPA poses a
limitation as it neglects nonlocal correlations of disorder
scattering and precludes the treatment of short-range order
of disorder [45,46]. For a general cluster theory, it be-
comes indispensable to construct an auxiliary cluster scatter,
denoted as Pc, which is determined by the atomic config-
uration of the cluster, to account for the cluster effects of
off-diagonal disorders. One direct approach involves imple-
menting MACPA [41], wherein auxiliary scatters are summed
to yield Pc = ∑Nc

I=1 PRI , and then embed this cluster in the
effective medium. However, this method violates the trans-
lational invariance of the primitive lattice as only boundary
cluster sites couple with the effective medium, thus imposing
an open boundary condition on the cluster [47].

In this work, we aim to develop a cluster mean-field ap-
proach that retains translational invariance for a system with
off-diagonal disordered. Notably, for systems with only di-
agonal disorder, the DCA method, which enforces Born–von
Karman (BVK) periodic boundary conditions on the cluster,
provides a state-of-the-art solution to restore the full symme-
try of the lattice. DCA modifies the coupling term to ensure
that each site couples to the surroundings in exactly the same
manner, presenting a homogenous treatment of the cluster
[see the difference between MCPA and DCA as shown in
Eqs. (A9) and (A3) in Appendix A]. However, DCA is still
based on the embedding model that precludes the fluctuation
in off-diagonal terms, and thus directly integrating the auxil-
iary medium theory within the DCA framework is challenging
and requires significant development because the off-diagonal
elements in the quantity P in Eq. (10) contain randomness. In
the next section, we will introduce the idea of cluster coupling

space (CCS), which combines the attributes of both the ACPA
and DCA methods, to form a general cluster paradigm for
treating off-diagonal disorder.

III. CLUSTER COUPLING SPACE

A. Coupling space

It is clear that the single-site auxiliary quantity PRI and
K̃RI for RI contains the extended dimensions d × (MN + 1),
beyond the single-site degree of freedom d (here we denote
the single-site basis space with S). To name such extended
dimensions, we introduce the coupling space T associated
with each lattice site for defining the auxiliary single-site
matrix quantities in ACPA. The space T encapsulates the
influences exerted by a specific occupation of a site upon its
surrounding coupled sites. In the primitive lattice, a site RI

is connecting to MN neighboring sites with nonzero coupling
(or force constant). The neighboring site RJ is related to RI

via the translational vector TJ (where J ranges from −MN/2
to MN/2 with T0 = 0), namely RJ = RI + TJ . The basis state
in T can be represented by the orthonormal bases |TJ〉. The
bases |TJ〉 encompass the coupling information of a single
site RI along the TJ direction. In this context, we can rewrite
the auxiliary single-site K̃RI in Eq. (7) in the coupling space
� = T ⊗ S , with d (MN + 1) degrees of freedom, as follows:

K̃�,RI =
∑
J �=0

SRJ RI xRI |TJ〉〈TJ | −
∑
J �=0

SRJ RI xRI |TJ〉〈T0|

−
∑
J �=0

λRI RJ

xRI

|T0〉〈TJ | +
∑

J

λRJ RI

xRI

|T0〉〈T0|, (11)

where RJ = RI + TJ , and the sub/superscripts QI and α are
omitted for simplicity as compared to Eq. (7). Moreover, it
should also be noted that the primitive lattice Fourier transfor-
mation (LFT) is related to the basis vector TJ of the coupling
space T .

B. Cluster coupling space

We consider a cluster compromising Nc lattice sites labeled
as {Rn, 1 � n � Nc} [as shown in Fig. 2(a) for Nc = 4 in a
1D chain], with the corresponding cluster translational vector
denoted by T cl, and the associated BZ k-point denoted by k̃.
Then, the space, denoted by R, can be introduced to represent
the Nc sites, and the cluster space can be defined as C =
R ⊗ S , in which the physics properties can be calculated. To
develop a translational invariant cluster mean-field approach,
the Born–von Karman (BVK) periodic boundary condition is
imposed on the cluster lattice, as a critical assumption. Within
DCA, the site-diagonal disorders are handled homogeneously
for all the sites of the cluster. To realize a homogeneous
treatment of the disordered PRI with extended dimensions
(spanned by the coupling space T ) for each site of the cluster,
we introduce the cluster coupling space (CCS) Θ , which is the
direct product of the periodic cluster space with the coupling
space, namely

Θ = R ⊗ T ⊗ S, (12)

which contains Nc × (MN + 1) × d degrees of freedom. It is
noted that the summation or integration of coupling degree of
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CCS

Cluster Space
First Brillouin Zone

(a)

CCFT FT

Inverse
CCFT

Inverse
FT

(b)

FIG. 2. (a) A cluster of Nc = 4 in a 1D chain; (b) the relation between the cluster coupling space (CCS) Θ , cluster space C, and primitive-
cell space S. The BVK periodic boundary condition is applied to the cluster. Here, Θ is connected to C by the cluster-coupling-space Fourier
transformation (CCFT) and its inverse transformation for each k̃; C and S are connected by the normal Fourier transformation (FT) for
each Kn.

freedom T reduce the CCS to the cluster space C (as shown
in the following Fourier transformation). Every basis in CCS
can be represented as |RI TJα〉.

In the CCS, as depicted in Fig. 2(b), a ring is formed by
four cluster sites with periodic boundary conditions. In the
CCS, the auxiliary quantities, namely PΘ and KΘ , of different
sites are disconnected, becoming site-diagonal. As a result, the
auxiliary quantity of the cluster in CCS, denoted as K̃Θ , can
be expressed as

K̃Θ,RM RN

TI TJ
= K̃�,RM

TI TJ
δRM ,RN , (13)

where K̃Θ,RM RN

TI TJ
= 〈RMTI |K̃Θ |RN TJ〉, and K̃�,RM

TI TJ
is the

single-site auxiliary quantity in � as defined in Eq. (11).
Here, K̃Θ is dependent on the atomic configuration of
the cluster. Then the auxiliary cluster scatter can be ob-
tained as PΘ = [x−1m]Θω2 − K̃Θ , where [x−1m]Θ,RM RN

TI TJ
=

xQN ,−1
RN

mQN
RN

δRM ,RN δTI ,TJ is site-diagonal. The CCS provides
a framework to treat each site equivalently to construct a
translational invariant auxiliary cluster mean-field theory for
addressing the off-diagonal disorder.

To proceed, it is important to define the mutual transforma-
tion of the quantities between the CCS and the cluster space
C. To establish a relation between quantities in CCS Θ and
cluster space C, it is important to note that for a cluster with the
BVK periodic boundary condition, each site RI in the cluster
can be translated to its neighboring site RJ by the vector TJ

in T . For example, as shown in Fig. 2(a) for a 1D cluster of
Nc, R2 is related to its neighboring sites as R1 = R2 + T−1

and R3 = R2 + T1, providing a correspondence for mapping
the coupling vector TJ in T to the lattice site R. Thus, we can
introduce the relation that connects the periodic quantity FΘ

in CCS and F c in C, namely by the coupling space Fourier
transformation (CCFT) and the inverse CCFT for the cluster
(for each k̃ in the cluster BZ),

FC
RI RJ

(k̃) =
∑

TM ,TN

e−ik̃(TM−TN )FΘ,RIM ,RJN

TM TN
(14)

and

FΘ,RIM ,RJN

TM TN
= Nc

N

∑
k̃

eik̃(TM−TN )FC
RI RJ

(k̃), (15)

where RIM = RI + TM and RJN = RJ + TN . As seen from
above Eqs. (14) and (15), for example in the phase factor
e−ik̃(TM−TN ), each site R and coupling vector T are treated

without any bias to present a homogeneous medium of cluster
in both Θ and C. We note that, in contrast to the case of MCPA
in Eq. (A3), DCA homogeneously introduces a phase factor to
the coupling (hopping) element WRI ,RJ between a cluster site
RI and RJ = RI + TJ , namely WRI ,RJ e−ik̃TJ in Eq. (A9), to
ensure the full translational symmetry of the lattice. As we
show in Eqs. (A10), (A11), and (A12) in Appendix A, our
approach generalizes the concept for introducing this phase
factor in DCA as a Fourier transform within the extended
CCS. This generalization facilitates the analysis of the cluster-
to-effective medium coupling via the Fourier transformation
relationship between the CCS Θ and cluster space C (as
shown in Fig. 2 for the relation between different spaces).

IV. AUXILIARY DYNAMICAL CLUSTER
APPROXIMATION

With the CCS, we can establish the self-consistent auxil-
iary dynamical cluster approximation (ADCA) with the full
lattice symmetry to account for the cluster effects of off-
diagonal disorders. As one of the main tenets of ADCA,
the substitution of an effective cluster medium by a specific
atomic configuration, on average, leads to the ADCA effective
medium, and this ADCA condition can be expressed in the
CCS as follows:

ḡΘ =
∑
Q

cQgΘ,Q, (16)

where Q denotes a specific atomic configuration of the cluster,
and CQ is the probability of Q configuration. To obtain the
averaged cluster Green’s function, the coherent interactor in
CCS, namely 	Θ , is introduced to account for the influence
of the surrounding effective medium on the cluster. With the
interactor 	Θ , we can write the average GFs in CCS by map-
ping the disordered lattice problem to an embedded cluster
model,

ḡΘ = [PΘ − 	Θ ]−1, (17)

where PΘ is the effective Hamiltonian describing the aver-
aged auxiliary medium, and for a specific Q,

gΘ,Q = [PΘ,Q − 	Θ ]−1, (18)

where the auxiliary Hamiltonian PΘ,Q = [x−1m]Θ,Qω2 −
K̃Θ,Q. Subsequently, we can obtain the effective medium in
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CCS by utilizing the above Eqs. (16)–(18), namely

PΘ =
⎡⎣∑

Q
cQ[PΘ,Q − 	Θ ]−1

⎤⎦−1

+ 	Θ. (19)

With a given CCS interactor 	Θ , the cluster impurity solver,
namely Eq. (19), conducts the calculation for all sampled
atomic configurations to obtain the quantity PΘ . It is clear
that, as long as 	Θ is homogenously generated for the cluster,
the equivalent treatment of cluster sites in CCS ensures the
translational invariance of PΘ in ADCA.

After obtaining PΘ , we can construct the PC in the cluster
space C to calculate the averaged Green’s functions of the
cluster by applying CCFT in Eq. (14) as follows:

PC
RI RJ

(k̃) =
∑

TM ,TN

e−ik̃(TM−TN )PΘ,RIM ,RJN

TM TN
, (20)

and due to the BVK periodic boundary condition, the periodic
cluster PC

RI RJ
(k̃) can be Fourier-transformed into a primitive-

cell quantity on a set of discrete {Kn, 1 � n � Nc} by [as
shown in Fig. 2(d)]

PS (Kn, k̃) =
∑
RJ

e−iKn (RI −RJ )PC
RI RJ

(k̃), (21)

where PS (Kn, k̃) features the degree of freedom of single-site
space S . It should be noted that k = Kn + k̃ for the k point in
the BZ of the primitive cell of lattice. As a result, the averaged
auxiliary GF for each k is given by

ḡS (k) = PS,−1(Kn, k̃). (22)

Here, ḡS (k) and PS (Kn, k̃) feature the full symmetry of the
lattice.

To form a closed set of self-consistent equations for
ADCA, we need to update the CCS interactor 	Θ . To do so,
we perform the inverse FT to obtain the cluster GF ḡC (k̃) from
ḡS (Kn, k̃), namely

ḡCRI RJ
(k̃) = 1

Nc

∑
Kn

eiKn (RI −RJ )ḡS (Kn, k̃), (23)

so that we can derive the GF in CCS by the inverse CCFT in
Eq. (15),

ḡΘ,RIM ,RJN

TM TN
= Nc

N

∑
k̃

eik̃(TM−TN )ḡCRI RJ
(k̃). (24)

Then, by applying Eq. (17), 	Θ is obtained as

	Θ
new = PΘ − ḡΘ,−1. (25)

Equations (19)–(25) form a closed set of ADCA self-
consistent equations to solve for the averaged GF, namely
ḡS (k). The iterative calculation starts with an initial guess
for 	Θ , for which we adopt 	Θ = 0 in our present imple-
mentation. Then, 	Θ is self-consistently updated until the
convergence is reached, as shown in Fig. 3 for the ADCA
loop. It should be mentioned that the ADCA formalism re-
covers two limiting cases, namely the ACPA for a single-site
approximation [41], and DCA for diagonal-only disorder [32],
providing an important test for the whole formulation of

Guess a cluster coupling interactor

Solve Cluster problem

Cluster coupling  Fourier transform

Fourier transform

Auxiliary Green’s function

New cluster coupling interactor

Converge ?

End
Yes

No

FIG. 3. Sketch of the self-consistent loop for the ADCA embed-
ded cluster approach.

ADCA with the CCS. For example, for Nc = 1, it is un-
equivocal that the ADCA restores the ACPA with the sole
K1 = 0. On the other hand, for the mass-only disorder (diag-
onal disorder), the ADCA formulation recovers into the DCA
formalism, as shown in Appendix B.

V. SELF-ENERGY IN ADCA

It is known that the single-site ACPA assumes that the
self-energy is the sum of single-site self-energies, namely

ACPA = ∑

RI

RI , ignoring all the nonlocal correlations de-

scribed by crossing diagrams [40]. The development of
ADCA systematically restores the nonlocal corrections by
embedding the cluster with finite size Nc in CCS. In this
section, we investigate the ADCA self-energy of disorder
scattering. To begin, by using the ADCA condition of Eq. (16)
and the relations of Eqs. (17) and (18), we can rewrite the CCS
conditional GF gΘ,Q for a specific atomic configuration Q in
the Dyson equation

gΘ,Q = GΘ + GΘV Θ,QgΘ,Q, (26)

and the averaged CCS GF ḡΘ ,

ḡΘ = GΘ + GΘ
Θ ḡΘ, (27)

where V Θ,Q = PΘ,0 − PΘ,Q (PΘ,0 describes a perfect clus-
ter), the cavity Green’s function GΘ is related to the interactor
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FIG. 4. Irreducible diagrams for the ADCA self-energy. Double
line denotes the averaged auxiliary Green’s function ḡ� . The sym-
bol containing a filled circle connecting two empty circles denotes
the auxiliary single-site scatter with off-diagonal randomness in the
coupling space.

through GΘ = (pΘ,0 − 	Θ )−1, and 
Θ is the ADCA self-
energy in CCS. Then, one can obtain the relation

(ḡΘ−1 + 
Θ − V Θ,Q)−1 = ḡΘ, (28)

where the overline denotes the configurational average. Then
the ADCA self-energy equation can be expanded as

V Θ − 
Θ + (V Θ − 
Θ )ḡΘ (V Θ − 
Θ ) + · · · = 0. (29)

By rearranging the equation and defining the quantity σΘ =
V Θ + V Θ ḡΘV Θ − 
Θ ḡΘV Θ − V Θ ḡΘ
Θ + · · · , we can get


Θ − 
Θ ḡΘ
Θ + 
Θ ḡΘ
Θ ḡΘ
Θ + · · · = σΘ, (30)

which can also be rewritten as 
Θ [1 + ḡΘ
Θ ]−1 = σΘ .
Here, by using the relation [1 + ḡΘ
Θ ]−1 = 1 − ḡΘ
Θ [1 +
ḡΘ
Θ ]−1 = 1 − ḡΘσΘ , we can find a self-consistent relation
for 
Θ , namely


Θ = σΘ [1 − ḡΘσΘ ]−1. (31)

Therefore, one can make the following expansion:


Θ = V Θ + V ΘgΘV Θ + V ΘgΘV ΘgΘV Θ + · · · (32)

(note that the corrections for multiple occupancy are omitted
for simplicity) [19]. It is clear the ACPA self-energy diagram
is included within the above expression. To obtain the ADCA
self-energy in reciprocal space, we define the cluster Fourier
transformation on CC space as

FΓ

TM TN
(Kn) = 1

Nc

∑
RI RJ

e−iKn (RIM−RJN )FΘ,RIM ,RJN

TM TN
. (33)

It can be found that ADCA self-energy contains the contri-
bution of the crossing diagrams that are absent in ACPA, as
illustrated in Fig. 4.

For instance, the first crossing diagram is given by the term
V Θ ḡΘV Θ ḡΘV Θ ḡΘV Θ , as derived in the following:

[V � ḡ�V � ḡ�V � ḡ�V �](K ) = 1

Nc

∑
I,J

e−iK (RI −RJ )[V Θ ḡΘV Θ ḡΘV Θ ḡΘV Θ ]RI RJ

= 1

Nc

∑
I,J,P,L

e−iK (RI −RJ )[V Θ,RI ḡΘ,RI RPV Θ,RP ḡΘ,RPRLV Θ,RL ḡΘ,RLRJV Θ,RJ ]

= 1

N4
c

∑
I,J,P,L

∑
K1,K2,K3

e−iK(RI −RJ )eiK1(RI −RP )eiK2(RP−RL )eiK3(RL−RJ )

× V � ḡ� (K1)V � ḡ� (K2)V � ḡ� (K3)V �. (34)

For the case of I = L, P = J, I �= J , we can get the first crossing diagram term,

1

N4
c

∑
I

∑
J (I �=J )

∑
K1,K2,K3

V � ḡ� (K1)V � ḡ� (K2)V � ḡ� (K3)V �eiRI (K+K2−K3−K1 )eiRJ (K3+K1−K2−K)

= 1

N3
c

∑
J

∑
K1,K2,K3

V � ḡ� (K1)V � ḡ� (K2)V � ḡ� (K3)V �δK+K2,K3+K1 eiRJ (K3+K1−K2−K)

− 1

N3
c

∑
K1,K2,K3

V � ḡ� (K1)V � ḡ� (K2)V � ḡ� (K3)V �

= 1

N3
c

∑
K1,K2,K3

V � ḡ� (K1)V � ḡ� (K2)V � ḡ� (K3)V �NcδK+K2,K3+K1

− 1

N3
c

∑
K1,K2,K3

V � ḡ� (K1)V � ḡ� (K2)V � ḡ� (K3)V �. (35)
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FIG. 5. The averaged density of states of the ADCA with a different cluster size (Nc = 1, 4, 16) compared with the exact results (calculated
by Dean’s technique [48]). Parts (a)–(c) show the system parameters mA = 1.0, kAA = 1.0, mB = 0.5, CB = 0.3, kAB = 1.41, KBB = 2.0, and
(d)–(f) are for the system by changing kBB = 0.25, kAB = 0.5, with other parameters the same as in the first case.

The first term in Eq. (35) includes convolutions of ḡ� (K),
which reflect nonlocal correlation effects. To account for these
effects, the ADCA method replaces the lattice propagators
ḡ(K + k̃) with the coarse-grained propagators ḡ� (K). These
coarse-grained propagators are obtained through the ADCA
coarse-graining procedure, namely

ḡ�

TI TJ
(K) = Nc

N

∑
k̃

ḡS (K, k̃)eik̃(TI −TJ ). (36)

VI. NUMERICAL RESULTS AND DISCUSSION

We have implemented the ADCA algorithm and tested the
code with Nc = 1 to reproduce ACPA results and the case
of mass-only disorder (by keeping KRI constant for differ-
ent atomic occupations) to obtain the DCA results. In the
following, we present the ADCA mean-field results for both
the mass and force-constant disorders in lattice vibration, and
we validate the ADCA approach by comparing with the exact
results and supercell simulations for the disordered 1D atomic
chain and 3D lattice systems.

A. DOS in disordered 1D binary alloys

We first validate ADCA by calculating the disordered 1D
atomic chain. The 1D chain features the minimal number
of neighboring couplings compared to 2D and 3D systems,
and thus presents an important challenge for mean-field ap-
proaches in local approximations due to the large fluctuations
(especially for ACPA in a single-site approximation, as known
from the central limit theorem) [41]. This makes the dis-
ordered 1D chain an important testing system for assessing
the accuracy and applicability of the ADCA for simulating

off-diagonal disorder. With ADCA, we calculate the arith-
metically averaged local density of states (DOS) as follows:

ρ(ω2) = − 1

π

1

Nc

∑
RI ,Q

cQmQgΘ,Q,RI RI

T̄0T̄0
xQ,−1. (37)

Figure 5 presents the ADCA DOS results and the exact
results obtained via Dean’s technique (by using a 10 000-
atom random chain) [48]. Figures 5(a)–5(c) show the results
for the system with parameters mA = 1.0, kAA = 1.0, kBB =
2.0, kAB = 1.41, mB = 0.5, CB = 0.3. For simplicity, the fre-

quency is normalized by ω2/ω2
m (ωm = 2

√
KAA
mA

). As shown

in Fig. 5(a), the defect band in the exact result, separated
from the host band ω2

ω2
m

� 1, exhibits a set of spiky peaks in

the high frequency 1 � ω2

ω2
m

� 4, due to the highly localized
vibrational modes for some specific local structures. It is clear
that, at the low frequencies, namely 0 � ω2

ω2
m

� 1, the result of
Nc = 1 agrees very well with the exact DOS, since vibrational
modes with long wavelengths are less influenced by disorder.
However, for Nc = 1, ADCA (namely ACPA) fully fails to
accommodate any specific local atomic configuration which
requires a cluster, and produces rather smooth DOS results,
contrasting the peaks in the exact result. Upon increasing the
cluster size to Nc = 4, as compared to the result of Nc = 1, a
great change in DOS can be found at high frequencies in the
range of 1 � ω2

ω2
m

� 4, while the DOS result for low frequency
remains almost unchanged. As shown, some peak structures
in the DOS of Nc = 4 begin to emerge at high frequencies,
illustrating the important influence of some specific alloy
structures. However, due to limitations of a small cluster size,
the ADCA result of Nc = 4 still presents a large deviation
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from the exact result, including the omission of some local-
ized modes. Upon further increasing Nc to 16, it is evident
that the ADCA DOS produces the exact results very well. Es-
pecially in 1 � ω2

ω2
m

� 4 by Nc = 16 ADCA calculations, each
of those peaks due to a localized mode is accurately produced
and exhibits a remarkable agreement with the exact DOS
results, despite the fact that the peaks are broadened due to
the mean-field nature of the approach. It is thus illustrated that,
upon further increasing the cluster to the large limit, ADCA
can reproduce the exact results. As a mean-field approach
with an embedded finite-size cluster, ADCA only accounts
for the effects of fluctuations in the local degree of freedom
within the cluster, presenting the major difference between
ADCA results and exact results in Fig. 5. By increasing the
cluster size, ADCA provides a systematic way to improve the
accuracy by effectively including the nonlocal correlation of
disorder scattering and capturing the effects of specific local
alloy configurations. It should be mentioned that MACPA is
also capable of producing localized modes for systems with
off-diagonal disorder as shown in Fig. 5 [41]. However, an
intrinsic issue with MACPA is the violation of the full transla-
tional symmetry of the lattice, which is directly addressed by
ADCA.

Figures 5(d)–5(f) present the DOS results by changing the
system parameters kBB = 0.25, kAB = 0.5. In this system, the
defect band intermingles with the host band. As shown in the
exact result of Fig. 5(d), within the defect band, a unique
structure characterized by four distinct peaks begins to take
shape in the range 0.7 � ω

ωm
� 1.0. Similar to the peak in the

previous case, these peaks are given by the localized modes
of some specific local configuration. Increasing a cluster size
from Nc = 1 to Nc = 16 once again provides a substantial im-
provement of the results to agree with the exact results. Upon
examining the Nc = 16 results, each of the major peaks can
be reproduced in good agreement with the exact results. The
ADCA method thus provide an effective mean-field approach
to account for the cluster effects of general disorders with the
remarkable accuracy controlled by the cluster size.

B. DOS for disordered 3D binary alloys

In this section, we present the ADCA averaged DOS
for 3D alloys to further demonstrate the implementation of
ADCA. Due to the larger number of neighboring sites, it
is expected that ADCA will yield fewer errors for the 3D
systems with off-diagonal disorders, compared to the 1D
chain. We compare the ACDA results with that obtained by
the implementation of the periodic supercell (SC) method.
We calculate the simple-cubic lattices with disordered mass
and force constants. The simple-cubic lattice features the
smallest number of neighboring sites in comparison with bcc
and fcc lattices, presenting a good testing 3D system for
mean-field theories. For the SC results, we use a supercell
size of 125 atoms. and the DOS results are averaged over
1000 random atomic configurations. In the ADCA calcula-
tions, we employ 28, 210, and 210 randomly sampled atomic
configurations for the respective cluster size Nc = 8, 64, 125.
Compared to the disordered 1D lattice, the 3D lattice presents
less averaged fluctuation in the environment for embedding
each atom, and the spiky structures inherent in the exact

FIG. 6. The phonon density of states for 3D disordered binary
alloys with the system parameters (I): (a)–(d) mA = 1.0, kAA =
1.0, mB = 0.5, KAB = 1.414, KBB = 2.0, CB = 0.1, and (II): (e)–(h)
KAB = 3.0, KBB = 4.0, CB = 0.3 with other parameters the same as
in the first case. The ADCA results (in red) for different cluster sizes
are compared with the supercell calculations (in black).

DOS thus tend to vanish. Consequently, for discussing the
validity of the ADCA formalism, we carefully select two
sets of system parameters with strong force-constant disor-
der, including case (I) mA = 1.0, kAA = 1.0, mB = 0.5, KAB =
1.414, KBB = 2.0,CB = 0.1; and case (II) mA = 1.0, kAA =
1.0, mB = 0.5, KAB = 3.0, KBB = 4.0,CB = 0.3 (here we use
the same convention for 3D force-constant model as
Refs. [20,48] for all 3D lattices in this work). Figure 6 presents
the results for case (I) in Figs. 6(a)–6(d) and for case (II) in
Figs. 6(e)–6(h) for different ADCA clusters in comparison
with SC results. For simplicity, the frequency is normalized

by ω2/ω2
A (ωA =

√
KAA
mA

).

As shown in the SC results for both cases, the host and
defect bands are unequivocally differentiated, and the DOS
results for a defect band lying at high frequencies present
evident features of localized modes, namely the pronounced
peaks, especially in case (I). Within the host band at the
low-frequency region ( ω2

ω2
A

� 15), the ADCA results, even with
Nc = 1, agree very well with the SC calculations, presenting
an important test for the correct implementation of ADCA for
3D lattices. Similar to the 1D lattice, increasing the cluster
size almost does not change the results in the host band in
ADCA calculations, due to the weak scattering for which
the single-site approximation (Nc = 1) already can provide
very satisfactory results. For the defect bands ( ω2

ω2
A

� 15) of
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both cases, ADCA with Nc = 1 always produces a smooth
and monotonous profile, deviating from the SC results with
peaks. However, by increasing the cluster size, ADCA refines
the results in the high-frequency region and produces pro-
nounced peaks to approach the results of SC, corroborating
the ADCA formalism. Compared to case (II), ADCA for case
(I) exhibits a quicker convergence with respect to the cluster
size Nc, due to the relatively weaker scattering of disorder as
seen from the system parameters. For example, ADCA with
Nc = 64 reaches a good agreement with the SC calculations
for case (I) by reproducing well the four major DOS peaks in
15 � ω2

ω2
A

� 30, while case (II) requires ADCA with Nc = 125
to produce well the SC results. Here, it should be mentioned
that SC and ADCA utilize thoroughly different boundary con-
ditions, presenting distinct simulation efficiency. By applying
to the 1D and 3D alloys, we have demonstrated the important
effectiveness of the ADCA approach to handle off-diagonal
disorder for simulating realistic materials.

C. Geometrically averaged DOS for 3D alloys

In the previous sections, the presented DOS results are
obtained by the arithmetic average as shown in Eq. (37). It
is known that a complete statistical description of random
quantities requires the probability distribution function (PDF).
However, in many cases, the PDF is not known, and only
limited information about the system, provided by certain
moments or cumulants, is available. For example, the first
moment is known as the arithmetic average. The arithmetic
average, such as the arithmetically averaged density of states
(ADOS), cannot give a description of the spatial distribution,
which can be strongly dependent on the local configuration of
the alloy. For a disordered system with strong fluctuation in
the local DOS (LDOS), the ADOS does not resemble its typi-
cal value at all, needing further information. For a disordered
material, an important effect is the localization given by the
interference of disorder scattering, which requires the infor-
mation of the LDOS distribution to characterize. For example,
the LDOS closes to zero at some sites upon approaching the
localization. Thus, a quantity is required to detect the localiza-
tion for a disordered system. As a supplement to the ADOS
which averages out the fluctuations, the geometrically aver-
aged DOS (GDOS) can provide important information about
the spatial fluctuation of the LDOS. In other literature, the
GDOS is also referred to as typical density of states (TDOS)
[47]. The difference between ADOS and GDOS provides a
simple and straightforward way to describe the fluctuations
and the extent of localization.

Different from the typical medium DCA (TMDCA)
[34,35], we construct here the GDOS directly using the quan-
tities in ADCA, namely

ρg(ω2) = − 1

π
exp

⎡⎣ 1

NC

∑
RI ,Q

ln
(
mQgΘ,Q,RI RI

T̄0T̄0
xQ,−1

)⎤⎦.

In Fig. 7, we present a comparison of ADOS and GDOA for
3D lattices with different disordered parameters to investigate
how the interplay of mass and force-constant disorders effects
the localization of phonon modes [49]. (It should be noted that
we are not intending to provide a strict theory to characterize
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FIG. 7. Comparison of GDOS (red shaded) and ADOS (solid
black line) calculated with ADCA (Nc=64) for different 3D simple-
cubic systems (with the host mA = 1.0, KAA = 1.0). Part (a) is for the
parameters mB = 0.5,CB = 0.3 with varied KBB; (b) is for the param-
eters mB = 2.0,CB = 0.3 with varied KBB; (c) is for the parameters
mB = 0.5, KBB = 2.0 with varied CB from 0.1 to 0.9. For all systems,
KAB = 0.6KBB + 0.4KAA.

the localization of phonon in this work.) For all the systems,
we use the host parameters mA = 1, kAA = 1.0.
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In Fig. 7(a), we present the results for systems with mB =
0.5, kAB = 0.6kBB + 0.4kAA, and cB = 0.3, and different kBB

changing from the soft 0.25 to very stiff 4.0. As shown, for
the case of kBB = 0.25, the defect band lies deep inside the
host band, which features the low frequency ω2

ω2
A

� 10, and it
presents a tiny difference in ADOS and GDOS, illustrating
the weak disorder scattering. As kBB increases, the difference
between ADOS and GDOS is increased and the defect band
emerges. For kBB = 1.0 corresponding to the mass-only disor-
der, the bandwidth of the alloy is significantly enlarged, and
the second peak, representing the defect band, appears at a
relatively high frequency compared to the results of kBB =
0.25. Upon further increasing kBB to the value 2.0 and 4.0,
the defect band is clearly separated from the host. Meanwhile,
for kBB � 1.0, it is evident that the GDOS is significantly re-
duced compared to the ADOS in a large range of frequencies,
demonstrating the disorder-induced large fluctuation in the
LDOS. For kBB = 4.0, the GDOS in defect band ω2

ω2
A

� 20 is
almost eliminated, presenting an almost localized vibrational
mode. Moreover, GDOS at the low-frequency region of the
host band is also significantly decreased compared to ADOS,
presenting the important influence of disorder. The examples
shown in Fig. 7(a) demonstrate an important interplay of mass
and force-constant disorder, namely that the increase of kBB

over 1.0 for the case mB = 0.5 can enhance the localization
effect in the phonon mode, while decreasing kBB below 1.0
delocalizes the results as compared to the result of mass-only
disorder.

To further explore the interplay of mass and force-constant
disorders, in Fig. 7(b) we show results for the case mB = 2.0
with other parameters the same as Fig. 7(a). By changing kBB,
the results of m = 2.0 present the opposite trend compared
to the results of m = 0.5 as shown in Fig. 7. For example,
upon reducing kBB to 0.25, in contrast to the m = 0.5 case,
the spiky peak for the defect band is presented at very low
frequency, and moreover the difference between the ADOS
and GDOS is becoming evident even at the very low fre-
quency region, illustrating the important extent of localization
at these frequencies. However, on the other hand, increasing
kBB will narrow the difference between ADOS and GDOS;
for example, at kBB = 4.0, GDOS shows a very close result
to the ADOS, presenting an important delocalization effect
of force-constant disorder. To further investigate the effect
of disorders, in Fig. 7(c) we present the ADOS and GDOS
with different concentrations of B atom cB, for the specific
case mB = 0.5, KBB = 2.0 [with other parameters the same as
the cases in Fig. 7(a)]. Upon increasing cB above 0.5, it is
clear that the defect (A atom) and host band merge together,
and the difference between ADOS and GDOS can be reduced
to present the delocalization tendency in a large range of
frequency. As found for the low cB = 0.1, the separated defect
(B atom) band at high frequency tends to be localized, while
the host (A atom) band at the low-frequency region remains
largely extended, as seen from the small difference between
ADOS and GDOS. Based on the results for systems with both
the diagonal and off-diagonal disorders in Fig. 7, it is clear
that the off-diagonal disorder can play very important roles in
determining the lattice vibrational properties, presenting both
enhanced localization and delocalization effects. Therefore,

including off-diagonal disorder is critical for the simulation of
disordered materials, and the development of ADCA provides
an effective approach for simulating both diagonal and off-
diagonal disorder on the same theoretical footing.

VII. CONCLUSION

As a summary, we have reported a self-consistent auxil-
iary dynamical cluster theory, namely ADCA, to effectively
account for the cluster effects of off-diagonal disorder. We
introduced the coupling space to encapsulate the extended
local degree of freedom to describe the off-diagonal disorder
in the auxiliary medium. In this method, by utilizing the
cluster coupling space, the impurity cluster with the enforced
BVK periodic boundary condition is homogenously treated to
conserve full symmetry of the lattice. ADCA restores ACPA
in the single-site limit, and DCA for the diagonal-only dis-
order. To demonstrate the correct implementation of ADCA,
we have shown that, for disordered lattice vibration, by using
an appropriate cluster size, ADCA can produce the density of
states of phonons close to the exact results for a 1D chain
and supercell results for a 3D lattice, especially for those
localized defect modes. As an important application, with
ADCA we investigated the important interplay of mass and
force-constant disorders by calculating the geometrically and
arithmetically averaged density of states, and we found that
the force-constant disorder can significantly modulate the lo-
calization extent of both the host and defect states, presenting
both enhanced localization and delocalization. This work, by
developing ADCA, provides an effective approach for sim-
ulating profound effects of both diagonal and off-diagonal
disorder in materials. In this work, we only considered the
disordered phonon system, but the application of ADCA to an
electronic system is straightforward, for example to treat the
electron transport in disordered nanoelectronics, and to com-
bine with the DMFT to handle a strongly correlated electronic
system with atomic disorder.
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APPENDIX A: THE MCPA AND DCA HOPPING MATRIX
IN COUPLING SPACE

Both the conventional DCA and the MCPA for diagonal
disorder address the problem of embedding a cluster within
an effective medium. However, the coupling of the cluster to
the medium adheres to different boundary conditions for each
method, resulting in different expression in reciprocal space.

In MCPA, the cluster-averaged Green’s function (in the
cluster space C) can be written as

ĜC,MCPA = Nc

N

∑
k̃

GC,MCPA(k̃) (A1)

= Nc

N

∑
k̃

[P̂C,MCPA + Ŵ C,MCPA(k̃)]−1, (A2)
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where P̂MCPA denotes the cluster effective medium and
is a cluster-diagonal quantity. Here, ŴMCPA(k̃) represents
the periodic hopping (coupling) term obtained by nor-
mal cluster Fourier transformation. As an example, we
consider a 1D chain with a lattice constant a and
an ordered nearest-neighbor hopping W , for which we
have

Ŵ C,MCPA(k̃) =

⎛⎜⎜⎜⎜⎝
. . . w e−ik̃(Nca)w

w w

w w

e−ik̃(−Nca)w w
. . .

⎞⎟⎟⎟⎟⎠.

(A3)

After mapping to the cluster coupling space, we can get the
nonzero elements,

Ŵ Θ,MCPA
T0T0

=

⎛⎜⎜⎜⎜⎝
. . . w

w w

w w

w
. . .

⎞⎟⎟⎟⎟⎠, (A4)

and two coupling term between the cluster,

Ŵ Θ,MCPA
T0T+1

=

⎛⎜⎜⎜⎝
. . .

w
. . .

⎞⎟⎟⎟⎠, (A5)

Ŵ Θ,MCPA
T0T−1

=

⎛⎜⎜⎜⎝
. . . w

. . .

⎞⎟⎟⎟⎠, (A6)

where T−1 = −aNc, and T+1 = aNc for the coupling space of
a cluster. It is clear that in MCPA, the cluster sites cannot be
equivalently treated, thus presenting a cluster approach with
an open boundary condition.

For DCA in which the BVK periodic boundary is enforced
in the cluster, the averaged Green’s function in cluster space
C is given by

ĜC,DCA = Nc

N

∑
k̃

GC,DCA(k̃) (A7)

= Nc

N

∑
k̃

[P̂C,DCA(k̃) + Ŵ C,DCA(k̃)]−1. (A8)

However, by maintaining translational symmetry, the
DCA’s hopping (coupling) term is known as, for a 1D chain,

Ŵ C,DCA(k̃) =

⎛⎜⎜⎜⎜⎝
. . . we−ik̃(−1)a e−ik̃(Nc−Nc+1)aw

we−ik̃(1)a we−ik̃(−1)a

we−ik̃(1)a we−ik̃(−1)a

e−ik̃(−Nc+Nc−1)aw we−ik̃(1)a . . .

⎞⎟⎟⎟⎟⎠ (A9)

in which all sites are homogenously handled, different from
the MCPA. However, to uphold translational symmetry in
DCA, the concept of real space is forfeited. Therefore, we can
map to the cluster coupling space to obtain

Ŵ DCA
T0T0

=

⎛⎜⎜⎜⎝
. . . 0
0 0

0 0

0 . . .

⎞⎟⎟⎟⎠, (A10)

Ŵ DCA
T0T+1

=

⎛⎜⎜⎜⎝
. . . w

w

w

w
. . .

⎞⎟⎟⎟⎠, (A11)

Ŵ DCA
T0T−1

=

⎛⎜⎜⎜⎝
. . . w

w

w

w
. . .

⎞⎟⎟⎟⎠, (A12)

where T−1 = −a and T+1 = a.

APPENDIX B: ADCA FOR MASS-ONLY
(DIAGONAL) DISORDER

In this Appendix, we will see that the ADCA condition
equals the DCA condition when considering the mass-only
disorder, for which we keep KRI the same for all sites in
the cluster. To do so, we first rewrite the quantity gΘ,Q−1 =
PΘ,Q − 	Θ as a block centrosymmetric matrix (guaranteed
by the properties of auxiliary physical quantities) as

gΘ,Q−1 =
⎛⎝A M B

N Q N
B M A

⎞⎠, (B1)

where only the Q matrix containing the mass is configuration-
dependent, which corresponds to the gΘ,Q−1

T0T0
in coupling

space.
We can first rewrite gΘ,Q−1 as

UgΘ,Q−1U T =

⎛⎜⎜⎝
A − B 0 0

0 Q
√

2N

0
√

2M A + B

⎞⎟⎟⎠, (B2)
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where U is

U =

⎛⎜⎜⎝
I/

√
2 0 −I/

√
2

0 I 0

I/
√

2 0 I/
√

2

⎞⎟⎟⎠. (B3)

Then, we can diagonalize gΘ,Q−1 by

F NUgΘ,Q−1U T F M =
⎛⎝A − B 0 0

0 αQ 0
0 0 A + B

⎞⎠, (B4)

where αQ = Q − 2N (A + B)−1M, and

F N =

⎛⎜⎜⎝
I 0 0

0 I −√
2N (A + B)−1

0 0 I

⎞⎟⎟⎠, (B5)

F M =

⎛⎜⎜⎝
I 0 0

0 I 0

0 −√
2M(A + B)−1 I

⎞⎟⎟⎠. (B6)

Thus the ADCA condition can be written as

∑
Q

cQgΘ,Q = UF N

⎛⎜⎜⎝
(A − B)−1 0 0

0
∑

Q cQαQ−1 0

0 0 (A + B)−1

⎞⎟⎟⎠F MU T = UF N

⎛⎜⎜⎝
(A − B)−1 0 0

0 α−1
mass 0

0 0 (A + B)−1

⎞⎟⎟⎠F MU T

=

⎛⎜⎝A M B

N Pmass N

B M A

⎞⎟⎠
−1

= (PΘ − 	Θ )−1,

(B7)

where Pmass = αmass + 2N (A + B)−1M. Then we obtain the
DCA condition∑

Q

cQ
(
PΘ,Q

T0T0
− 	DCA

)−1 = (
PΘ

T0T0
− 	DCA

)−1
, (B8)

where 	DCA = 	Θ

T0T0
− 2N (A + B)−1M, for which the last

term 2N (A + B)−1M remains constant in the self-consistent
mean-field calculations.
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