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A universal topological marker has been proposed recently to map the topological invariants of Dirac models
in any dimension and symmetry class to lattice sites. Using this topological marker, we examine the conditions
under which the global topological order, represented by the spatially averaged topological marker, remains
unchanged in the presence of disorder for 1D and 2D systems. We find that if an impurity corresponds to
varying a nonzero-matrix element of the lattice Hamiltonian, regardless the element represents hopping, chemical
potential, pairing, etc., then the average topological marker is conserved. However, if there are many strong
impurities and the average distance between them is shorter than a correlation length, then the average marker is
no longer conserved. In addition, strong and dense impurities can be used to continuously interpolate between
one topological phase and another. A number of prototype lattice models including Su-Schrieffer-Heeger model,
Kitaev chain, Chern insulators, Bernevig-Hughes-Zhang model, and chiral p-wave superconductors are used to

elaborate the ubiquity of these statements.

DOLI: 10.1103/PhysRevB.109.094202

I. INTRODUCTION

How disorder influences the macroscopic properties of
materials has been an important issue in condensed matter
physics. Empirically, for materials exhibiting Landau order
parameters like magnetization and superconductivity, weak
disorder is usually not detrimental to the phenomena related
to the order parameter in the macroscopic scale, such as the
magnetic force and Meissner effect. In particular, weak disor-
der that respects the symmetry of the material may even have
negligible influence. The most notable theory of this kind that
explicitly formulates the influence of disorder is Anderson’s
theorem [1], which states that s-wave superconductivity is
robust against nonmagnetic impurities that preserves time-
reversal (TR) symmetry. In contrast, magnetic impurities that
break the TR symmetry are detrimental to the s-wave su-
perconductivity, whose presence reduces the superconducting
gap [2].

Turning to topological insulators (TIs) and topological su-
perconductors (TSCs), the issue of disorder becomes even
more intriguing. Firstly, topological order is usually defined
from the Bloch state of the filled bands in momentum space,
where certain geometrical objects like Berry connection or
Berry curvature momentum integrate to a quantized integer
[3,4]. In the presence of real-space disorder, the first issue
is then how to define a topological invariant given that mo-
mentum is no longer a good quantum number, especially
when the disorder is relatively strong and dense. Along this
line of reasoning, the notion of topological markers becomes
particularly useful, which are objects derived from rewriting
the momentum space topological invariant into real space via
position operators and projectors to lattice eigenstates [5-21].
In particular, it is recently demonstrated that for topological
materials described by Dirac models in any dimension and
symmetry class [22-25], a universal topological marker can
be introduced to map the topological invariant to lattice sites
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[26], which seems to suggests that it is possible to investigate
the effect of disorder in any dimension and symmetry class in
a unified manner.

In this paper, we present a systematic survey on disordered
topological materials within the context of the universal topo-
logical marker, which reveals a number of remarkable effects
of disorder. Through investigating several prototype theoreti-
cal models in one (1D) and two dimensions (2D), we discuss
which kinds of impurities do not alter the global topological
order represented by spatially averaged topological marker.
Remarkably, we discover that weak and dilute impurities that
correspond to varying nonzero-matrix elements of the lattice
Hamiltonian do not alter the average topological marker, re-
gardless whether the impurities represent local variation of
hopping, chemical potential, or superconducting pairing, as
can be proved analytically in 1D and 2D by a perturbation
theory. Such a feature seems to bear a striking similarity to
Anderson’s theorem for s-wave superconductivity [1]. On the
other hand, if the impurities correspond to varying zero-matrix
elements of the lattice Hamiltonian, then the average topolog-
ical marker is generally not conserved. In addition, for strong
and dense impurities, the perturbation theory fails, and we
find that if the impurity strength exceeds the band gap and
the impurity density exceeds that set by a correlation length,
the topological order is destroyed. Moreover, impurities may
be used to continuously interpolate the average topological
marker from one integer to another, mimicking a first-order
phase transition. Various prototype theoretical models of TIs
and TSCs, together with a variety of impurities, are employed
to demonstrate the ubiquity of our statements.

The structure of the paper is organized in the following
manner. In Sec. II, we first briefly review the derivation
of topological marker, and elaborate how impurities can
be viewed as local deformation of a lattice Hamiltonian.
In Sec. III, we investigate 1D class BDI and D systems,
provide an analytical proof for the conservation of average
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topological marker, and numerically demonstrate the continu-
ous interpolation between different topological phases caused
by impurities. In Sec. IV, we focus on 2D class A, All, and
D to elaborate the same features in 2D systems. Finally, the
results will be summarized in Sec. V.

II. LOCAL DEFORMATION OF LATTICE HAMILTONIAN

A. Proper choice the position operator
and the average topological marker

We start by giving a brief overview of the universal topo-
logical marker within the context of symmetry classification.
The systems under consideration are the TIs and TSCs in
D dimension described by Dirac Hamiltonian H = d(k) - T,
where d(k) = (dy, d;...dp) characterizes the momentum de-
pendence of the Hamiltonian, and I'; = (I'g, I';...T"»,) are the
nth order Dirac matrices of dimension 2" x 2" that satisfy
{I';, I’} = 26;; [22,24,25]. The Hamiltonian is classified ac-
cording to the TR, particle-hole (PH) and chiral symmetries,
yet the topological invariant in any dimension and symmetry
class can be constructed in a unified manner from the unit
vector n(k) = d(k)/|d(k)| of the Dirac Hamiltonian [27],
which has been called the wrapping number or degree of the
map deg[n]. The universal topological marker is subsequently
derived from rewriting the momentum space topological in-
variant into real space according to the following recipe [26].
Suppose for a specific TI or TSC, the Dirac Hamiltonian
uses only {I'g, I'y,...I'p}, leaving {I'pii, Tpia, ...} un-
used. We denote the product of all the unused ones to be
W =Tpi1pss...'y,, or W = [ if all Dirac matrices are used,
and introduce the projectors to the filled and empty lattice
eigenstates

> lmyml=0. Y |n)(n|=P. (1

where |n) is the filled eigenstate of negative energy E, < 0,
and |m) is the empty eigenstate of positive energy E, > 0
obtained from diagonalizing the lattice Hamiltonian Hy|¢) =
E¢|€). The projector formalism leads to a real-space expres-
sion for the momentum space topological invariant provided
the system remains homogeneous [26]
1 A

Homogeneous systems: deg[n] = ﬁTr[C 1, 2)
where LP is the total number of unit cells, and Tr[...] repre-
sents the trace over all the internal degrees of freedom on all

lattice sites. The topological operator C in Eq. (2) consists of
alternating projectors and position operators

C=NpW[Q1,Ply...1p0 + (=)’ P1,01,..150],  (3)

where {?1,?2,?3...} = {%,9,2...}, and the last operators are
(0,0} ={P,Q} if D= odd, and {0, 0} ={Q, P} if D =
even owing to the alternating ordering of the projectors
Q and P. The normalization factor is given by Np =
iP22P=17P /¢ Vi, where Vi = 2 P+D/2/T(2E) is the vol-
ume of the D sphere of unit radius that takes the
value {Vi, Vs, Vs...} = {27, 4m,2x%...}, and the factor ¢ =
{1, —1,1i, —i} is defined from the trace of all the I" matri-
ces multiplied together Tr[I'¢I";...I';,] = 2"¢, which depends

on the representation of the I' matrices for the system at
hand. The topological marker on a lattice site r is then defined
as the rth diagonal element of topological operator

C(r) = (riClr) = Y (ro|Clro), )

a

where ) represents the summation over all the 2" internal
degrees of freedom inside the unit cell at r, such as spin,
orbital, particle-hole, etc.

We now comment on the choice of position operators
(i1, 1...ip} in Eq. (3). In a previous paper [26], we employed
the straightforward way of assigning the position operators by
simply numerating the position of the unit cell. For instance,
in a 1D system of L unit cells, we have used

1| =% =diag(1,2,3..L)®I,, )

where [, is a 0 x o identity matrix, since all the internal
degrees of freedom o within the same unit cell should be
assigned by the same position operator. However, this position
operator does not respect the periodic boundary condition
(PBC), since there is a sharp jump from L back to the first
site 1, leading to an anomaly on the spatial profile of C(r) at
the two ends » = 1 and r = L. In other words, the topological
marker is not quantized to integer everywhere on a system
with PBC, a known numerical artifact [5,26] that makes it
difficult to examine the variation of topological marker caused
by impurities.

To fix this problem, in the present paper we assign the
position operator by

R L A 4 : .
h=2= Z—diag(ez”’/L, eIk SR TR, (6)
T

and similarly for all other spatial directions, i.e., using the
enumeration % exp(2mix/L) in the position operator, a form
that respects PBC as has been proposed previously [6,28-30].
The trade off is that the marker will become complex since the
position operator is complex. Thus we choose to use Eq. (6)

and examine only the modulus of the topological marker
IC()] = [(ReC(r))” + (ImC(r))*]"/2, )

which is found to be quantized to integer everywhere in the
system and hence suitable to answer whether impurities mod-
ify the average topological marker. We further defined the
average topological marker by

- 1
C=152 lcml. ®)

In a homogeneous system, the topological marker on every
site is equal to the average topological marker, which is also
equal to the modulus of the momentum space topological
invariant |C(r)| =C = |deg[n]|. The key issue we want to
address in the present paper is the condition under which
the average topological marker C remains unchanged from
|deg[n]| even in the presence of impurities, despite the local
marker |C(r)| can vary in space. For simplicity of the nota-
tion, in what follows we use C(r) and |C(r)| interchangeably,
although one should keep in mind that we are actually pre-
senting the modulus of the topological marker |C(r)|.
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B. Disorder as local deformation of lattice Hamiltonian

Real materials contain all sorts of defects. Even if no lattice
sites are missing, the local energetic parameters like chem-
ical potential, hopping, or pairing, can still vary because of
impurities. Remarkably, we find that despite different kinds
of impurities represent different physical quantities, whether
the average marker C remains conserved in the presence
of impurities only depends on whether they correspond to
local variation of zero- or nonzero-matrix elements of the
lattice Hamiltonian H,y. As we shall elaborate in the follow-
ing sections, particularly for the disorder that corresponds to
changing a nonzero-matrix element (Hy);; = (HO)} = A to
A + &X, analytical formula can be derived to demonstrate the
invariance of average topological marker. The full Hamilto-
nian with such a perturbation is

H = Hy + 81 8, Hj. )

The 0;Hy is a matrix where the perturbed element and its
conjugate are 1 and all other matrix elements are zero.
Furthermore, one can easily generalize the following ar-
gument of perturbation theory to simultaneously varying
multiple nonzero-matrix elements {A{, A,...} such that H =
Hy+ Y, 8Ay 05, Ho, which correspond to the case of an ex-
tended impurity or multiple impurities.

Treating the variation 610, Hy in Eq. (9) as a perturbation
and expand the eigenstates to leading order yields

k) (k|3 Hol€)
1€y = |6) +5/\Z| L °| : (10)
[

valid for either the filled |£) = |n) or the empty |[£) = |m)
states. As a result, the projectors to the filled and empty
states in Eq. (1) are modified by P — P’ = )" |n'){(n’| and
0 — Q' =3, |m)(m|, respectively. Expanding P’ to lead-
ing order in X yields

+ H.c.>

|n) (|3 Holk) (k|
P =P+6A _
=P+81Y Y (In)(dunlk) (k| + k) k|dan) n])
n k#n
=P 463 (In) (0| + |9:n)(n)

=P+ 800, P, (11)

where we have used Zk# |kY(k| =1 — |n){n|. The same
argument also leads to Q' = Q + 8§19, 0, meaning that the
corrections to the projectors are simply given by taking the
derivative 9, on the projectors. As a result, the topological
invariant itself can be expanded by

C'=C+8209,C, (12)

where 9,C contains straightforward derivatives of operators
P and Q. If 9,C =0 then the average topological marker
remains unchanged C’ = C in the presence of the disorder §2,
which is what we aim to prove. We shall see below how this
occurs in each symmetry class in 1D and 2D.

III. ONE-DIMENSIONAL TOPOLOGICAL MATERIALS

The topological operator in 1D is given by
Cip = NpW Q3P + PQ. (13)

For the symmetry classes AIll, BDI, CII, DIII in 1D that
preserve chiral symmetry, the W matrix is proportional to the
chiral operator W o S, whereas the class D has a different
interpretation of W. It turns out that the average topological
marker C remains unchanged in all 1D systems because of
the same reason, namely the swapping of projectors P and Q
under the multiplication of W, as we shall explain below.

A. 1D class BDI

For concreteness, we use the prototype spinless Su-
Schrieffer-Heeger (SSH) model as an example for 1D class
BDI, described by the lattice Hamiltonian [31]

=Y (t+8t)chicn + (t — 8t)ch;, cpi + He., (14)
1
where i denotes the unit-cell position with two sublattices A
and B with the corresponding fermion annihilation operators
ca; and cg;, respectively, and ¢ £ &t are the hopping ampli-
tudes that alternate between even and odd bonds. The lattice
Hamiltonian satisfies the chiral symmetry

SHyS™' = SHyS = —H,, (15)

where the chiral operator S = Iyxy ® o, is constructed by
enlarging o, to the lattice degrees of freedom of N unit cells of
two sublattices, which is also the W = W~ = § matrix in the
topological operator, and moreover the prefactor in Eq. (13) is
unity Np = 1. The projectors in Eq. (1) transform under chiral
operator like

WPW =0, wow!=P (16)

As a result, the traces of the two terms in Eq. (13) are actually
equal

Tr[W P£Q] = Te[WPW ~'W2QW ~'W] = Tr[W Q&P], (17)

so we may use C = (2Np/L)Tr[W QiP] to calculate the av-
erage topological marker. We find that the derivative of C
vanishes identically

2Np . .
tHC = L TiW 8, 08P + W 050, P)

2ND 1 ~ —1 A
= —T [WW™ PWo,0% + 0, PWOW ™ W3]

2Np .
= —Tr[W(QBAQ + 0, PP)R]

2N
= —DTr[W(axQP + 9,PP)i]
2Np N
= TTr[WZ),\IPx] =0, (13)
where in the fourth line we have used 9,Q = —0, P, and

the fact that QP = 0 leads to Q0; P = —0, QP. As a result,
the average topological marker C remains unchanged under
the deformation & — X + §X according to Eq. (12), where the
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FIG. 1. Spatial profile of the topological marker C(r) at tuning
parameter (a) 6t = —0.2 (close to the critical point) and (b) 6t =
—0.5 (far from the critical point) near a single hopping impurity
8timp. For any values of 8t;y,, the average topological marker C~1
remains unchanged. (c) The evolution of the marker exactly on the
impurity site as a function of 8ti,. (d) At §t = —0.5, we examine
a potential impurity Uy, of different magnitude, which yields an
average marker C that is not conserved.

deformation in this case means locally changing the hopping
A =t % 8t on some bonds to a different value A 4 §A.

We further use numerical calculation to confirm these state-
ments. In Fig. 1(a), we show the spatial profile of the marker
C(r) around a hopping impurity 8t that changes the hopping
on a specific bond, which alters a nonzero element in the
Hamiltonian. The marker has a spatial profile that is reduced
on the impurity site but enhanced on neighboring sites, render-
ing the average marker C conserved, a universal feature for all
those cases where C is conserved. Thus the hopping impurity
does alter the spatial profile of C(r) around its neighborhood,
but for any strength of 6f;yp, the average marker C ~ 1 always
remains quantized up to numerical precision, consistent with
Eq. (18). Moreover, by comparing the results at tuning pa-
rameter 6t = —0.2 and 8t = —0.5 as shown in Figs. 1(a) and
1(b), the variation around the impurity seems to become more
short ranged at the larger tuning parameter 6¢ = —0.5, sug-
gesting that the correlation length & o 1/]6¢|, equivalently the
decay length of the topological edge state, also characterizes
the spatial profile of the marker around an impurity [32-34].
Finally, the marker exactly at the impurity site C(Ijyp) shows
a strong dependence on the impurity strength 6t as shown
in Fig. 1(c), but the average marker is still conserved.

On the other hand, if one considers a point-like potential
impurity Uiy, that changes the chemical potential on a spe-
cific site, then it corresponds to locally varying a zero-matrix
element since the SSH model in Eq. (14) does not have a
chemical potential to begin with. Note that this kind of poten-
tial impurity is actually a practical issue, since doping is what
makes polyacetylene a conductive polymer and useful for
commercial purposes [35]. In this case, the variation of C(r)
around the impurity shown in Fig. 1(d) reduces the average

marker C, making it not conserved. We have also tried other
kinds of impurities that correspond to varying zero-matrix
elements, such as a local neat-nearest-neighbor hopping (not
shown), and also obtained nonconserved average marker C.

On the other hand, our analytical proof given in Eq. (18) is
expected to fail if there are many impurities and the impurity
density becomes too high, since the first-order perturbation
theory in Eq. (10) is no longer adequate. To examine the situ-
ation of many impurities, we rely on numerical calculation to
determine whether the average marker C remains conserved.
In particular, we are interested in the issue of whether many
hopping impurities can bring the system continuously from
a nontrivial to a trivial phase without going through a sharp
transition, thereby reminiscing a first-order topological phase
transition (TPT). For this purpose, we examine the following
disordered SSH model:

H = Z(t + (SI)CLCBI' + (t — SI)CZHICB:'

+ Y Stimp(chicni — hyyicn) +Heo  (19)

icimp

where i € imp represents the impurity unit cells. The model
is shown schematically in Fig. 2(a). In the absence of
the impurities 8fiyp = 0, a negative tuning parameter &t
makes the unperturbed SSH model topologically nontrivial
C = 1. Naively, if we have many positive hopping impurities
Otimp > 0 and moreover 8ty is so large such that it over-
comes the negative tuning parameter, then one expects that
the system should become topologically trivial. This is con-
sistent with the high impurity density nj,, ~ 100% and strong
positive hopping 8tinp, > 1.2 limit of the phase diagram of
Fig. 2(b), which has C = 0. The interesting issue is then how
the average marker C behaves as one continuously changes
Otimp from negative to positive and increases the impurity
density njy,. Remarkably, we find that there is no sharp
jump for C as a function of {8timp, Mimp}, but rather a smooth

crossover between the nontrivial C = 1 and the trivial C = 0
phases, thereby exhibiting the feature of a first-order TPT.
Comparing the phase diagrams at the tuning parameter 6t =
—0.2 (close to the critical point) in Fig. 2(b) and at §t = —0.5
(far from the critical point) in Fig. 2(c), we see that the later
requires much stronger magnitude 8t and density 7y, to
reach the trivial phase C = 0. This is very intuitive, since
8t = —0.5 is deep inside the topological phase and hence
requires a larger perturbation to break the topological order,
whereas §t = —0.2 is closer to the critical point and hence
a small perturbation can already drive it across the phase
boundary. Empirically, we find that the topological order is
destroyed if the average distance between impurities is shorter
than the correlation length set by Fermi velocity divided by
the band gap & = vp/|M|, and if the impurity strength §A is
higher than the band gap

SE. Az M|, (20)

nimpN
where N is the number of unit cells and L is the length of

the system. In this disordered SSH model example we have
M = 25t, 5\ = Stimp, and & ~ at /|5t].
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FIG. 2. (a) Schematics of our disordered SSH model with hop-
ping impurities that continuously interpolates between the trivial and
nontrivial phases. The average marker C plotted as a function of the
strength 8ty and density niy, of the hopping impurities is shown for
(b) the tuning parameter §t = —0.2 close to the critical point, and
(c) 6t = —0.5 far from the critical point. Panels (d) and (e) show
the spatial profile of the marker C(r) as the system crosses into the
trivial phase upon increasing impurity strength 8t;y,, and density #ipmp,
respectively. Panels (f) and (g) show the evolution of eigenenergies
across the transition by increasing 8, and ninp, respectively, where
one sees that the crossover region has a gapless energy spectrum.

To further understand the nature of this smooth crossover
from the nontrivial to trivial phase, in Fig. 2(d) we plot the
spatial profile of the marker C(r) at a fixed impurity density
Nimp and increasing impurity strength 8¢y, and in Fig. 2(e)
we plot C(r) at a fixed fimp and increasing nimp. Both fig-
ures show that the overall magnitude of the marker gradually
reduces, signifying the crossover to the trivial phase C = 0.
This result also indicates that it is possible to fine tune the
values of 8fiyp and 7y, such that the average marker takes
some fractional value 0 < C < 1. Moreover, since both the
trivial C =0 and the nontrivial C = 1 phases are usually
characterized by a gapped energy spectrum, it is intriguing

to ask what happens to the energy spectrum in this crossover
regime 0 < C < 1. Interestingly, as shown in Figs. 2(f) and
2(g), we find that indeed both the C = 0 and C = 1 phases
of our disordered SSH model are gapped, but the crossover
region 0 < C < 1 exhibits a gapless spectrum. This suggests
that the disorder can cause the system to smoothly cross be-
tween trivial and nontrivial phases by going through a gapless
crossover regime, in contrast to the discrete jump of C at a
second-order TPT in homogeneous models.

In Appendix A, we further elaborate how the width of
the crossover region in Fig. 2(b) depends on njyp, as well
as showing the evidence that the width remains in the ther-
modynamic limit L — oo. Finally, we remark that because
our method only allows to investigate the modulus of the
marker |C(r)|, it will not be able to capture a negative marker
caused by impurities in the topologically trivial phase C = 0,
shall that happen. This implies that the C = 0 phase in reality
may be wider than the red regions on the phase diagrams of
Figs. 2(b) and 2(c) (and possibly in all the phase diagrams
in the following sections), but our method does not allow to
detect this. This issue will require a certain improvement of
our formalism in Eq. (7) that currently remains unclear to us,
and awaits to be further explored.

B. 1D class D

A prototype example for 1D class D is the spinless p-wave
SC chain, or Kitaev chain, described by [36]

H = Zt(c?ciﬂ + CL_IC,') — U Zc?ci
i i
+ ) Alcicip +¢jyye)), 1)
i

where c; is the spinless fermion annihilation operator at site i.
The PH symmetry is interpreted by C = 0,K = C~!, and the
Pauli matrix that has not been used is W = o, = CK, and the
normalization factor is Np = 1. Note that the chiral symmetry
implies that if |y ) is an eigenstate of H (k) of eigenenergy
g¢(k), then C|y) is an eigenstate of H(—k) of eigenenergy
—é&¢(k). Combining this with Eq. (1) leads to the conclusion
that the projectors transform under the PH operator as

cpc! /(2 5 2 Clbua) sl

dPk
Gy Z Ve s

and likewise CQC~! = P. Together with the fact that P = P*
and Q = Q are real matrices, we conclude that Eq. (16) still
holds in 1D class D with the interpretation W = o,. As a
result, the proof of 9,C = 0 in Sec. IIT A still holds, and hence
the average topological marker in 1D class D is unchanged
under local variation A that may be either the hopping #mp,
chemical potential iy, Or p-wave pairing Ay, in Eq. (21),
as elaborated in Fig. 3(a) with homogeneous parameters fixed
at t =1.0, u = 1.8, A =0.5. Furthermore, Fig. 3(b) also
indicates that if these impurities are too many and their
strength exceeds the band gap, then the average marker can
be destroyed, and the system can undergo a first-order phase

YWkl =0, (22)
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FIG. 3. (a) Spatial profile of C(r) for the Kitaev chain with three
different types of impurities from top to bottom: local variation of
hopping #imp, pairing Aimp, and chemical potential fimp. (b) The av-

erage marker C in the presence of multiple impurities in the chemical
potential ftim, plotted as a function of impurity strength and density.

transition to the topologically trivial phase just like that shown
in Fig. 2 for the SSH model, suggesting the validity of our
empirical formula in Eq. (20) for this symmetry class as well.

IV. TWO-DIMENSIONAL TOPOLOGICAL MATERIALS

The topological operator in 2D has the form
Cop = NpW[QRPSQ — PRQSP]. (23)

For classes A, C, and D that break TR symmetry, the topo-
logical marker recovers the well-known the Chern marker
[5] described by W o I, and for the TR-symmetric classes
AII and DIII it recovers the spin Chern marker W  o,. The
invariance of global Chern number in the presence of disorder
can be proved analytically, and the invariance of spin Chern
number also follows immediately because the Chern number
in each spin channel is invariant, as we shall see below for
classes A, All, and D.

A. 2D class A

For 2D class A, there is no unused Dirac matrices so
W = 1. Applying Egs. (11) and (12) to Eq. (23), the derivative

of the average topological marker is given by

N,
3,C = L—Lz)Tr[BAchP)?Q + Q%8,PYQ + Q%P99,0
— 0, PRXQ9P — P03, Q9P — P2Q$9, P]

N, o
= L—?TrWQQ)xPy + 038, P9

— 8,(PP)3Q — P8, 05

Np an | an Do
= ﬁTr[—axny + %0, Py] = 0, (24)
where we have used QQ=Q, PP=P, P+ Q =1, and
0, P = —0,0, and the fact that the position operators com-
mute. Once again this result implies that the average
topological marker, i.e., the Chern number, is invariant under
change of nonzero-matrix elements in the lattice Hamiltonian.
To support this statement, we examine the lattice model of

Chern insulators described by [37,38]

H = Z t{—ic;c,»MI, + icl.:_asci,, + H.c.}

1

+ Zt{—cchbP + CLbSC,-,, + H.c.}

1

+ Z t'{—ciCiyss + C,T,,Ci+ap +H.c.}
i

+ Y (M + 4" {clcis — clyeiph, (25)

L

where {s, p} are the orbitals, § = {a, b} denote the lattice
constants along planar directions, and i = {x, y} enumerates
the planar position. We considered ¢ = 1.0, ' = 1.0 and
M = —2.0. To highlight the change of marker from the homo-
geneous value, in Figs. 4(a) and 4(b) we present the deviation
of the marker C(r) — C(co) from its homogeneous value
C(00) near a potential impurity f;m, and a hopping impu-
rity fimp, Tespectively, which correspond to varying nonzero
elements in the lattice Hamiltonian. Similar to that occurs in
1D, the spatial profile of the marker is such that the reduction
on the impurity site C(r) — C(o0o) < 0 is compensated by the
enhancement on neighboring sites C(r) — C(co) > 0, render-
ing the average marker conserved ) [C(r) — C(c0)] ~ 0 and
indicating the validity of Eq. (24). In contrast, in Fig. 4(c), we
put in a local next-nearest-neighbor hopping #yyy that is not
in the original Hamiltonian and hence corresponds to vary-
ing a zero-matrix element, and the resulting average marker
is not conserved. Note that these local variations of topo-
logical marker correspond to the difference in local heating
rate between two circularly polarized lights, which is exper-
imentally measurable in atomic scale by scanning thermal
microscopy [38].

We remark that care must be taken when one intends to
identify numerically the conservation of the average marker
in 2D. Numerically, this can only be done by calculating the
difference between the average marker in the presence and in
the absence of impurities. For the impurities that are supposed
to conserve the marker, this difference is never truly zero
in the numerical calculation, but a very small number due
to the finite-size effect. Thus to firmly identify the conser-
vation of the average marker, a finite-size scaling analysis is
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FIG. 4. The spatial profile of the deviation of local marker
C(r) — C(o0) from its homogeneous value in the Chern insulator
caused by (a) a potential impurity fimp, = —5 (C conserved), (b) a
hopping impurity #j,, = —0.5 (C conserved), and (c) a next-nearest-
neighbor hopping impurity tyyy = 5.0 (C not conserved). The size
of the disk represents the magnitude and the color represents the
sign (blue = positive and red = negative, same color code for all the
2D marker figures below), and the axes labels show that coordinates
r = (x,y) in a L? = 20 x 20 lattice where the impurity is located
at the center. The largest disks in these three figures correspond to
C(r) — C(o00) = {—0.641, —0.00413, 0.0542}, respectively. (d) The
average marker C in the presence of many impurities that locally
varying the mass term My, at different density 7jmp.

unavoidable, especially given that the thermodynamic limit
is harder to achieve numerically in 2D. For this reason, we
have performed such a scaling analysis in Appendix B for all
the impurities in all the 2D models investigated in the present
paper, which confirmed the validity of Eq. (24).

Finally, in Fig. 4(d), we demonstrate the disorder-induced
smooth crossover between the nontrivial C = 1 and trivial
C = 0 phases. This crossover is caused by the impurities that
correspond to local variation of the mass term §M;y, that is
of opposite sign to the homogeneous value M. As a result,
at large values of §M;y,, and high impurity density n;pyp, the

(a) (b)
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FIG. 5. The spatial profile of the deviation of local marker from
its homogeneous value C(r) — C(oco) in the BHZ model presented
by size and color of the disks, for a single magnetic impurity of
magnitude S = 5.0 polarized along (a) Z direction (C conserved,
largest disk = —0.53) and (b) % direction (C not conserved, largest
disk = —0.64).
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FIG. 6. The spatial profile of the deviation of the marker from
its homogeneous value C(r) — C(00) in chiral p-wave TSC caused
by a single impurity that correspond to local variation of (a) chemi-
cal potential fimp = —1 (C conserved), (b) pairing Ajpp = —0.2 €
conserved), (c) hopping tp, = —1.0 (C conserved), and (d) next-
nearest-neighbor hopping tyyy = —1 (C not conserved). The largest
disks in these four figures have values {0.25, —0.07, —0.1, 0.1},
respectively.

system must be in the trivial phase by construction. Our
numerical result indicates a continuous change from C = 1
toC =0 as increasing (8Mimp, Mimp ), resembling a first-order
transition similar to that discussed in Sec. III A. Our results
thus suggest that disorder-induced first-order TPT may gener-
ally occur in any dimension and symmetry class.

B. 2D class AII

A prototype example for 2D class All that preserves the
TR symmetry is the Bernevig-Hughes-Zhang (BHZ) model
[39,40], which can be regularized on a square lattice to yield
the lattice Hamiltonian [37]

_ N
H = E tH{—ioc;, Civaps —
io

. T
[0C; Civass + H.c.}

+ Z t{_czwci-&-bpa + C,‘Tpgci-&-bsa +H.c.}

io

+ Z(M + 4tk cio + Z(—M —41)c] Cipo

io
- Z t/{cing Citéso — C:'rpgciJera + H.C.}, (26)

iod

using the same notation as Eq. (25), and o = {1, |} is the
spin index. We considered the parameters ¢ = 1.0, t' = 1.0,
M = —2.0. This lattice Hamiltonian is block-diagonal with
one block for each spin species, and each block is essentially
the lattice Hamiltonian for the Chern insulator in Eq. (25),
and so follows the conservation of average spin Chern marker
C= (5¢ - 5¢ )/2, since 9,Cy = 0,C, = 0 if the disorder cor-
responds to varying a nonzero-matrix element A according
to Eq. (24). It also follows that disorder can be used to in-
duce a first-order TPT in this class, as has been pointed out
previously [41], and moreover the TPT caused by Anderson
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FIG. 7. Details of the impurity-induced crossover region in
Fig. 2(b), where we fix the impurity density at (a) 1y, = 40% and
(b) nimp = 90%, and plot the average marker C as a function of
impurity strength 8t;,,. One sees that the nj,, = 40% has a much
broader crossover region than 7;y, = 90%, and moreover the width
of the crossover region remains unchanged at large enough system
size L.

disorder has been shown recently to exhibit a single-parameter
scaling behavior [42].

The investigation of magnetic impurities in the BHZ model
helps to demonstrate that breaking the nonspatial symmetry
of the system by disorder does not necessarily destroy C. This
statement is made because a magnetic impurity polarized in
any direction breaks TR symmetry. However, if the magnetic
impurity is polarized along the out-of-plane direction Z, then it
corresponds to varying nonzero-matrix elements (spin 1 and
| have opposite corrections to the mass term M), and hence C
should remain conserved according to Eq. (24). In contrast, if
the magnetic impurity is polarized in any direction in the xy
plane, then it corresponds to varying zero-matrix elements and
hence C may change. This prediction is indeed verified in our
numerical calculation of the deviation of the marker shown
in Fig. 5(a) for the polarization along 2 where the deviation
sums to zero ) [C(r) — C(00)] =~ 0, and Fig. 5(b) for the po-
larization along X that sums to finite ) [C(r) — C(c0)] # 0.
Thus the decisive principle is still whether the disorder varies
zero- or nonzero-matrix elements, while the breaking of non-
spatial symmetry may not be detrimental to the conservation
of C.

C. 2D class D

For 2D class D, we use the spinless chiral p-wave SC as an
example [22], described by the lattice Hamiltonian

H = Zt(cfc,uﬂ; + c;ﬂsci) —u Zc}ci
is i
+ Z A(—iciCipx + iclrxc; + CiCiyy + cj;ycj'), 27)
i

where c; is the spinless fermion operator at site i, § = {x, y}.
We use u = —3.0, A =0.5, and ¢t = —1.0. Since all Pauli
matrices are used in the 2 x 2 Hamiltonian, we use W = I and
Np = 2mi. The topological marker in this class is precisely
the Chern marker in Sec. IV A, so the proof that the Chern
number is invariant in the presence of disorder also follows.
The numerical results for the deviation of the marker C(r) —
C(oc0) are shown in Fig. 6, which examine several different
kinds of impurities that correspond to varying nonzero-matrix

elements (Uimp, Aimp and fimp) indicate a conserved C in
full agreement with Eq. (24). In contrast, the next-nearest-
neighbor hopping #yyy that varies a zero-matrix element, has
a C that is not conserved.

D. Remarks on three-dimensional topological materials

Finally, we remark on our current understanding of three-
dimensional (3D) TIs and TSCs, which have the following
general form of the topological operator:

Csp = NpW[QRPFQ2P + PRQJPZQ]. (28)

The prefactor Np and matrix W for all the 5 nontrivial
classes in 3D have all been clarified, and several homoge-
neous lattice models have already been investigated [26].
However, we are currently unable to provide an analytical
proof analogous to Eqs. (18) and (24) on the conditions un-
der which C should remain conserved, i.e., what kinds of
impurities make the marker conserve and what kinds do not.
One may then resort to numerical calculation to seek for the
answer, but we find that the exponentiated position operator
in Eq. (6) requires a much bigger lattice to make the marker
integer (for instance, for a 3D class All lattice model, the
marker reaches ~0.8 at lattice size 12 x 12 x 12 at a typical
parameter), which makes it difficult to identify the conserva-
tion of C. Thus the investigation of disordered 3D TIs and
TSCs, especially whether varying nonzero-matrix elements of
the Hamiltonian does not alter 5, should be left for future
investigations.

V. CONCLUSIONS

In summary, we investigate the robustness of topological
order under the influence of disorder in a variety of theoretical
models in 1D and 2D. Our survey is based on the formalism
of a universal topological marker that maps the topological
invariant on lattice sites. Improved by the exponentiated po-
sition operators that cure the anomaly at the boundary of the
lattice, the topological marker allows to investigate the influ-
ence of any kind of impurities within tight-binding models
in any dimension and symmetry class. The main issue we
aim to address is whether there exists some simple principle
that dictates which kinds of impurities alter the spatially-
averaged marker C and which kinds do not, in a way analogous
to Anderson’s theorem that states dilute nonmagnetic im-
purities do not alter the global superconductivity in s-wave
superconductors.

We discover that in 1D and 2D, it can be proved an-
alytically that the average marker C remains quantized in
the presence of dilute impurities that correspond to al-
tering nonzero-matrix elements of the lattice Hamiltonian,
regardless they are potential scatterers, hopping impurities,
or pairing disorder, and whether they violate the nonspatial
symmetry of the host material, as supported by our numer-
ical calculation. However, if the strength of the impurities
exceeds the bulk gap and the distance between them be-
comes shorter than the correlation length, then the average
marker C no longer remains quantized. In fact, one can
even use dense impurities to smoothly drive the system be-
tween topologically trivial C = 0 and nontrivial C = 1 phases,
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FIG. 8. Finite-size scaling analysis of the single impurity contribution to the topological marker, AC(L?) vs inverse system size 1/L?,
for all the different kinds of impurities in all the 2D models we have investigated. At large system size 1/L?> — 0, if AC(L?) — 0 then the
spatially averaged marker is conserved in the presence of the impurity, and if AC(L?) # 0 then the average marker is not conserved. Here the
abbreviations are imp = impurity, mag = magnetic, NNN = next-nearest-neighbor hopping impurity, A = pairing impurity, and ;= = potential

impurity.

mimicking a first-order TPT. On the other hand, for impuri-
ties that correspond to varying zero-matrix elements of the
lattice Hamiltonian, we find that in general C does not remain
quantized.

Our results that combine analytical and numerical calcula-
tions thus provide a thorough understanding on the robustness
of topological order against disorder, and moreover demon-
strates the ubiquity of the universal topological marker on
addressing any kind of disorder in any dimension and sym-
metry class. We anticipate that the marker may be used to
address the local variation and global average of topological
order in the presence of other kinds of inhomogeneity, such as
grain boundaries and junctions, and different kinds of effects
of the inhomogeneity may be discovered, which await to be
explored.

APPENDIX A: DETAIL OF THE IMPURITY-INDUCED
CROSSOVER REGION IN SSH MODEL

In this section, we detail the nature of the crossover re-
gion induced by many impurities in the SSH model shown in
Figs. 2(b) and 2(c). Firstly, we emphasize again that, by con-
struction, a transition from the C = 1 to the C = 0 phase must
occur at high impurity density n;y, and large impurity strength
Otimp. In particular, in the maximal impurity density limit
Nimp = 100% that is practically homogeneous, the transition
happens at §t;,, = —4¢ since 8t just adds to the unperturbed
parameter ¢ such that they together reach the critical point
8t + 8timp = 0. Moreover, in this homogeneous limit 7y, =
100%, it is well known that the transition is of second order,
i.e., the average marker should jump discretely from C = 1 to
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C =0 at the critical point Otimp = —4t. Thus as the impurity
density gradually increases to maximum 7y, — 100%, the
crossover region is expected to narrow such that it recovers the
discrete jump at njy, = 100%. This is indeed consistent with
our numerical result shown in Fig. 7, where nj,, = 90% has
a much narrower crossover region than 7y, = 40%. Finally,
we have also verified that the finite width of the crossover
region at moderate values of nj,, remains at large system size
L, signifying that this impurity-induced crossover region is a
robust feature in the thermodynamic limit.

APPENDIX B: FINITE-SIZE SCALING ANALYSIS
FOR TOPOLOGICAL MARKER

In this section, we conducted an analysis of the influence of
finite-size effects on the local marker for 2D systems, in an at-
tempt to verify whether the average marker remains conserved
in the presence of impurities. We abstain from conducting a
finite-size analysis on 1D systems, as the thermodynamic limit
can be easily reached numerically in 1D. In contrast, such
an analysis in 2D is necessary because the finite-size effect
renders the conservation of average marker difficult to identify

at small system sizes. For this purpose, we performed a scal-
ing analysis to determine the convergence of the difference
between the total topological marker for the homogeneous and
single impurity cases at a given lattice size L”, given by

L? L?
ACL) =Y Climp— Y CPlno-imp  (BD)
r=1 r=1

which represents the contribution of the single impurity to the
topological marker. In the thermodynamic limit 1/L> — 0,
convergence to zero AC(L?) — 0 signifies the conservation
of the average marker in the presence of the impurity. Con-
versely, convergence to a nonzero value AC(L?) # 0 suggests
that the average marker is altered by the impurity. Our results
are summarized in Fig. 8, with all the impurities and models
indicated, together with whether the average marker is con-
served or not. These numerical results further corroborate that
our theory is correct, i.e., if the single impurity corresponds to
varying a nonzero-matrix element of the lattice Hamiltonian,
then the average marker is conserved. For the impurities that
vary the zero-matrix elements of the Hamiltonian, the average
marker is not conserved for all the cases we have investigated.
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